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Numerous engineered and natural environments suffer deleterious effects from
biofouling and/or biofilm formation. For instance, bacterial contamination on biomedical
devices pose serious health concerns. In membrane-based technologies, such as
desalination and wastewater reuse, biofouling decreases membrane lifetime, and
increases the energy required to produce clean water. Traditionally, approaches have
combatted bacteria using bactericidal agents. However, due to globalization, a decline
in antibiotic discovery, and the widespread resistance of microbes to many commercial
antibiotics and metallic nanoparticles, new materials, and approaches to reduce biofilm
formation are needed. In this mini-review, we cover the recent strategies that have
been explored to combat microbial contamination without exerting evolutionary pressure
on microorganisms. Renewable feedstocks, relying on structure-property relationships,
bioinspired/nature-derived compounds, and green processing methods are discussed.
Greener strategies that mitigate biofouling hold great potential to positively impact
human health and safety.

Keywords: antibiotic resistance, antifouling, biofouling, green chemistry, resistance genes, drug development

Introduction

Biofilms are communities of aggregated microorganisms surrounded by a self-produced
matrix of extracellular polymeric substances. Across industries, including, healthcare, food
production, and membrane-based separation processes, biofilms yield detrimental results
(Baker and Dudley, 1998; Van Houdt and Michiels, 2010). Within the clinical setting, bacte-
rial colonization, and subsequent biofilm formation is a pressing challenge that leads to
chronic infections (Flemming and Wingender, 2010). Foodborne illnesses associated with bac-
terial contamination during food processing yield enhanced tolerance to antibiotic treatments
(da Silva and De Martinis, 2013). Once fouled, the lifetime, and performance of membranes are
significantly decreased, which leads to monetary and health ramifications. Prevention of bacte-
ria attachment is the most effective method of preventing disease, reducing operational costs, and
saving energy.

In membrane-based technologies, one approach to eliminate biofouling is to attach
biocidal nanomaterials, including silver (Mauter et al., 2011), copper (Dasari et al., 2012),
selenium (Akar et al., 2013), and titanium dioxide to the surface of a membrane. To
inactivate microbes, commercial antibacterial agents have been released from polymer
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medical devices (Ng et al., 2013). However, these approaches
yield concerns related to the antibacterial agent release rate,
depletion, and toxicity to human cells (Schiffman and Elimelech,
2011). Furthermore, the widespread resistance of microbes
toward antimicrobials underscores the importance of develop-
ing alternative strategies that mitigate the initial attachment of
bacteria without exerting evolutionary pressure. Ultrafiltration
(UF) membrane surface chemistry plays a role in their propensity
to foul. Commercial UF membranes are fabricated from inex-
pensive, hydrophobic polymers—polysulfone (PSf), polyether-
sulfone, polypropylene, or polyvinylidene chloride. While these
membranes provide proper mechanical and chemical stability,
they suffer from biofouling.

In this mini-review, we discuss the benefits of engineer-
ing biopolymers and cover recent strategies from medical and
membrane-based technologies that have been reported to com-
bat microbial contamination with less evolutionary pressure on
microorganisms, meaning that bacteria have shown less resis-
tance to these greener approaches. Biopolymers, surface topog-
raphy, nature-derived antimicrobials, and green processing are
discussed. These green strategies hold great potential to positively
impact human health and safety.

Starting With Greener Polymers

Biopolymers are polymers derived from naturally occurring mat-
ter such as crustacean shells, mushrooms, or wood. In addition
to being sustainable, biopolymers also offer inherent properties
such as, antibacterial activity, biodegradability, biocompatibility,
chelation, and coagulation capabilities (Schiffman and Schauer,
2008). One example is chitin and its deacetylated derivative
chitosan, which have been heavily investigated for wound heal-
ing scaffolds due to their biocompatibility and cationic amine
groups, which provide antibacterial activity (Kong et al., 2010).
However, working with biopolymers can introduce complica-
tions. Chitin can be extracted from a wide number of natural
sources including crustacean shells, insect cuticles, and fun-
gal biomass (Schiffman and Schauer, 2009; Hajji et al., 2014).
Based on the source, the extracted chitin will vary in molecular
weight, degree of deacetylation, purity, distribution of charged
groups, and crystallinity. While natural variability can compli-
cate controlled manufacturing, the intrinsic benefits cannot be
overlooked. For this reason biopolymers derived from natu-
ral feedstocks including, chitin, pectin, cellulose, gelatin, and
alginate, have been investigated for biomedical and environ-
mental technologies (Lee and Mooney, 2012; Kalia et al., 2013;
Birch and Schiffman, 2014).

Green Materials Science and
Engineering for Biomedical
Applications

As noted previously, biopolymers offer intrinsic functionality and
biocompatibility making them ideal hydrogel tissue engineering
scaffolds (Van Vlierberghe et al., 2011). Biodegradable polymers,

including, polylactic acid, polycaprolactone, and poly-alhyl-
cyanoacrylates are used for temporary therapeutics and drug
delivery vehicles that limit biofouling, while maintaining biocom-
patibility (Kumari et al., 2010). Numerous other review articles
discuss polymers for biomedical implants, here we focus on alter-
native strategies that could potentially be used synergistically with
polymeric medical devices to decrease bacterial contamination.

Greener Antifouling and Antibacterial
Surfaces
Antimicrobial materials kill microbes through passive contact
with functionalized cationic/biomolecule groups or via inter-
actions with released antimicrobial compounds (Isquith et al.,
1972; Ouattara et al., 2000). In an effort to move away from
antimicrobials that cause evolutionary pressure on microorgan-
isms, the targeting specificity of cationic peptides have demon-
strated excellent potential in disrupting biofilms (Hofmann et al.,
2012). Plant derivatives are ideal candidates for active antibac-
terial agents (Burt, 2004). Due to the polydispersity of essential
oils – carvacrol, cinnamaldehyde (Zodrow et al., 2012), green
tea (Reygaert, 2014) – they do not exhibit bacterial resis-
tance. The small volatile molecules have been delivered via
carrier-solutions, polymer derivatives, or encapsulated in solid
particles/films (Kavanaugh and Ribbeck, 2012; Zodrow et al.,
2012; Badawy and Rabea, 2013; Carbone-Howell et al., 2015;
Rieger et al., 2015). Recently, we have demonstrated the abil-
ity to incorporate essential oils into biopolymer nanofiber mats
(Rieger and Schiffman, 2014) and ultra-thin films (Rieger et al.,
2015). In time dependent cytotoxicity studies on the biopolymer
nanofibers, the intrinsic antibacterial activity of chitosan along
with the quick release of cinnamaldehyde from the nanofibers
enabled high inactivation rates against Escherichia coli and
Pseudomonas aeruginosa (Rieger and Schiffman, 2014).

Antifouling surfaces prevent the adhesion of microbes and
proteins to surfaces via super hydrophobic or hydrophilic proper-
ties (Keefe et al., 2012). Polyethylene glycol (PEG) is a preeminent
polymer for biomedical applications (Langer and Tirrell, 2004)
because the biocompatible polymer forms a hydration layer with
the surrounding environment to provide non-specific antifoul-
ing ability. However, PEG-based materials oxidize after exposure
to physiological environments, thus limiting their long term
effectiveness. Another class of non-fouling polymers that have
a broader chemical diversity are zwitterionic polymers, which
offer positive and negative charges on a single monomer (poly-
betaines), or different monomers (polyampholytes) (Chen et al.,
2010).

Topographic Cues and Substrate Stiffness
Influence Microbial Behavior
Surface topography has been proposed as a non-toxic sur-
face modification to reduce bacterial adhesion (Hoffman, 2002;
Engel et al., 2012; Rizzello et al., 2013; Harding and Reynolds,
2014). Table 1 summarizes recent investigations into the effect
that microscale topography has on biofilm development.
Nanotopographic patterning or biomimetic surfaces can also
limit bacterial adhesion (Scardino and de Nys, 2011). For exam-
ple, independent of feature dimensions (square, rectangular, or
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TABLE 1 | Microorganisms respond to surface topography. Schematics of the topographies are provided, as well as highlighted examples with figures
reprinted (adapted) with permission from the American Chemical Society. The dimensions given include length (l), width (w), height (h), diameter (d), and
interspatial spacing (s). All substrates are polydimethylsiloxane (PDMS) except for the parallel fibers.

†Reprinted (adapted) with permission from Perera-Costa et al. (2014), Copyright (2014) American Chemical Society.
‡Reprinted (adapted) with permission from Hochbaum and Aizenberg (2010), Copyright (2010) American Chemical Society.
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circular posts), it was reported (Perera-Costa et al., 2014) that
organized topography significantly reduces bacterial attachment.
Engineered roughness index has been proposed as a possible
explanation for the reduction of microbial adhesion, however,
the general mechanism remains poorly understood (Bazaka et al.,
2011).

Substrate stiffness is a tunable material property that lim-
its bacterial adhesion without inducing resistance develop-
ment (Lichter et al., 2008). Effective stiffness was utilized in a
polydimethylsiloxane (PDMS) nanoarray to control the spa-
tial organization of P. aeruginosa around compliant nanoposts
(Epstein et al., 2011).

Green Materials Science and
Engineering for Membrane-based
Technologies

Bio-inspired Membrane Modifications
Reduce Biofouling
During the standard membrane operation, microbes, or macro-
molecules in the feed solution components accumulate on the
surface of the membrane, which leads to retardation of flux and
loss of performance, as shown in Figure 1. Table 2 provides a
schematic of this phenomena called biofouling, as well as high-
lights green strategies to minimize biofouling. Previous reviews
have covered the traditional approaches employed to reduce bio-
fouling on membranes, including the use of synthetic polymers
and metallic ions (Baker and Dudley, 1998; Kumar and Anand,
1998; Mansouri et al., 2010; Perera et al., 2014). In general, the
membrane field could also look toward greener approaches being
tested in the medical and food industries to combat biofouling
(Simoes et al., 2010; Cappitelli et al., 2014).

Numerous recent reports have explored the use of biopoly-
mers to reduce biofouling in membrane-based separations.
Cellulose acetate nanofiltration membranes surface modi-
fied with sodium alginate and chitosan showed a 15% flux
increase when challenged with bovine serum albumin (BSA)
(Lajimi et al., 2011). Higher permeability was achieved by blend-
ing N-succinyl chitosan into UF membranes (Kumar et al.,
2013a). Membranes with N-propylphosphonic chitosan added
to their surface exhibited higher permeability and antifouling

properties over pristine PSf membranes (Kumar et al., 2013b).
Exploring advantageous charges, N-carboxymethyl chitosan and
O-carboxymethyl chitosan-based amphoteric or pH respon-
sive charged membranes were prepared for protein separa-
tion. It was reported that even after 50-days of operation
in a protein environment there was no membrane fouling
(Chakrabarty and Shahi, 2014). Recently, the addition of layer-
by-layer films of chitosan and carboxymethyl cellulose to partially
deacetylated cellulose acetate films yielded a 55% reduction in
BSA adsorption (Mohan et al., 2015).

Polydopamine (PDA) is a bio-inspired polymer that mimics
the adhesion secretions of mussels (Brubaker and Messersmith,
2012). The self-polymerizing polymer is capable of anchoring to
and protecting surfaces from microbial contamination (Lee et al.,
2007; Dreyer et al., 2012). PSf UF membranes and commercial
polyamide (PA) reverse osmosis (RO) membranes modified
with PDA exhibited an increase in antifouling properties
(Kasemset et al., 2013; Miller et al., 2014). Additional research
with PSf UF membranes includes coating the membranes
with dopamine methacrylamide and a plant-based methacrylate,
which showed higher biofouling resistance and bactericidal prop-
erties than the control membranes (Choi et al., 2014). Due to
their larger pore size, flux was maintained after coating PDA
on poly(vinylidene fluoride, PVDF) microfiltration (MF) mem-
branes, as opposed to a similar modification conducted on RO
and UF membranes (McCloskey et al., 2010). PDA coatings have
increased the rejection during oil/water emulsion separations
(McCloskey et al., 2012) and improved the mechanical proper-
ties and hydrophilicity of electrospun nanofiber membranes for
filtration applications (Huang et al., 2014).

Biological molecules have also been explored to improve
membrane properties. This includes attaching serine protease to
the surface of cellulose acetate UF membranes, which resulted
in a relative flux reduction ratio of 97–88%, along with an
increase in steady state flux from 8 to 34 Lm−2h−1 for the
pristine and treated membranes, respectively (Koseoglu-Imer,
2013). Polyethersulfone UF membranes surface modified with
myoglobin increased membrane hydrophilicity by 47.13% and
lysozome rejection by 21.43% (Ali and Tari, 2012). The surface
of chloromethylated PSf membranes modified with gluconolac-
tone had improved anti-protein adsorption ability (Fan et al.,
2012). The body of PSf membranes were blended with a ternary

FIGURE 1 | Schematic illustrates that membranes become fouled when operated in cross-flow systems with constant flow and pressure. Direction of
feed (F), retentate (R), and permeate (P) are provided.
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TABLE 2 | This table highlights recent publications that have investigated green modifications to microfiltration, ultrafiltration, and reverse osmosis
membranes.

Modification(s) and Membrane Effect(s) Reference

Capsaicin derivatives blended into membrane body or
surface modification on UF PSF membranes.

Increased water flux in blended membrane, increased flux, antifouling
and antibacterial properties when challenged by humic acid.

Xu et al. (2013), Wang et al.
(2014)

N-succinyl or N-propylphosphonic chitosan blended
into UF PSf membranes.

Increased hydrophilicity, flux, and fouling resistance ratio when
challenged with bovine serum albumin (BSA).

Kumar et al. (2013a,b)

δ-Gluconolactone surface modification on
chloromethylated UF PSf membranes.

Increased human serum albumin rejection from 84 ± 1% to 96 ± 1%.
Increased pure water flux resistance by 14%.

Fan et al. (2012)

Lysozyme surface modification on PA RO membranes. Increased water flux resistance, antibacterial activity against
Gram-positive bacteria, and antifouling properties.

Saeki et al. (2013)

Myoglobin surface modification on UF polyethersulfone
membranes.

Increased hydrophilicity and increased lysozyme rejection by up to
21.43%.

Ali and Tari (2012)

PDA surface modification on MF PVDF membranes. Increased organic rejection. Flux persisted from pristine to modified
membrane.

McCloskey et al. (2010, 2012)

PDA, PDA-graft-PEG, and PDA co-polymers surface
modification on UF PSf membranes.

Increased antifouling efficiency and increased flux transmembrane
pressure when challenged with soybean emulsions, BSA, and oil.

Choi et al. (2014), Miller et al.
(2014)

PDA surface modification on thin-film composite RO
membranes.

Increased pure water resistance with increasing PDA. Increased flux
during oil/water separations.

Kasemset et al. (2013)

Abbreviations: Microfiltration (MF), Polyamide (PA), Polydopamine (PDA), Polyethylene glycol (PEG), Polysulfone (PSf), Poly(vinylidene fluoride) (PVDF), Reverse osmosis
(RO), Ultrafiltration (UF).

copolymer having capsaicin-mimic moieties improved the per-
meate flux and rejection when challenged by a humic acid
solution and a seawater solution; excellent antibacterial effi-
ciency was also reported (Xu et al., 2013). Capsacin grafted to
the surface PSf membranes demonstrated improved antifoul-
ing and antibacterial properties (Wang et al., 2014). RO mem-
branes surface modified with lysozyme showed sufficient antibac-
terial activity against the Gram-positive bacteria, Micrococcus
lysodeikticus, and Bacillus subtilis (Saeki et al., 2013). When hep-
arin was attached to the surface of chitosan/cellulose acetate
membranes they demonstrated antifouling characteristics, but
not antibiofouling (Liu et al., 2010). The essential oil, cin-
namaldehyde, was released for ∼2 days whereas kanamycin
was released for ∼80 h from the surface of RO mem-
branes via biodegradable poly (lactic-co-glycolic acid) parti-
cles (Zodrow et al., 2014). However, a significant reduction
in biofilm development was only observed on membranes
modified with kanamycin capsules. Smaller size molecules,
acids have been incorporated into membranes. By adsorb-
ing citric acid onto the surface of UF PSf membranes, PEG
rejection, BSA rejection, and flux recovery ratios increased
(Wei et al., 2012). PSf membranes with the addition of ascor-
bic acid, citric acid, and malic acid into the body of membrane
reported a superior pure water flux and higher permeation
and rejection compared to control membranes (Ghaemi et al.,
2012).

Greener Solvents can Improve Membrane
Properties
Improvements to the membrane fabrication process have recy-
cled and reduced the amount of noxious and waste sol-
vent. In an effort to replace the flammable, toxic, and ter-
atogenic membrane-casting solvents, dimethylformamide, and
dimethyl sulfoxide, the use of non-toxic, non-flammable, and
inexpensive supercritical carbon dioxide has been investigated

(Barroso et al., 2011). Polyacrylonitirile graft polyethylene oxide
membranes cast using supercritical carbon dioxide exhibited
an increase in hydrophilicity, larger protein/starch perme-
ability, and an increased resistance to fouling (Barroso et al.,
2011). Additionally, antifouling membranes have been synthe-
sized using a solvent-free approach wherein 2-hydroxyethyl
methacrylate was bulk polymerized. The homogenous mem-
branes rejected 97 and 99% of yeast and oil, respectively,
(Peng et al., 2013). The easily recoverable ionic liquid 1-ethyl-
3-methylimidazolium acetate was used to produce cellulose and
chitin active layers. When the bioactive coatings were applied
to the surface of electrospun non-woven substrates, a similar
rejection paired with a 10-fold increase in permeation flux was
reported in comparison to commercial UF membranes (Ma et al.,
2011).

Perspective

Bacteria colonization and biofilm formation are pressing chal-
lenges that yield infections, higher energy consumption, and
subsequent costs. New, innovative, and green solutions that
mitigate these detrimental effects in medical and membrane-
based technologies without exerting evolutionary pressure on
microbes or on our environment are needed. The intrinsic prop-
erties of historically employed biopolymers, naturally derived
antimicrobials, and bio-inspired agents can improve the sur-
face hydrophilicity, protein adhesion resistance, and antibacterial
activity of materials. However, the long-term viability of surfaces
that have been modified with chemical antimicrobials is often
limited by microbial and solution surface conditioning. Namely,
ions and proteins adsorb onto the surface and mask the surface
activity (Palmer et al., 2007). Perhaps an “even greener” method
than using biopolymers to create an antifouling surfaces is to
avoid chemicals and employ a structure-property relationship.
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While organized topography certainly influences microbial
behavior, virtually all examples from literature use PDMS.
Further effort is needed to elucidate whether structure is a uni-
versal effect across all hard and soft surfaces. Incorporating spa-
tially organized topography to medical implants and membranes,
potentially, can be synergistically employed with non-specific
antimicrobial compounds to extend surface functionality. With
economy of scale, many of the same approaches employed to
decrease biofouling on high-value biomedical devices may be
appropriate for separation membranes. In the future, greenmate-
rials science and engineering strategies that mitigate biofouling

will allow us to overcome current challenges to positively impact
human health.
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