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INTRODUCTION

Endophytes have an intimate and often symbiotic interaction with their hosts. Less is
known about the composition and function of endophytes in trees. In order to evaluate our
hypothesis that plant genotype and origin have a strong impact on both, endophytes of
leaves from 10 Olea europaea L. cultivars from the Mediterranean basin growing at a single
agricultural site in Spain and from nine wild olive trees located in natural habitats in Greece,
Cyprus, and on Madeira Island were studied. The composition of the bacterial endophytic
communities as revealed by 16S rRNA gene amplicon sequencing and the subsequent
PCoA analysis showed a strong correlation to the plant genotypes. The bacterial distribution
patterns were congruent with the plant origins in “Eastern” and “Western” areas of
the Mediterranean basin. Subsequently, the endophytic microbiome of wild olives was
shown to be closely related to those of cultivated olives of the corresponding geographic
origins. The olive leaf endosphere harbored mostly Proteobacteria, followed by Firmicutes,
Actinobacteria, and Bacteroidetes. The detection of a high portion of archaeal taxa belonging
to the phyla Thaumarchaeota, Crenarchaeota, and Euryarchaeota in the amplicon libraries
was an unexpected discovery, which was confirmed by quantitative real-time PCR revealing
an archaeal portion of up to 35.8%. Although the function of these Archaea for their
host plant remains speculative, this finding suggests a significant relevance of archaeal
endophytes for plant-microbe interactions. In addition, the antagonistic potential of
culturable endophytes was determined; all isolates with antagonistic activity against the
olive-pathogenic fungus Verticillium dahliae Kleb. belong to Bacillus amyloliquefaciens. In
contrast to the specific global structural diversity, BOX-fingerprints of the antagonistic
Bacillus isolates were highly similar and independent of the olive genotype from which
they were isolated.
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basin exists (Lumaret and Quazzani, 2001; Diaz etal., 2006;

Olive trees (Olea europaea L.) represent one of the most ancient
domestic plants, which have characterized the Mediterranean
landscape since ancient times (Zohary and Spiegel-Roy, 1975).
Olives originated from Asia and spread from Iran, Syria, and
Palestine to the rest of the Mediterranean basin 6,000 years ago
(Breton etal., 2008, 2009). The species O. europaea L. is classified
as wild, referred to as oleaster (subsp. europaea var. sylvestris),
and as cultivated (subsp. europaea var. europaea) types (Green,
2002). The domestication and breeding history of olive trees
has not been fully described to date. Ancestral wild gene pools
from three long-term refugia (the Near East, the Aegean area,
and the Strait of Gibraltar) have provided the essential foun-
dations for cultivated olive breeding (Besnard etal., 2013). At
present, a long list of genotypes cultivated in the Mediterranean

Diez etal.,, 2011). According to their gene pools olive cultivars
can be divided into three main groups related to the region
of origin “Eastern,” “Central,” and “Western” (Haouane etal,
2011). Today, olive trees represent one of the most important
oil crops world-wide, delivering monounsaturated fatty acid and
antioxidant-containing olive oil, which serves as the major fatty
component of the Mediterranean diet. In 2013, on an area of
10.2 Mio ha 20.3 Mio t of olives was harvested world-wide and
showed in the last few years a strong upward trend (FAOSTAT,
2014). However, olive production in the Mediterranean region is
affected by several diseases. Verticillium wilt, caused by Verticillium
dahliae Kleb., is currently the most devastating disease correlated
with low yield and high rates of tree loss (Lopez-Escudero and
Mercado-Blanco, 2011). Since no resistant varieties and effective
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fungicides exist, biological control using the naturally occurring
antagonistic potential against pathogens is a potentially viable and
environmentally friendly alternative (Jiménez-Diaz etal., 2011).
Although several successful example studies were published for
the pathosystem olive- Verticillium (Prieto and Mercado-Blanco,
2008; Maldonado-Gonzalez et al., 2013, 2015), inconsistent effects
in the field are one hurdle along the path towards commercial-
ization. Microbiome-based biocontrol strategies can solve these
problems (Berg etal., 2013; Berg, 2014) but have not yet been
established.

Endophytes that live inside plants do not cause harm to
the plants and are characterized by an intimate interaction
with their hosts (Hallmann etal., 1997; Hardoim etal., 2008;
Reinhold-Hurek and Hurek, 2011). Endophytes with antago-
nistic activity against pathogens are promising candidates for
biocontrol strategies against Verticillium because they colonize
the same niche and can compete directly with the pathogen.
The endophytic microbiome shows great diversity, which is
influenced by the site and growth stage of the host plants
as well as fulfilling important functions for its host including
the promotion of plant growth, protection against biotic, and
abiotic stress as well as the production of essential secondary
metabolites (Ryan etal., 2008; Berg, 2009; Alavi etal., 2013).
Although a large diversity of microorganisms can live endophyt-
ically, mainly bacteria, in particular Alphaproteobacteria, were
identified as plant inhabitants (Bulgarelli etal., 2013). In con-
trast, much less is known about endophytic Archaea. Archaea
represent the so-called third domain of life, and have only
recently been described as important component of the mod-
erate environment and the human microbiome (Probst etal.,
2013). A few very recent publications have mentioned inter-
nal plant tissue colonization by members of the Archaea (Ma
etal, 2013; Oliveira etal., 2013), but their distribution, sig-
nificance, function, and activity remains unclear. In addition,
the endophytic microbiota of trees has undergone less investiga-
tion and nothing is known about the associated microorganisms
within olive trees. Our hypothesis has been that a positive iden-
tification of olive-associated endophytic communities depends
on whether their patterns are found to correspond with their
geographical origin. Because of the longevity and the high
genetic variability of oleasters and cultivars, olives might have
a specific but stable community of microbes over periods and
ranges and should contain a high diversity of microbes, espe-
cially with antagonistic potential against V. dahliae (Aranda etal.,
2011).

The objective of this study was to determine and compare the
structure of endophytic microbiota of 10 O. europaea L. cultivars
from the Mediterranean basin at one agricultural site in Spain and
from nine wild olive trees located in natural habitats in Greece,
Cyprus, and on Madeira Island by a set of molecular and isolation-
dependent methods. Moreover, the study addressed the question
what factors shape the endophytic microbiome and, in particular,
whether the bacterial and archaeal communities reflects the dif-
ferent geographic origins of the investigated olive genotypes. The
results will be used to reveal influences on the tree microbiome but
also to develop successful biocontrol strategies against Verticillium
wilt in olives.

MATERIALS AND METHODS

SAMPLING STRATEGY

Cultivated and wild olive trees from different regions were sam-
pled. The samples of the cultivated olives were taken at a single
experimental orchard at the ‘Venta del Llano’ Research Station
(IFAPA, Andalusia Regional Government) in Mengibar (Jaén
province, southern Spain). The field was established 22 years ago
using olive planting stocks of the same age of different cultivars of
various Mediterranean origins (Palomares-Rius et al.,2012). From
four trees of selected cultivars, vegetative branches and adherent
leaves were sampled in May 2009 (Table 1). Always the termi-
nal ends (10 cm) from four of the youngest branches around an
individual tree were taken and pooled. For the sampling surface-
disinfected gloves and scissors as well as sterile bags were used.
Leaves and boughs of wild olives were collected from Cyprus
(February, 2009), Greece (May, 2009), and Madeira (August,
2009). Samples from olive cultivars in Mengibar were chilled
and processed within one day, whereas the material from wild
olives were stored and transported under cooled condition until
processing within at least four days.

DNA EXTRACTION

For the isolation of microorganisms, 10 g of leaves and boughs
from each composite sample of individual trees were surface-
sterilized for 5 min using sodium hypochlorite (3% active chlo-
rine) and washed three times with autoclaved water. After the

Table 1| Sample designation, cultivar, and geographical origin used in
this study.

Sample Cultivar Origin Coordinates
designation
SP3 Arbequino Spain 37°56'26.62" N, 03°47'06.78"” W
SP5 Ocal Spain 37°6626.62"" N, 03°47'06.78" W
12 Leccino Italy 37°66'26.62"" N, 03°47'06.78" W
GR1 Koroneiki Greece  37°56'26.62"" N, 03°47'06.78" W
GR2 Kalamata Greece  37°56'26.62"" N, 03°47'06.78"" W
TUN1 Chétoni Tunisia 37°56'26.62" N, 03°47'06.78"”" W
SI Trylia Syria 37°56'26.62" N, 03°47'06.78"”" W
MO1 Picholine Morocco 37°56/26.62" N, 03°47'06.78" W
Marrocaine
PO1 Galega Portugal 37°56'26.62"" N, 03°47'06.78" W
FR1 Aglandau France 37°566'26.62"" N, 03°47'06.78" W
CY1 Wild Cyprus 35°04'09.64"" N, 32°18'00.28"” E
CY2 Wild Cyprus 35°05'01.13"" N, 32°18'00.10” E
CY3 Wild Cyprus 34°46'06.99” N, 32°54'08.96" E
CY4 Wild Cyprus 34°46'41.94"" N, 32° 54'53.76"" E
GR(w)1 Wild Greece  38°12'04.84” N, 22°06'05.22" E
GR(w)2 Wild Greece  38°12'06.01"" N, 22°06'01.38" E
GR(w)3 Wild Greece  38°10°00.54” N, 22°06'05.88" E
GR(w)4 Wild Greece  38°10°04.68" N, 22°06'36.42" E
M1 Wild Madeira 32°44/13.37” N, 17°12'34.77" W
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addition of 5 mL of sterile water the samples were pestled and
2 mL of the suspension was transferred in a 2 mL tube, and cen-
trifuged at 16.500 x g for 15 min at 4°C. The supernatant was
discarded and the pellet was stored at —21°C. Total DNA of bacte-
rial and fungal consortia was extracted using the FastDNA® Spin
Kit for Soil (MP Biomedicals, Santa Ana, CA, USA) according to
the manufacturer’s protocol.

STRUCTURE OF ENDOPHYTIC BACTERIAL COMMUNITIES REVEALED BY
ILLUMINA MiSeq AMPLICON SEQUENCING

To analyze the taxonomic composition of the endophytic bacterial
communities an amplicon sequencing approach using Illumina’s
MiSeq platform was applied for three biological replicates per
studied cultivar or oleaster. The hypervariable V4 region of the
16S rRNA gene was amplified according to the protocol described
by Caporaso etal. (2012) using the region specific primer pair
515f and 806r that included Illumina cell flow adaptors and
sample-specific barcodes. The PCR reaction mixture (30 1) con-
tained 1x Tag&Go (MP Biomedicals, Illkirch, France), 0.25 mM
of each primer and 1 pl of template DNA (94°C for 3 min,
32 cycles of 94°C for 45 s, 60°C for 1 min, 72°C for 18 s,
and final elongation at 72°C for 10 min). Products from three
independent PCR runs for each sample were pooled in equal
volumes and purified by employing the Wizard SV Gel and
PCR Clean-Up System (Promega, Madison, WI, USA). After
spectrophotometrical measurement of DNA concentrations (Nan-
odrop 2000, Thermo Scientific, Wilmington, DE, USA) equimolar
aliquots of all samples were combined for amplicon sequenc-
ing using Illumina MiSeq v2 (250 bp paired end) conducted by
(LGC Genomics, Berlin, Germany). Raw sequencing data prepa-
ration included demultiplexing (CASAVA data analysis software,
Mlumina), clipping of sequencing adapters (TruSeq, Illumina),
joining read pairs (FLASH 1.2.4, Magoc and Salzberg, 2011) with
a minimum overlap of 10 bases and maximum mismatch den-
sity of 0.25, and sorting according to sample-specific barcodes.
Prior to the next step, reads from biological replicates from each
cultivar/oleaster were joined (Supplementary Table S1). Resulting
reads were quality (Phred score > 20) and length filtered (290-
300 bp) using scripts provided by the open source software package
QIIME 1.8.0 (http://giime.sourceforge.net). Chimeric sequences
were discarded after de novo detection based on USEARCH 6.1
(Edgar etal., 2011). UCLUST algorithm using default parameters
was applied to cluster remaining reads to operational taxonomic
units (OTUs) at 97% similarity (Edgar, 2010) followed by tax-
onomic assignment of representative sequences by RDP naive
Bayesian rRNA classifier (Wang etal., 2007) based on the ref-
erence database Greengenes release gg_13_8_99 (DeSantis etal.,
2006). Archaeal reads were additionally classified using Silva’s
SINA aligner (Pruesse etal., 2012). Prior to further analysis all
reads assigned to plant plastids (chloroplasts and mitochondria)
were discarded from datasets. The number of sequences of each
sample was normalized to the lowest number of read counts by
randomly selecting subsets of sequences by a custom Perl script
(10-times random sampling followed by subset formation). Prin-
cipal Coordinate Analysis (PCoA) was performed to assess the
beta diversity based on the calculation of the weighted normal-
ized UniFrac distance matrix (Lozupone and Knight, 2005). The

study is registered as NCBI BioProject PRINA272855, the metadata
for each sample are available at NCBI in the BioSample database
(accession numbers SAMNO03287521 — 33), and the sequence data
are deposited in NCBI'’s Short Read Archive (SRA) under accession
numbers SRR1781607, SRR1781712, SRR1781720, SRR1781736,
SRR1781767,SRR1781768, SRR1781984, SRR1781986, SRR17819
87, SRR1781988, SRR1781989, SRR1781990, and SRR1782571.

QUANTIFICATION OF ARCHAEA POPULATION BY QUANTITATIVE
REAL-TIME PCR (qPCR)

Bacteria- and archaea-directed quantitative real-time PCR (qPCR)
was performed as described earlier, with primer pairs 338 bf/517 ur
and 344 af/517 ur, respectively, (final primer concentration:
300 nM; Probst etal., 2013). The primer sequences are as fol-
lows: Primer 338 bf (5— 3'): ACTCCTACGGGAGGCAGCAG
(El Fantroussi etal., 1999), primer 517 ur (5'— 3'): GWATTAC-
CGCGGCKGCTG (Amann etal., 1995), primer 344 af (5'— 3'):
ACGGGGYGCAGCAGGCGCGA (Raskin etal., 1994). For each
of the four biological replicates per olive sample, three techni-
cal qPCR replicates were carried out, using 1 pl of template
DNA. Standard curves were developed from PCR products of
the 16S rRNA gene of Staphylococcus warneri and Nitrosop-
umilus maritimus. The mean of the triplicates was calculated. The
archaeal portion was calculated as part of the total 16S rRNA gene
signatures retrieved (archaeal plus bacterial signals).

ISOLATION OF ENDOPHYTES FROM OLIVES AND SCREENING FOR
ANTAGONISTIC ACTIVITY TOWARDS V. dahliae

Bacterial isolates were obtained by plating aliquots of suspen-
sions from plant materials on R2A (Difco, Detroit, MI, USA)
and Kings B (containing 20 g proteose pepton, 15 ml glycerin,
1.5 g KyHPOy, 1.5 g MgSO4 x 7 HyO, 20 g agar per liter).
The antagonistic activity of randomly selected isolates display-
ing morphologically distinct colonies (five to seven isolates each
olive cultivar) towards the soilborne pathogen V. dahliae V25
was assessed by dual culture in vitro assay (Berg etal., 2005).
Representative antagonistic isolates were characterized by BOX
fingerprinting and partial 16S rRNA sequencing as described by
Berg etal. (2005).

RESULTS

COMPOSITION OF ENDOPHYTIC MICROBIAL COMMUNITIES IN OLIVE
TREES

The number of reads obtained by amplicon sequencing ranged
from 210 to 1583 per olive cultivar (Supplementary Table S1).
Based on the taxonomic classification of representative sequences
from all OTUs, the composition of bacterial communities was
revealed at phylum and class level (Figures 1A,B). Although PCR
primers targeting eubacterial 16S rRNA genes were applied, a
notable number of reads was assigned to the archaeal domain.
Among all analyzed olive genotypes, the bacterial phylum Pro-
teobacteria (21.3-69.6%) and the archaeal phyla Thaumarchaeota
(0.6-51.7%) and Crenarchaeota (1.9-28.6%) predominated. Less
abundant taxa that were detected in all samples belonged to Firmi-
cutes (2.5-11.0%), Euryarchaeota (1.0-13.7%), and Bacteroidetes
(0.4-13.4%). At class level all microbiomes contained represen-
tatives of Alpha-, Beta- ,and Gammaproteobacteria (4.9—17.9%,
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FIGURE 1 | Structure of the microbial communities in the endosphere of different olive cultivars revealed by lllumina MiSeq 16S rRNA gene amplicon
sequencing at phylum (A) and class level (B).

8.8-49.4% and 6.7-26.6%), the archaeal classes Thaumarchaeota
(0.6-58.1%) and MBG group A (2.0-30.7%), and Bacilli (1.8—
10.3%). Out of 1,595 detected OTUs five OTUs were shared
by all olive cultivars representing 9.8 to 61.0% of respective
read counts (Figure 2). The putative core microbiome consisted
of the betaproteobacterial Pelomonas sp. (10.7%) and Ralstonia
sp. (2.2%), the thaumarchaeal candidate genus Nitrososphaera
(8.6%), and the gammaproteobacterial Pseudomonas sp. (2.6%)
and Actinobacter sp. (2.6%).

Apart from commonalities, the analysis of the microbial
endophytic communities indicated a high degree of cultivar
and regional specificity. PCoA plot deduced from the distance

matrix calculated by the weighted normalized UniFrac algorithm
using phylogenetic information demonstrates a general cluster-
ing according to the geographic or cultural origin (Figure 3).
Whereas the Western and Eastern olives are clearly distinguishable,
the samples from the central Mediterranean basin (Tunisia, Italy,
and France) were more similar to western (in case of Tunisia and
France) or to eastern (Italy) olive cultivars. The exception could
be explained by ancestors from a different region. The communi-
ties of wild olives sampled in Cyprus and Greece grouped closely
within the cultivars originated from the same region. The micro-
biome of the oleaster from Madeira shares the most similarity to
the olives from Spain, suggesting a cultural relationship. Analysis
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OTU1699
Nitrososphaera sp.
0.4-50.3% (D 8.6%)

OTU4811
Pseudomonas sp.
1.1-8.7% (D 2.6%)

0OTU4145
Acinetobacter sp.
0.3-7.5% (2 2.6%)

OTU2529
Ralstonia sp.
0.7-5.6% (D 2.2%)

OTU4811
Pelomonas sp.
2.6-30.0% (2 10.7%)

FIGURE 2 | Operational taxonomic units (OTUs) and their taxonomic
affiliations representing the putative core microbiome in the
endospheres of all studied olive samples. The numbers indicate the
maximum, minimum and average of relative abundances of the respective
OTU throughout the read libraries.

PCoA—-PC1vs PC2

Tunisja - Chetoni
| Spain (cv. Ocal) -
a

France - Aglandau Morocco (cv.Picholine)

Madeira (Oleaster) A ] B
] Portugal (cv. Galega)

Spain (cv. Arbequino)

Greece (cv. Koroneiki)

L Greece (cv.Kalamata)

Ataly (cv. Leccino)

Cyprus (Oleaster)

Syria (cv. Trylia)

- Greece (Oleaster) -

PC2 — Percent variation explained 15.76%

1 ] 1 ] J
PC1 — Percent variation explained 51.26%

FIGURE 3 | Principal Coordinate Analysis (PCoA) plot deduced from
weighted normalized UniFrac distance matrix calculated from OTU
distribution obtained from 16S amplicon sequencing using lllumina’s
MiSeq platform: Olive cultivar accessions were classified into three
main geographical regions. B —\Western Mediterranean. a — Central
Mediterranean. ® — Eastern Mediterranean.

of the community composition measured by the UniFrac distances
between the three regional groups showed that microbiomes from
Western Mediterranean olives differed significantly from those of
eastern cultivars and oleasters (P = 0.03), whereas there was no
statistically significant differences between observed UniFrac dis-
tances from central and eastern olive groups or between central
and western olive clusters.

The divergence of the microbial communities of olives from
certain regions may be explained by variable abundances as

well as by the presence and absence of particular taxonomic
groups. Figure 4 illustrates bacterial and archaeal orders iden-
tified in eastern and western olive trees with different relative
abundances at a ratio higher than two. The bacterial orders
Chthonomonadales, Chloroflexi, the candidate order CFB-26 and
Elusimicrobiales were found exclusively in olive cultivars or oleast-
ers originating in eastern Mediterranean regions. Among the
most abundant eastern olive orders, Burkholderiales (2.0x), Lac-
tobacillales (2.1x), Actinomycetales (2.4x) and Enterobacteriales
(2.7x) were observed to be in increased numbers. In contrast,
mainly archaeal orders were found in western olives. Here, Crenar-
chaeales were found exclusively, and the orders Nitrososphaerales
(7.0x) and Crenarchaeota candidate order NRP-J (2.7x) were more
dominant.

ARCHAEAL POPULATION DENSITY AND COMMUNITY STRUCTURE

The structure and abundances of cultivars were analyzed in more
detail because they appeared to be particularly well colonized
by Archaea. The population density was quantified by qPCR
(Figure 5), reaching up to 4 x 10* copies per ng template DNA.
35.8% of all microbial 16S rRNA gene copies detected in the Span-
ish cultivar Ocal where found to be archaeal. It should be noted
that because the eubacterial primers used also target plastid DNA,
the relative abundances are likely to be higher than indicated by
these measurements. The analysis of the amplicon library revealed
ahigh proportion of endophytic Archaea in olive leaf tissues which
account for 5.3 to 67.3% of total reads. The majority of archaeal
reads were assigned to the phylum Euryarchaeota represented by
the orders Halobacteriales and Methanomicrobiales, the phylum
Thaumarchaeota with representatives in Nitrososphaerales and soil
group L.1.b (Nitrososphaera) and 1.1.c, and the Crenarchaeota
candidate order NRP-J (Figure 6).

ANTAGONISTIC ACTIVITY OF ENDOPHYTIC BACTERIAL STRAINS FROM
OLIVE TREES

To assess the antagonistic potential of endophytes against V.
dahliae, bacteria were isolated and tested on their in vitro antago-
nistic activity. The culturable bacterial population was 1.9 x 10°
colony forming units (CFU) g~! fw~! on average without any
statistically significant differences between wild and cultivated
olives (data not shown). Altogether, 80 randomly isolated strains
were investigated regarding their antagonistic activity against the
pathogen, from which 11.3% showed high antagonistic potential.
Although bacteria were isolated from olive trees from different
regions, those with high antagonistic activity showed highly sim-
ilar fingerprints (analyzed by BOX patterns) suggesting that they
belong to a similar genotype. The 16S rRNA gene of one represen-
tative strain from nine positively tested strains and was therefore
sequenced and assigned to Bacillus amyloliquefaciens by blastn
analysis (closest match: NR_116022.1, 99% identity).

DISCUSSION

The structure of the endophytic microbiome of the 10 different
olive cultivars correlated with their (breeding) geographical origin
and was confirmed by the similarity of their microbiome structures
shown by the nine wild oleasters from each region. In contrast, the
function — we analyzed the antagonistic activity of endophytic
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isolates against the pathogenic fungus V. dahliae — was derived
from the same bacterial genus Bacillus. Here, no impact of the
region or breeding history was found. Moreover, B. amyloliquefa-
ciens strains isolated from different cultivars and regions showed
similar molecular fingerprints which suggested a close functional
relationship.

We confirmed our hypothesis that olive trees and their endo-
phytic microbiome can be divided at least into the major regions
“Eastern” and “Western,” whereas the microbial populations of
the three “Central” cultivars resemble those of one the other two
zones. The microbial communities of the wild olives and of the cul-
tivars from the corresponding regions were closely related. A high
level of similarity between the microbial composition of wild trees
from Cyprus and Greece and the cultivars with western origins
were found. Additionally, the wild trees from Madeira possessed
endophytes that were similar to the cultivars Arbequino and Ocal
(Spain). These results show that compared to the influence of the
olive genotype the prevailing soil and climate conditions at the
sampling sites and the geographical distances of 1000s of kilo-
meters have a negligible effect on the endophytic communities
in leaves. Redford etal. (2010) found similar results by studying
the phyllosphere of the ponderosa pine; however, several studies
described the influence of environmental conditions on endo-
phytic communities (Rosenblueth and Martinez-Romero, 2006).
The abundance of the bacterial community depends on the age
of the leaves and the endophytic diversity and was related to leaf
traits of the tropical plant species Coccoloba cereifera (Sanchez-
Azofeifa etal., 2012). Because the olive belongs to the evergreen

tree species, the endophytic microbial diversity may be stable over
longer periods of time.

Endophytes can promote the growth of plants and/or sup-
press phytopathogens (Backman and Sikora, 2008; Hardoim et al.,
2008); however, the antagonistic part of the microbiome in this
study was highly similar for all investigated genotypes. Only mem-
bers of the Firmicutes group were found which are well-known
as potent antagonists and biocontrol agents (Emmert and Han-
delsman, 1999). Molecular fingerprints and amplicon libraries
confirmed the highly similar structure for all Firmicutes (data not
shown). In amplicon libraries they present a proportion of less
than 5%. The low proportion of potential antagonists within the
culturable bacterial endophytes may be one reason for the high
susceptibility of olive trees to V. dahliae. B. amyloliquefaciens has
been identified as the most important antagonistic species within
the genus Bacillus which is well-known as a biological control agent
(Marten etal., 2000; Kloepper etal., 2004) and a good colonizer
of the olive rizosphere and rhizoplane (Aranda etal., 2011). To
date, biological control approaches against V. dahliae in olive have
targeted Gram-negative antagonists such as Pseudomonas and Ser-
ratia (Mercado-Blanco etal., 2004; Prieto and Mercado-Blanco,
2008; Prieto etal., 2009). Our results suggest that Gram-positive
bacteria such as Bacillus from oleasters may also be an interesting
option for biocontrol (Aranda etal., 2011).

The high proportion of archaeal 16S rRNA genes found in
the endosphere of olive trees was the most interesting finding
from our study. In a recent study (Caliz etal., under revision)
showed that rhizosphere of olive cultivars in southern Spain
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is mainly colonized by members of archaea belonging to 1.1b
Thaumarchaeota (soil crenarchaeota group) closely related to the
genus Nitrososphaera, with much less numbers of Euryarchaeota
of the groups Halobacteria, Methanomicrobia, and Thermoplas-
mata indicating that olive select specific groups of Archaea as
endophytes or that only specific groups of Archaea are adapted
to live within olive tissues. Earlier studies on other plants indi-
cate internal tissue colonization by members of Archaea, e.g., in
Phragmites australis and Coffea arabica (Ma etal., 2013; Oliveira
etal., 2013), and give comparably low numbers for their abun-
dance (Redford etal., 2010; Finkel etal., 2011; Knief etal., 2012).
In this study, we proof the presence of archaeal signatures in
endophytic microbial communities from olive leafs, and pro-
pose a larger role of these microbes therein. Thaumarchaeota
have been described as significant component in soil microbial
community and even in the human skin microbiome (Probst
etal., 2013). Due to their ammonia-oxidizing capability, they
influence the local ammonia-availability and pH, which could
help to defend pathogenic microorganisms and to maintain the
healthy (endophytic) microbiome. Although the function of these
Archaea remains speculative, this finding suggests the existence
of an undiscovered action/mechanism that is essential to a more
in-depth understanding of plant-archaea and human-archaea
interactions.
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