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A growing body of literature supports microbial symbiosis as a foundational principle
for the competitive success of invasive plant species. Further exploration of the
relationships between invasive species and their associated microbiomes, as well as
the interactions with the microbiomes of native species, can lead to key new insights
into invasive success and potentially new and effective control approaches. In this
manuscript, we review microbial relationships with plants, outline steps necessary to
develop invasive species control strategies that are based on those relationships, and
use the invasive plant species Phragmites australis (common reed) as an example of how
development of microbial-based control strategies can be enhanced using a collective
impact approach. The proposed science agenda, developed by the Collaborative for
Microbial Symbiosis and Phragmites Management, contains a foundation of sequential
steps and mutually-reinforcing tasks to guide the development of microbial-based control
strategies for Phragmites and other invasive species. Just as the science of plant-microbial
symbiosis can be transferred for use in other invasive species, so too can the model of
collective impact be applied to other avenues of research and management.
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INTRODUCTION
Invasion of native ecosystems by non-native (i.e., exotic) plant
species is a widespread problem. For example, Morse et al. (1995)
estimated that more than 5000 exotic plant species have become
established and displaced native plant species in the U.S. The
problem continues to grow as over 700,000 hectares per year of
wildlife habitat are invaded by invasive species (Babbitt, 1998).
Invasive plants negatively impact both the ecosystems and the
economy of the United States (Pimentel et al., 2000), where about
400 of the 958 species listed as endangered or threatened are con-
sidered to be at risk due to pressure from invasive species (Wilcove
et al., 1998). Management and control of invasive plants is a prior-
ity for many agencies and organizations across the United States
and entails a significant investment of resources. For example, the
National Invasive Plants Council, composed of members of many
federal agencies with a goal to provide high-level interdepart-
mental coordination of federal invasive species actions, estimated
that $2.2 billion (U.S.) was spent during FY2012 on invasive
species activities (National Invasive Species Council, 2014). The

total control cost for exotic and invasive aquatic weeds in the
United States is estimated at $100 million annually (Pimentel,
2005). In the State of Florida alone, $14.5 million is spent annually
on aquatic hydrilla (Hydrilla verticillata) control, and H. verticil-
lata infestations in only two Florida lakes have amounted to $10
million annually in recreational losses, including swimming and
boating (Center et al., 1997). Similarly, state departments of natu-
ral resources, various collaboratives, and local watershed councils
are also concerned with invasive species. In the Great Lakes
region, the Great Lakes Restoration Initiative (GLRI), the largest
U. S. investment in the Great Lakes in two decades, includes com-
bating invasive species as one of its five urgent issues (Great Lakes
Restoration Initiative, 2010, 2014).

Although extensive resources from state and federal agencies
have been devoted to both management and control of inva-
sive plant species across the U.S., there is evidence that this
intensive investment may not be producing the intended man-
agement results (Reid et al., 2009; Martin and Blossey, 2013).
There is a need for new, innovative tools to control invasive
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species that address the drivers of invasion. A growing body of
literature supports microbial symbiosis as a foundational prin-
ciple for the competitive success of invasive species. Much of
this insight has emerged from ecological studies of microbiomes
(see Glossary for definitions of select terms) demonstrating that
the health, productivity, and adaptive capacities of all organisms,
whether they be humans (Pflughoeft and Versalovic, 2012), non-
human mammalian species (Ley et al., 2008; Muegge et al., 2011),
insects (Engel and Moran, 2013), amphibians (Kohl et al., 2013;
Kueneman et al., 2014), birds (Kohl, 2012), fish (Wu et al., 2012;
Ye et al., 2014), or plants (Bulgarelli et al., 2013; Berg et al., 2014;
Rout, 2014) can be linked in various ways to their microbiomes
(i.e., microbial communities). This new and growing understand-
ing of the diversity, specificity, and wide-ranging function and
impacts of host-associated microbiomes makes it clear that the
behavior, dynamics, and interactions of organisms cannot be
understood or predicted without a consideration of their asso-
ciated microbiota (Gilbert et al., 2012). We believe, therefore,
that a deeper understanding of the relationships between invasive
species and their associated microbiomes, as well as the interac-
tions with the microbiomes of native species, can lead to key new
insights into invasive success and potentially new and effective
control approaches. This approach is particularly promising for
invasive plant species because of opportunities to target control

efforts on the special dependence that all plants have on the
recruitment of microbiota for growth, tolerance to stress, and
resistance to disease. Potential control efforts could target the
introduction of pathogenic microbes or inhibition of beneficial
fungi (e.g., targeting microbial relationships that confer competi-
tive benefits). In this manuscript, we review microbial (primarily
endophytic) relationships with plants, outline steps necessary to
develop invasive species control strategies that are based on those
relationships, and use the invasive plant species Phragmites aus-
tralis as an example of how development of microbial-based
control strategies can be enhanced using a collective impact
approach.

PLANT-MICROBIAL INTERACTIONS
As with humans and other animals, plants also interact symbioti-
cally with microbes throughout their life history. These symbioses
are initiated through vertical transmission to juveniles at the time
of seed development or through continuous horizontal acqui-
sition from the environment (Figure 1). This plant-associated
microbiome (Turner et al., 2013; Rout, 2014) spans the diver-
sity of microbial life residing either within the plant as endo-
phytes or as epiphytes on foliar (Peñuelas and Terradas, 2014)
and subterranean (Mendes et al., 2013) plant surfaces. Broadly,
these associations may be either intimate or casual, yet many are

FIGURE 1 | Schematic of microbiome surrounding a plant throughout

its life history. UL: Endophytic fungi and bacteria can be transmitted
within the seed coats of certain plant species. UR: As seeds germinate,
roots, stems, and leaves of seedlings can be inhabited by various
microbes. Those microbes may have been transmitted through seeds, soil

and plant litter on site, or airborne spores. LR: A mature plant may be
thoroughly infected with microbes. LL: As perennial plants senesce, some
endophytes are transmitted to the next generation through seeds or
through living rhizomes. Other microbes may be transmitted through
spores in the plant litter.
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thought to contribute to plant health and development (Borer
et al., 2013). Many plant-microbe associations may be commen-
sal, for which no overt benefit or harm is observed, or mutualistic,
in which plant growth and development are often promoted
(Hirsch, 2004). Still other pathogenic symbioses may negatively
impact plant growth and/or result in developmental deficien-
cies or mortality. These relationships also are not static and may
vary from mutualistic to pathogenic during different stages of the
microbial or plant life cycle (Kogel et al., 2006). Responses of plant
populations to this range of symbiotic associations will directly
reflect the net impacts of both mutualistic and pathogenic sym-
bioses, as well as indirect impacts that may involve commensals
(Bever et al., 2010).

Endophytic mutualists and pathogens
The endophytic habit is described as the internal colonization of a
plant by a microbe. There are several variations to this endophytic
life style. For example, endophytic microbes are often restricted
to particular organs, usually roots, stems, or leaves. Some endo-
phytes occupy only above-ground plant parts, whereas others
are restricted to subterranean organs and tissues. Endophytic
microbes most commonly live exclusively within a plant in a
biotrophic mode, obtaining their nutrition solely from the plant.
As a result, many endophytic microbes form obligate associations
with plants, most often inside the plant host but occasionally
outside of the host (e.g., arbuscular mycorrhizal fungi or AMF).
Commonly, endophytic microbes that are systemically distributed
in plants (Class 1 and 2 fungal endophytes) are vertically trans-
mitted through successive generations of hosts in seeds or in
rhizomes of clonal plants, whereas endophytes restricted to par-
ticular tissues or organs of hosts (e.g., class 3 endophytes) are gen-
erally transmitted horizontally (Rodriguez et al., 2009). Among
the more commonly studied fungal endophytes are species of
Epichloë (=Neotyphodium asexual stage) that are restricted to
above-ground portions of cool-season grasses, including leaves
and inflorescences (Tanaka et al., 2012), and broadly distributed
root-infecting AMF that comprise species within the phylum
Glomeromycota (Willis et al., 2013), commonly in the gen-
era Glomus and Gigaspora (Dumbrell et al., 2010). Bacterial
endophytes, however, may represent species spanning several
bacterial phyla: Actinobacteria, Proteobacteria, Firmicutes, and
Bacteroidetes (Malfanova et al., 2013). Endophytic infections by
either fungi or bacteria often lead to enhanced plant productivity,
either by enhancing nutrient acquisition, producing plant growth
hormones, synthesizing metabolites that restrict vertebrate or
invertebrate herbivory, or also by reducing disease susceptibility
(Rodriguez et al., 2009). However, under appropriate conditions,
endophytic interactions may transform from a mutualistic asso-
ciation to a pathogenic association (Newton et al., 2010; Alvarez-
Loayza et al., 2011), blurring the lines between species that are
strict mutualists and those that are strict pathogens.

Most common epiphytic bacterial and fungal plant pathogens
also have a significant endophytic phase to their life cycle.
Latent infections are common, and pathogens may reside endo-
phytically in plants for extended periods without causing any
mortality, growth reductions, or reductions in fitness (Delaye
et al., 2013; Malcolm et al., 2013). Many of these potential

pathogens originate from epiphytic populations residing either
in the rhizosphere (below-ground zone adjacent to plant roots)
or phyllosphere (above-ground zone adjacent to leaves), although
pathogen communities ultimately found in roots are more diverse
than those found in leaves (Angelini et al., 2012). As with Epichloë
and other fungal and bacterial endophytes, interactions with
plants may switch from pathogenic back to mutualistic, reinforc-
ing the importance of the dynamics of interacting factors associ-
ated with hosts, microbes, and the environment (Scholthof, 2007)
that ultimately determine the nature of microbial interactions
with plants at any given time.

Epiphytic microbial associations
The epiphytic lifestyle generally refers to microbial development
directly on host surfaces. Yet, this development, driven by carbon
release from plant parts (Hirsch et al., 2013), is often main-
tained within a spatially and temporally variable phyllosphere
and the rhizosphere. These epiphytic symbionts originate from
soil, water, seed, animal excrement, or the atmosphere and com-
prise the breadth of bacterial and fungal diversity (Vorholt, 2012).
Different plant organs and tissues support different commu-
nities of microbes (Normander and Prosser, 2000), but in all
cases, these epiphytic associations are driven largely by nutri-
ents released from the plant into the adjacent soil (Dennis
et al., 2010) or leached from foliar plant parts (Vorholt, 2012).
Similar to endophytic associations, epiphytic associations span
the range from mutualistic to pathogenic but often provide pos-
itive impacts on plant growth and health either through direct
growth enhancements (Lugtenberg and Kamilova, 2009) or sup-
pression of pathogens (Mendes et al., 2011).

PLANT-MICROBIAL SYMBIOSIS AND INVASION
Increasingly, it is recognized that microbial symbioses may be
important determinants of plant invasiveness and can either
exacerbate or inhibit invasive success, depending on origins of
the symbiont (from the native or invasive range) and on the
direction, prevalence, and strength of the symbiotic interactions
(Richardson et al., 2000; Berg et al., 2014; Coats and Rumpho,
2014). However, the nature and magnitude of the role of micro-
bial symbioses in biological invasions is not always clear (van der
Putten et al., 2007). Therefore, a better understanding of general
mechanisms of biological invasions as a whole will result in more
effective management of invasive plant populations (Mack, 1996;
Rejmanek, 2000; Richardson et al., 2000).

Invasive plants and native pathogens
Darwin (1872) observed that plant and animal species brought to
new regions of the world often experienced dramatic population
growth and surmised that these species escaped from regula-
tion by “natural enemies.” The enemy release hypothesis (ERH)
predicts that plants introduced to a new region will benefit by
encountering fewer specialist enemies compared to their native
range and will be less affected by resident generalist enemies than
resident plants. This escape from natural enemies would pro-
vide a competitive advantage over resident species (but see van
Kleunen and Fischer, 2009). Many studies suggest that biologi-
cal invasions are most likely to start in areas with low levels of
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ecological resistance and by invaders largely free from their native
natural enemies (Reinhart et al., 2003; DeWalt et al., 2004; Knevel
et al., 2004; Vila et al., 2005) (but see Beckstead and Parker, 2003,
for an exception). For example, correlative studies report that
many invasive plants are associated with more foliar (Mitchell and
Power, 2003) and root (van der Putten et al., 2005) pathogens in
their native than non-native ranges. Further, plants categorized as
harmful invaders experienced a greater decline in pathogen infec-
tion from native to invaded range than weak invaders. Because
most natural plant communities have diverse resident pathogens,
successful invaders are likely to encounter non-adapted pathogens
that cause less damage relative to what they experienced in their
native ranges. However, as the density, range, and time-since-
invasion of invasive plants increase, interactions with pathogens
are likely to change.

Invasive plants and novel pathogens
Native pathogens, which may be novel to the introduced species,
may immediately prevent invasion (biotic resistance hypothesis)
so that the invading species never becomes established or reaches
such densities as to displace native species (Elton, 1958; Knevel
et al., 2004; Parker and Gilbert, 2004). Outside of agricultural
species, we have little knowledge of failed invasions (Scheffer,
1997). Biotic resistance may be more effective where invasive
species are closely related to native species. For example, Parker
and Gilbert (2004) found no difference in disease levels in native
vs. introduced clovers occurring at the same site. Invasive species
from an unrelated genus or family should be less likely to be col-
onized by novel pathogens than invasive species closely related to
co-occurring native species. However, over time, the number of
novel pathogens that accumulate on invasive species is likely to
increase. For example, Strong and Levin (1975) found that intro-
duced British trees support the same number of fungal parasites
as native tree species 300 years following their introduction. As
the success (i.e., high density) of an invasive species increases, the
chance that a virulent pathogen will arise and lead to epidemics
and major die-offs also increases. Negative effects of pathogen
buildup have been demonstrated both theoretically and empir-
ically (Hudson et al., 1998; Turchin et al., 1999; Hassell, 2000).
Disease epidemics in native plant species (Rizzo and Garbelotto,
2003) and rapid control of invasive species by biocontrol efforts
(Burdon et al., 1981; Cox and McEvoy, 1991) also point to the
potential of enemies to regulate plant populations. For example,
the weevil (Euhrychiopsis lecontei) colonized Eurasian watermil-
foil (Myriophyllum spicatum) and greatly reduced populations
across its invasive range (Creed and Sheldon, 1995; Creed, 2000).
More recently, Flory et al. (2011) reported that a Bipolaris fun-
gal pathogen greatly reduced the biomass and reproduction of
invasive Japanese stiltgrass (Microstegium vimineum) in naturally-
infected invasive populations. Over time, invasive plant species
may become increasingly regulated by natural enemies (Flory and
Clay, 2013).

Invasive plants and native mutualists
Most plant species form mutualistic symbioses with arbuscular
mycorrhizal fungi (Allen, 1991), N-fixing bacteria (Huss-Danell,
1997; Parker, 2001), or endophytic fungi (Clay and Schardl, 2002;
Angelini et al., 2012) or from simultaneous infection by multiple

mutualists (Larimer et al., 2010). However, as in the case of the
ERH, invasive species may often colonize new habitats without
their native symbiont. If a microbial mutualist is obligate, inva-
sions will fail in the absence of the symbiont. For example, early
attempts to introduce pines into Australia failed until appropriate
mycorrhizal fungi were introduced simultaneously (Allen, 1991).
Similarly, Parker (2001) concluded that “legumes may often fail
at colonization attempts within habitats where mutualist partners
are scarce.” However, this situation can also favor invasive species
that are less dependent on mutualistic symbionts. For example,
invasive St. John’s wort (Hypericum perforatum) is less dependent
on AMF compared to populations from its native range (Maron
et al., 2004). More generally, colonizing species may be less
dependent on symbiotic associations than non-colonizing species
(Baker and Stebbins, 1965). On the other hand, if coloniza-
tion by the plant and symbiont occur simultaneously, as in the
case of seed-transmitted fungal endophytes of grasses (Clay and
Schardl, 2002), then invasiveness may be enhanced by symbio-
sis. In experimental plots of non-native tall fescue grass (Lolium
arundinaceum) where endophyte infection was experimentally
manipulated, endophyte-infected plots had significantly greater
biomass of tall fescue, less biomass of other species, and lower
species richness (Clay and Holah, 1999; Rudgers and Clay, 2008).
Non seed-transmitted mutualists may be widely dispersed and
not limit invasions. For example, in Hawaii the invasive species
faya (Myrica faya) fixes nitrogen via symbiosis with Frankia bac-
teria and greatly alters ecosystem nitrogen dynamics (Vitousek
et al., 1987; Walker and Vitousek, 1991). However, Zimpfer et al.
(1999) found that the density of infective Frankia decreased
with distance from established invasive Casuarina cunninghami-
ana trees in Jamaica, suggesting strong spatial dependence of
invasions on Frankia density associated with established host
populations.

Invasive plants and novel mutualists
Invasive plants colonizing habitats in the absence of their native
symbionts may become colonized by novel mutualists. The likeli-
hood of this occurring may depend on the level of host-symbiont
specificity and on the phylogenetic relationship of the inva-
sive plant with native plant species. Some mutualistic interac-
tions like pollination or seed dispersal may be fairly general
and do not represent a strong barrier to invasion (Richardson
et al., 2000). One example of an invasive plant that estab-
lished a symbiotic association with a novel mutualist in its
invaded range is purple nutsedge (Cyperus rotundus) infected
by the fungal symbiont Balansia cyperi. The plant is native
to Asia but has been widely introduced in agricultural areas
outside its native range–to the extent that it is classified as
the world’s worst weed (Holm et al., 1977). Balansia cyperi,
on the other hand, is native to the southeastern U.S., Central
America, and South America, where it infected several native
Cyperus species (Diehl, 1950). Invading purple nutsedge pop-
ulations in the U.S. Gulf coast region were also infected by
B. cyperi, which produced a large increase in bulbil production
and overall plant reproduction (Stovall and Clay, 1988). The fun-
gus likely jumped from a native Cyperus host to C. rotundus
in this region, exacerbating its competitive ability and inva-
siveness. Host shifts of novel mutualists onto invasive plants
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must certainly occur in other systems but have not been well-
documented.

INVASIVE SPECIES MANAGEMENT THROUGH MICROBIOME
MANIPULATION
Given the multitude of means by which microbes can impact host
organisms and, ultimately invasion success, there is great poten-
tial for the management of invasive species through intentional
manipulations of symbiotic relationships that result in either
reduced competitiveness of invasive species or increased produc-
tivity and fitness of non-invasive plants (e.g., plants recruited after
habitat restoration efforts). For example, if it is shown that fun-
gal endophytes enhance the competitive capacities of an invasive
plant species, encouraging the growth of antagonistic bacterial
endophytes through exogenous applications may be explored as a
way to truncate benefits stemming from fungal endophytes. This
strategy is successfully being employed in crop plants to eliminate
toxic endophytes (Bacon and Hinton, 1999).

Manipulation of the plant microbiome is a strategy that may
be used to alter the competitive capacity of plants. Strategies
to encourage or discourage specific microbes that impact plant
performance may be employed, either to reduce competitive-
ness of the invader or to increase the resilience of native species.
Such a microbiome manipulation strategy has been successfully
explored with human health issues and serves to illustrate the
promise of such an approach. Although many now recognize
the importance of diet in directly manipulating the gut micro-
biome of humans and other animals (Muegge et al., 2011), other
manipulation strategies with humans such as fecal transplants
are gaining scientific credibility and public acceptance (van Nood
et al., 2014). In fecal transplantation therapy, complex gut micro-
biomes from a healthy donor are introduced into the colons of
patients suffering from intestinal infections. Often such probiotic
manipulations reverse the trajectories of sick patients in a mat-
ter of days, restoring them to health (de Vrieze, 2013). Similar
probiotic therapies involving plants have been used in agricul-
ture for many years, whereby the introduction to soils of complex
microbiomes from naturally disease suppressive soils (Chaparro
et al., 2012) or from disease suppressive organic amendments
(Hadar and Papadopoulou, 2012) have altered plant health tra-
jectories by altering microbial species in the soil microbiome.
These species are then recruited to the plant as endophytes
and epiphytes. Similar plant and/or soil microbial manipulations
could also be possible to alter invasion trajectories of introduced
plant species.

We recognize that determining the role of the various micro-
bial species in the success of invasive Phragmites or other plant
species is complex, given the large number of biotic and abi-
otic variables involved. It is widely appreciated that beneficial
symbionts such as rhizobia and mycorrhizae can enhance host
nutrition, growth, and stress resistance, while pathogens have
opposite effects. Beneficial plant-growth promoting bacteria, pri-
marily found in the soil environment, are also known from many
agricultural and natural systems where they help improve the
growth and vigor of host plants (Compant et al., 2010). In agri-
cultural systems, specific microbes are often used as bioinoculants
to enhance crop productivity or to reduce pathogen and pest
damage (Nelson, 2004; John et al., 2011). For example, plant
growth-promoting rhizobacteria are applied directly to seed or to
the soil when planting to ensure inoculation with the most benefi-
cial strains (Kaymak, 2011). Plant-growth promoting fungi such
as Trichoderma species can also have similar positive effects on
plants distinct from other plant-symbiotic fungi such as mycor-
rhizal fungi and foliar fungal endophytes (Harman et al., 2004;
Contreras-Cornejo et al., 2009). Colonization of roots by plant-
growth promoting fungi can enhance resistance to pathogens and
abiotic stresses, nutrient uptake and the productivity of crops.
However, the biological roles of most host-associated microbes
are unknown. Initial research to identify the most common and
widespread microbial taxa found in the rhizosphere or within
the target species can guide subsequent evaluation of microbial
impact on host plants. Microbial taxa common among target
plants growing within many populations throughout the land-
scape are more likely to influence landscape-scale competitiveness
than taxa only observed in a limited number of plants. In the
case of invasive plant species, the most prevalent and beneficial
microbes could be targeted for control through chemical or bio-
logical treatments to reduce the growth and vigor of the invasive
plant indirectly.

FORMING A SCIENCE AGENDA
There has been some recent work highlighting the role of the
microbial community in invasion success (highlighted above),
but significant information gaps need to be filled before
microbial-based control measures can be developed. To accel-
erate this development, we propose that a series of strategic
actions can be used to ensure that the correct microbes are being
targeted and that the desired results are achieved. Figure 2 pro-
vides a foundation of sequential steps to guide the development
of microbial-based control strategies for invasive plant species.

FIGURE 2 | Conceptual strategy for developing a microbial-based management approach to invasive plant species (e.g., Phragmites australis).
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Similarly, it could be used as a guide to develop probiotics that
promote the growth of native plant species.

1. Identify and characterize microbes influential to target inva-
sive and non-invasive plants—To design and implement an
effective microbiome manipulation strategy, the microbial
constituents relevant to the invasive plants of interest must
be characterized. The host range, tissues colonized, mode of
transmission (e.g., vertical, horizontal), assemblage diversity,
temporal variability, and other criteria can help describe the
local microbiome. A complete inventory will include doc-
umentation of any relevant rhizospere microbes, such as
Oomycetes or plant growth promoting and endophytic Bacillus
spp. (Gond et al., 2014), and whether significant interactions
among endophytes exist. This step establishes the foundation
on which the remaining steps are based.
It is likely that native plant communities also are intrinsi-
cally linked to fungi and bacteria. Thus, it is also impor-
tant to identify which endophytes are common in native
species and initiate studies that will allow forecasting of
possible behavior and outcomes from either a common
species or an interaction of species during a specific
growth phase. Results could guide targeting of specific life-
stages, both pre-infection and post-infection, to maximize
treatment response.

2. Determine roles played by the microbial community—Once
the target microbiomes are characterized, it is necessary to
examine the benefits or other effects that they confer to the
plants. Specifically, this step involves identifying the func-
tional roles of identified microbes and exploring how they
affect plant growth, development, and tolerance to extreme
conditions (all characteristics that contribute to a plant’s
competitive ability). Similarly, examination of how identi-
fied microbes affect the function and competitiveness of
native plants.

3. Target relationships for control or enhancement—Once the
microbial constituents and their roles are identified, the most
influential relationships could be targeted for control or
enhancement. Specifically, this stage will involve determin-
ing if endophytes can be controlled, how control treatments
impact both target and non-target species, and how treatments
alter competitive ability. Endophytes in target native plant
species require a different approach focused on determin-
ing whether native species can be inoculated with beneficial
endophytes (i.e., probiotics) and if inoculation will increase
competitive abilities compared to invasive plants.

4. Test effectiveness and feasibility of new methods under field
conditions—After critical microbial assemblages are identified
and targeted for control or enhancement, new management
methods need to be developed and field-tested to character-
ize effectiveness, cost-efficiency, and risk through space and
time. For example, tests of treatment specificity will charac-
terize potential impacts of a control method on non-target
organisms and environments. This step also involves exam-
ining the feasibility of scaling up to the landscape level and
exploring the regulatory and financial aspects of new control
(or enhancement) methods.

A CASE STUDY ON THE INVASIVE COMMON REED:
CREATING A SCIENCE AGENDA FOR MANAGING INVASIVE
PHRAGMITES AUSTRALIS THROUGH MICROBIAL
INTERVENTION
ECOLOGY OF PHRAGMITES
The invasive form of common reed (Phragmites australis, here-
after referred to as Phragmites) is a tall non-native perennial
grass often growing in dense clones throughout North American
wetlands (Figure 3). Although a native subspecies of Phragmites
(Phragmites australis spp. americanus; Saltonstall et al., 2004)
has been present in North American wetlands for thousands of
years, recent aggressive proliferation has been attributed to a non-
native, invasive subspecies (Phragmites australis spp. australis),
also known as haplotype M. The invasive Phragmites was intro-
duced into North America from Europe near the beginning of
the 1900s and has since been aggressively replacing the native
type (Saltonstall, 2002; Mozdzer et al., 2013) and displacing native
wetland plant assemblages. It is widely distributed and has been
found in each state within the contiguous United States, is now
established across the whole Great Lakes basin (Mal and Narine,
2004; Trebitz and Taylor, 2007; Tulbure et al., 2007; Bourgeau-
Chavez et al., 2013), and can be found throughout southern
Canada (Saltonstall, 2002).

This highly invasive plant spreads rapidly through seed disper-
sal, stolons, and rhizomes. Phragmites invasion displaces native
plants and decreases wetland biodiversity, primarily because of
its aggressive root system and tall, dense canopy that shades out
other wetland plants (Chambers et al., 1999). It also may exude
phenolic gallic acid as a form of allelopathy (Rudrappa et al.,
2007; Bains et al., 2009), but the significance of that trait is not
clear (see Weidenhamer et al., 2013). The presence of Phragmites
is known to impair recreational use of wetlands and shorelines,
decrease property values, increase fire risk, and reduce public
safety when proximity to roads disrupts driver visibility (Warren

FIGURE 3 | Invasive Phragmites australis in a Great Lakes coastal

wetland.
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et al., 2001; Mal and Narine, 2004; Trebitz and Taylor, 2007;
Kettenring and Adams, 2011). A few studies describe some pos-
itive effects of Phragmites, including improved oxidation of the
substrate and quality of the sediments (Tulbure et al., 2012), filtra-
tion of nutrients from agricultural lands (Kettenring et al., 2012),
and providing beneficial habitat for the American bullfrog popu-
lation (Rogalski and Skelly, 2012). However, invasive Phragmites
is considered a significant ecological and economic threat by the
public, NGOs, and governmental agencies (Meyerson et al., 2000;
Great Lakes Restoration Initiative, 2014).

CURRENT MANAGEMENT OF PHRAGMITES
Current management approaches can be effective in the short
term, but there are currently no clear means to stop Phragmites
invasions completely (Marks et al., 1994; Warren et al., 2001).
Conventional Phragmites management typically involves the
application of several strategies (chemical, mechanical (cutting
and burning), and hydrologic) used in combination over a long
period of time (Hazelton et al., 2014). This integrated approach is
considered to be the most effective, yet when employed indepen-
dently, these strategies may enhance Phragmites growth. Specific
management protocols depend on many factors, including patch
size and management agency capacity, but in general, repeated
application of herbicides (glyphosate and imazapyr), followed
by removal of biomass by burning or mowing is an effective
Phragmites management approach (Carlson et al., 2009; Michigan
Department of Natural Resources, 2010; Hazelton et al., 2014).
While this protocol has been successful at reducing Phragmites in
the short term, it is expensive, time-consuming, and generally not
sustainable in the long term. Herbicides can also have negative
impacts on the surrounding environment (Back and Holomuzki,
2008), and their application often draws negative social attention
(Blossey, 1999). Furthermore, aerial and over-water application
of herbicides is prohibited in Canada. Because current manage-
ment methods are unsustainable and not available to all resource
managers, new microbe-based strategies are being investigated.

THE MICROBIOME OF PHRAGMITES
Baseline assessments of Phragmites-associated endophytes offer a
foundation for exploration of potential control methods based
on microbiome manipulations. Commonly, the freshwater and
saltwater wetlands invaded by Phragmites harbor high levels
of microbial diversity and activity (Gutknecht et al., 2006;
Stephenson et al., 2013). As a result, diverse symbiotic interac-
tions of Phragmites with eukaryotic and prokaryotic microbes are
likely to occur. Although not always easily detectable (Lambert
and Casagrande, 2006), ample evidence exists that Phragmites
harbors rich endophytic fungal (Angelini et al., 2012; Fischer
and Rodriguez, 2013) and bacterial (Li et al., 2013; Ma et al.,
2013) communities comprised of both mutualists and poten-
tial pathogens. Equally significant are the epiphytic prokaryotic
(bacterial and archaeal) communities (Llirós et al., 2013; Zhang
et al., 2013) and fungal communities (Wirsel et al., 2001; Van
Ryckegem and Verbeken, 2005). In addition, Phragmites is known
to support oomycete communities (water molds, Wielgoss et al.,
2009; Nelson and Karp, 2013). However, despite the detection
of many known mutualistic and pathogenic symbionts associ-
ated with Phragmites, the specific roles of nearly all of these

Phragmites-associated microbes have not been evaluated. The
exceptions are a few Phragmites-associated rhizosphere bacteria
(Reed et al., 2005) and fungi (Ernst et al., 2003) that have been
shown to enhance plant growth.

A diversity of known pathogenic fungi (Ban et al., 1998;
Mazurkiewicz-Zapalowicz, 2010) and oomycetes (Nechwatal
et al., 2008; Nelson and Karp, 2013) have also been described
in Phragmites populations found in both Europe and North
America. Yet, despite the fairly extensive list of putative foliar-
and root-infecting pathogens, virtually nothing is known about
their virulence to either native or non-native Phragmites haplo-
types, and little mechanistic understanding is known about how
they might influence invasive success. Therefore, screening for
well-studied microbes, like Bacillus spp. that are known to pro-
mote growth and resistance to biotic and abiotic stresses in a
range of plants (Gond et al., 2014; White et al., 2014) could
provide initial insight into the relationship between Phragmites
and pathogenic microbes. These microbes are better understood
in terms of their mechanisms of activity in plants and therefore
could provide important targets for altering the competitiveness
of invasive Phragmites.

Detection and examination of mutualistic or pathogenic endo-
phytes in Phragmites is complicated by the fact that plant-growth
characteristics associated with host variation may be completely
distinct from those influenced by environmental or physiolog-
ical adaptations (Lissner et al., 1999; Meyerson et al., 2000;
Saltonstall et al., 2004). Since microbiome associations are very
genotype specific and there is a suite of Phragmites lineages in
North America, host variation must be addressed in any investi-
gation endophytic and epiphytic microbes and their effect on the
invasive success of Phragmites.

MICROBIAL-DERIVED BENEFITS TO PHRAGMITES
Microbial interactions are thought to convey benefits to inva-
sive Phragmites through enhanced nutrient processing capabilities
and increased tolerance to environmental and habitat distur-
bances. Phragmites is well-adapted for growth in nutrient-rich
habitats but is somewhat plastic in that it grows at low nutrient
levels also (Mozdzer and Megonigal, 2012). Although Phragmites
commonly can be found in low nutrient soils, it grows best at
fertile sites (Romero et al., 1999). The capacity of Phragmites to
cross a range of soil nitrogen concentrations could be related
to maintenance of microbial functional diversity with respect
to nitrogen processing in multiple parts of the nitrogen cycle
(Li et al., 2013). A species of the fungus Stagonospora, for
example, was found to be a common growth-promoting endo-
phyte of Phragmites (Ernst et al., 2003), so it is possible that
this fungus or other fungal species could effectively replace the
nutrient absorption function of AMF. Because AMF have obli-
gate associations with plants, the limited support provided to
these fungi by Phragmites may also provide a possible explana-
tion for the slow re-colonization by native plants in managed
marshes that were previously dominated by Phragmites and have
depleted levels of AMF in the soil (e.g., Tanner and Gange, 2013).
Holdredge et al. (2010) found that native Phragmites was much
more heavily colonized by AMF, suggesting that it would ben-
efit more from increased abundance of AMF than would the
invasive strain.
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Table 1 | Specific tasks outlined by members of PSC to guide research to support Phragmites management using microbial symbiosis.

Science agenda Tasks

Microbial inventory (a) Gather data on the composition and transmission method of epiphytic and endophytic microbes associated
with Phragmites populations

(b) Determine the variation of the Phragmites microbiome in time and space (e.g., within a stand, by site) or time
(e.g., over plant life cycle, age of Phragmites stand)

(c) Explore the relevant pathogenic microbes in Phragmites communities and interactions that may exist with
mutualistic microbes

(d) Characterize the microbiomes of target native plant species to determine if there is a common core group of
taxa from which to explore their significance in a probiotic management approach

(e) Determine variation in native species microbiomes in space, by species, or by growth stage to allow some
predictive patterns that may inform the timing of a manipulative strategy

(f) Compare the endophytic communities of invasive Phragmites to that of native Phragmites

Benefits of microbes (a) Test the plant response of Phragmites when inoculated by particular microbe or set of microbes

(b) Determine endophytes that impact growth rate, biomass production, tolerance to stress, or other
characteristics that may provide a competitive advantage

(c) Assess the impacts of inoculants on Phragmites’ competitive abilities

(d) Determine the impact of Phragmites-associated pathogens on native plant communities

(e) Identify particular microbes associated with Phragmites or with native plants that increase the relative
competitiveness of native wetland species in the presence of Phragmites

(f) Identify individual microbes or microbial consortia that impact plant developmental pathways (e.g.,
nitrogen-fixing bacteria)

Targeting relationships for control (a) Test microbial sensitivities to inhibitors (e.g., fungicides or antibiotics)

(b) Determine the selectivity of microbial inhibitors for particular groups microbes

(c) Test endophyte sensitivity to treatments with limited environmental impact

(d) Determine the competitive outcomes of Phragmites with native plants following the elimination or suppression
of selected microbes

(e) Determine competitive outcomes of Phragmites with native plants with the inoculation of mutualistic microbes
or with the elimination or suppression of pathogens

(f) Explore mechanisms that underly reductions in Phragmites competitiveness

Test control methods (a) Analyze considerations for scaling up to landscape-level application of microbial-based control methods

(b) Perform analysis for appropriate regulatory bodies and involve regulators in discussions and planning

(c) Determine impacts of microbial manipulations on non-target species

(d) Determine the direct environmental impacts of the method of manipulation (e.g., fungicide, boric acid)

(e) Assess costs associated with microbiome manipulation management strategies

(f) Explore optimal management efficacy at short- and long-term time scales

Phragmites is remarkably tolerant of and resilient to a variety of
environmental and habitat disturbances (Hellings and Gallagher,
1992; Minchinton and Bertness, 2003; Silliman and Bertness,
2004; Li et al., 2010), but little is known about how endophytes
may mediate such responses. Chen et al. (2012) surveyed endo-
phytic bacteria associated with Phragmites and evaluated their
capacities to degrade pesticides and other pollutants. They pro-
posed that endophytic bacteria could enhance the capacity of
Phragmites to detoxify polluted waters. The presence of such
bacteria may also contribute to the tolerance of Phragmites to
grow in contaminated sites, where this may contribute to its
invasiveness (Meyerson et al., 2000), although endophytic micro-
bial population shifts are observed along with environmental
changes (Ravit et al., 2007; Ma et al., 2013). Overall, the presence
of endophytes leads to an increase in plant-produced antioxi-
dants and general up-regulation of other stress-defensive mech-
anisms that may enhance stress tolerance and increase invasive

success (Waller et al., 2005; Hamilton et al., 2012; Torres et al.,
2012).

PHRAGMITES MANAGEMENT VIA MICROBIOME MANIPULATION
The control of Phragmites in North America has become very
resource-intensive and difficult to maintain. A recent study of
land managers found that, between 2005 and 2009, about $4.6
million was spent annually on mechanical and chemical control
of Phragmites on over 80,000 hectares in the United States, but
there is no significant relationship between the resources invested
and control success (Martin and Blossey, 2013). These findings
indicate that there is a need for improved control methods using
more effective and sustainable approaches.

Successful management of invasive Phragmites, like other
invasive plant species, would benefit from an integrated man-
agement approach that engages multiple stakeholders and can
attract substantial long-term funding. As a result of this need,
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researchers at the U.S. Geological Survey partnered with the
Great Lakes Commission to use principles of the collective impact
approach (Kania and Kramer, 2011) to establish the Collaborative
for Microbial Symbiosis and Phragmites Management (hereafter
called the Phragmites Symbiosis Collaborative or PSC). The PSC
was initiated in February 2013 to advance microbe-based research
on the control of invasive Phragmites. This powerful collaborative
approach is new because it brings together an international group
of researchers from many disciplines and agencies to focus on the
development of an innovative microbe-based control strategy for
invasive Phragmites.

The objectives of the PSC are to establish the current state
of the science, identify research gaps, and develop a science
strategy (i.e., research agenda) to guide and support research
on microbial symbiosis to maximize collective progress toward
an integrated Phragmites control and habitat restoration strat-
egy. The PSC agenda (Table 1) includes explicit steps that guide
the scientific community in the development of new control
methods based on microbiome manipulation. These mutu-
ally reinforcing steps target the competitive abilities of invasive
Phragmites, as well as lay out principles and approaches that
will serve as a foundation for application of microbiome manip-
ulations to other invasive species. Using the five conditions of
collective impact (a common agenda, a shared measurement
system, mutually reinforcing activities, continuous communica-
tion, and a backbone support organization) to plan and sup-
port the initiative (Kania and Kramer, 2011), this collabora-
tion of scientists is fostering progress toward a broader overall
vision to maximize the collective impact of individual research
efforts.

SUMMARY
Microbial communities affect plant health and productivity in
many ways and likely contribute to the competitive success of
invasive plant species. The symbiotic relationships between inva-
sive plant species and their associated microbes offer a new target
for development of control methods and management strate-
gies. However, the spatial and temporal composition of micro-
bial communities in invasive plants, as well as the roles they
play in plant competition, are not well-characterized. Similarly,
approaches for microbiome manipulation as a form of invasive
species control are under development. Therefore, this paper
reviewed the relevant science relating to plant-microbial inter-
actions and identified a conceptual strategy for uncovering the
microbial interactions that could influence invasion success. A
case study on the invasive grass Phragmites australis showed
how the collective impact approach can be applied to create a
science agenda for development of microbe-based control strate-
gies. The steps outlined in this case study will serve as both
a foundation for similar microbe-based control efforts target-
ing other invasive species and a model of the collective impact
approach that can be applied to other avenues of research
and management.
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GLOSSARY
Arbuscular mycorrhizal fungi (AMF): Group of fungi in order

Glomales that colonize plant roots and enhance plant growth by
increasing absorption of minerals from soils.

Biotic resistance hypothesis: States that species-rich commu-
nities are more resistant to invasion because they are able to use
the resources more efficiently than communities with low species
richness.

Biotrophic: Describes an organism that can live and multiply
only on another living organism, such as parasitic or symbiotic
bacteria and fungi.

Class 1 Fungal endophytes: Fungi in the family Clavicipitaceae
that have a narrow host range (grasses) and colonize shoot and
rhizome tissues.

Class 2 Fungal endophytes: Non-clavicipitaceous fungi that
have a broad host range and colonize shoot, root, and rhizome
tissues.

Class 3 Fungal endophytes: Non-clavicipitaceous fungi
that have a broad host range and colonize above-ground
tissues.

Class 4 Fungal endophytes: Non-clavicipitaceous fungi that
have a broad host range and colonize root tissues.

Collective impact: The commitment of a group of actors from
different sectors to a common agenda for solving a complex
problem; individual impacts are multiplied through collective
effort.

Ecological resistance: Reduced invasion success in a native
community associated with multiple biotic processes, including
predation, competition, herbivory, or disease.

Endophyte: An organism, often a bacterium or fungus, that
lives within the tissues of living plants; relationships with plant
vary from symbiotic to nearly pathogenic.

Enemy release hypothesis: States that the success of exotic
organisms is due to escape from natural enemies within their
native range.

Epichloë: A genus of systemic and constitutive fungal sym-
bionts of cool-season grasses.

Epiphytes: Microbes that grow and persist on plant surfaces.
Haplotype: A designation based on a group of genes within an

organism that was inherited together from a single parent.
Horizontal transmission: Transmission of an infective agent

(e.g., microbe) between individuals in a population.
Microbiome: All of the microorganisms that associate with

another organism either externally or internally.
Mutualism: A relationship between two organisms in which

both benefit from the association.
Mycorrhizal: Refers to fungi that associate with plant roots and

facilitate the uptake of nutrients.
Oomycete: Eukaryotic microorganisms within the kingdom

Chromista, characterized by biflagellate swimming zoospores and
the formation of oospores.

Pathogen: A microbe capable of causing host damage.
Phyllosphere: Surface of plant leaves that may be colonized by

microorganisms.
Phytosphere: Plant ecosystem including the exterior and inte-

rior of both aboveground and belowground portions of plants.
PSC: Collaborative for Microbial Symbiosis and Phragmites

Management.
Rhizosphere: Area of soil surrounding plant roots where the

abundance and activity of microorganisms is elevated due to root
carbon deposition.

Symbiosis: Interaction between two different organisms living
in close association, typically to the advantage of both (includes
mutualism, commensalism, parasitism).
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