
REVIEW
published: 13 March 2015

doi: 10.3389/fmicb.2015.00202

Edited by:
Luis R. Martinez,

New York Institute of Technology
College of Osteopathic Medicine,

USA

Reviewed by:
Leonardo Nimrichter,

Federal University of Rio de Janeiro,
Brazil

Oscar Zaragoza,
Instituto de Salud Carlos III, Spain

*Correspondence:
Joshua D. Nosanchuk,

Department of Microbiology and
Immunology, Albert Einstein College

of Medicine, 1300 Morris Park
Avenue, Bronx, NY 10461, USA
josh.nosanchuk@einstein.yu.edu

Specialty section:
This article was submitted to Fungi
and Their Interactions, a section of

the journal Frontiers in Microbiology

Received: 29 January 2015
Paper pending published:

20 February 2015
Accepted: 25 February 2015

Published: 13 March 2015

Citation:
Baltazar LM, Ray A, Santos DA,
Cisalpino PS, Friedman AJ and

Nosanchuk JD (2015) Antimicrobial
photodynamic therapy: an effective

alternative approach to control fungal
infections.

Front. Microbiol. 6:202.
doi: 10.3389/fmicb.2015.00202

Antimicrobial photodynamic therapy:
an effective alternative approach to
control fungal infections
Ludmila M. Baltazar1,2, Anjana Ray1,2, Daniel A. Santos 3, Patrícia S. Cisalpino 3,
Adam J. Friedman4,5 and Joshua D. Nosanchuk 1,2*

1 Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA, 2 Department of
Medicine, Albert Einstein College of Medicine, Bronx, NY, USA, 3 Departamento de Microbiologia, Instituto de Ciências
Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil, 4 Division of Dermatology, Department of Medicine,
Albert Einstein College of Medicine, Bronx, NY, USA, 5 Department of Physiology and Biophysics, Albert Einstein College of
Medicine, Bronx, NY, USA

Skin mycoses are caused mainly by dermatophytes, which are fungal species that
primarily infect areas rich in keratin such as hair, nails, and skin. Significantly, there
are increasing rates of antimicrobial resistance among dermatophytes, especially for
Trichophyton rubrum, the most frequent etiologic agent worldwide. Hence, investigators
have been developing new therapeutic approaches, including photodynamic treatment.
Photodynamic therapy (PDT) utilizes a photosensitive substance activated by a
light source of a specific wavelength. The photoactivation induces cascades of
photochemicals and photobiological events that cause irreversible changes in the
exposed cells. Although photodynamic approaches are well established experimentally
for the treatment of certain cutaneous infections, there is limited information about its
mechanism of action for specific pathogens as well as the risks to healthy tissues.
In this work, we have conducted a comprehensive review of the current knowledge
of PDT as it specifically applies to fungal diseases. The data to date suggests that
photodynamic treatment approaches hold great promise for combating certain fungal
pathogens, particularly dermatophytes.

Keywords: photodynamic inhibition, fungal cells, treatment, photosensitizer, light source, photochemicals and
photobiological events

Introduction

Fungi are eukaryotic organisms and their similarities to mammalian cells have led to significant
difficulties in the development of new antifungal drugs. Fungal infections are an important health
problem worldwide, affecting both immunocompetent and immunocompromised individuals.
Acquisition of fungal pathogens results in varied outcomes ranging from asymptomatic infection
to rapidly lethal systemic disease (Cowen, 2008).

Though cutaneous mycoses are rarely life-threatening; they result in significant morbidity,
causing discomfort, disfigurement, social isolation, and may predispose to bacterial diseases
(Brown et al., 2012). These mycoses are frequently recurrent and chronic. Moreover, they are
extremely common as it is estimated that 10–20% of the worldwide population may be affected
(Drake et al., 1996; El-Gohary et al., 2014). The main fungal skin diseases are caused byMalassezia
sp. and the dermatophytes (White et al., 2014).
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Malassezia sp. are frequent commensal inhabitants of the skin
and scalp that can cause a range of diseases, including pityria-
sis versicolor, dandruff, and seborrheic dermatitis (Gaitanis et al.,
2013). These agents are associated with ∼50% of the dermal dis-
orders in healthy humans and 70–75% of immunosuppressed
individuals (White et al., 2014). The dermatophytes are a group
of filamentous fungi that are the etiologic agent of dermato-
phytosis, diseases affecting skin, hair, and nails. The dermato-
phytes produce enzymes that digest keratin, which the fungi
use as a food source, but also facilities their capacity to infect
tissues containing keratin (Weitzman and Summerbell, 1995).
Immunocompromised individuals are at increased risk for der-
matophytoses, including progression to disseminated disease
(Nenoff et al., 2014b). Although clinical resistance to current
antifungal drugs has been well documented, clinical failures are
most often associated with discontinuation of the treatment
by the patient (Mukherjee et al., 2003). Although some diseases
caused byMalassezia sp. and the dermatophytes can be eradicated
with several days of antifungal therapy, months of therapy may
be required for combating infections of the nails or diseases in
the setting of immune deficiency. Typically administered antifun-
gal drugs include azoles, allylamines, ciclopirox, and amorolfine
(Gupta and Cooper, 2008).

Photodynamic therapy (PDT) is an alternative approach to
these antifungal medications that primarily target ergosterol pro-
duction. Antimicrobial photodynamic inhibition (aPI) or ther-
apy (aPDT) combines a pharmacologically inert chromophore,
termed a photosensitizer (PS), with a light corresponding to the
chromophore’s specific absorption wavelength (Dai et al., 2012).
This exposure of the chromophore to the specific light wave-
length induces the production of harmful radicals, such as reac-
tive species of oxygen (ROS) and nitrogen (RNS), which are
capable of killing cells (Hamblin and Hasan, 2004). The ability
of aPI to kill microbes has been described by several inves-
tigators, and the data suggests that aPI is potentially effec-
tive against bacterial, viral, fungal, and protozoal infections
(reviewed in Hamblin and Hasan, 2004; Krausz and Friedman,
2014). Significantly, investigators have shown that aPDT effec-
tively inactivates Trichophyton rubrum, the most common
causative agent of dermatophytosis (Smijs and Pavel, 2011;
Nenoff et al., 2014a). In this review, we provide a detailed
overview of the promise of aPDT in the context of the fungal
infections, describing in vitro, preclinical, and human studies.

Brief History of Photodynamic Therapy

The use of light combined with a photosensitive substance is actu-
ally an ancient approach for the treatment of skin diseases. There
are documents from ∼1200–2000 BC showing that Egyptian
and Chinese physicians as well as Indian Hindu Ayurvedic
practitioners used combinations of plant extracts with expo-
sure to sunlight to treat skin disorders (Pathak and Fitzpatrick,
1992; Craig et al., 2014). For example, the Egyptians used the
application of an extract of Ammi majus, a furanocoumarin-
containing plant, associated with sun exposure to topically treat
vitiligo. In Ayurvedic traditional medicine, an extract of Psoralea

corylifolia, which is a furanocoumarin, was similarly used for
vitiligo (Pathak and Fitzpatrick, 1992).

However, the term PDT was coined in 1900 by Tappeiner and
his co-workers in Germany (Tappeiner, 1900). The first detailed
report of the observation that the combination of light and dye
could be harmful to a cell was published by Raab (1900), a student
of Tappeiner. Rabb observed that the protozoon Paramecium
caudatum died after light exposure in the presence of an acri-
dine dye and the amount of light exposure correlated with the
killing efficiency of the system. Following this finding, in 1903,
Tappeiner and the dermatologist Jesionek translated their find-
ings from the bench to the bedside in a report that detailed how
the topical application of eosin associated with exposure to white
light effectively treated a skin tumor (Jesionek and Tappeiner,
1903). Significantly, Tappeiner and his colleague Jodlbauer also
noted that the phototoxic effect did not occur in the absence
of oxygen and they introduced the term “photodynamic action”
in 1907 to describe this reaction (Tappeiner and Jodlbauer, 1904,
1907).

The first PS broadly used in the medicine was the porphyrin
hematoporphyrin (Hp), obtained from dried blood after treat-
ment with concentrated sulfuric acid. Hp was first tested in vitro
by Hausman (1911) in Austria, where he demonstrated that the
activated compound was effective against paramecia and erythro-
cytes (Scherer, 1841). Hausman (1911) described the phototoxic
effect of Hp on murine skin after systemic application of Hp fol-
lowed by exposing themice to light (Hausman, 1911).Meyer-Betz
(1913) pioneered the study of Hp as PS in humans when he
self-injected 200 mg of Hp. After exposure to sunlight, Meyer–
Betz suffered a painful phototoxic reaction that lasted for over
2 months. Policard (1924) described the affinity of endogenous
porphyrins to tumors by using a Wood lamp to detect a red
fluorescence in rat sarcoma after Hp application. Schwartz et al.
(1955) in the USA, demonstrated that the phototoxic effect of Hp
could be reduced by treatment of Hp with acetic acid and sul-
furic acid, obtaining a mixture of porphyrin, a hematoporphyrin
derivate (HpD). This improved photosensitizing compound had
high affinity for tumors and the ability to detect tumors using
HpD was demonstrated by Lipson and Baldes (1960). The first
systematic trial of PDT was reported by Dougherty et al. (1978),
in which 113 cutaneous and subcutaneous tumors were sub-
jected to HpD and red light resulting in 111 partial or total
responses to therapy. The first PS to gain federal approval for
clinical use was Photofrin� in Canada in 1993, and other coun-
tries subsequently followed, including the U.S. Food and Drug
Administration (FDA) in 1995 (Usuda et al., 2006). With the
broader entry of PDT into clinical practice as a chemotherapeu-
tic modality, investigators have increasingly explored PDT as an
alternative approach to combat infectious diseases.

Photosensitizer and Light Properties

Photosensitizers are dyes with the capacity of absorb energy
from a light source and transfer this energy to another molecule
(Plaetzer et al., 2009). An effective PS is typically characterized by
water solubility, minimal dark toxicity, a lowmutagenic potential,
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and highly chemically stable. The PS should have the ability to
accumulate preferentially in the specific tissue/cell target and
be rapidly eliminated after administration to avoid prolonged
photosensitization (Nyman and Hynninen, 2004; Plaetzer et al.,
2009). In addition, the waveband of absorption of the PS should
be between 600 and 800 nm in order to avoid skin phototoxi-
city. This therapeutic window minimizes (1) absorption during
exposure to typical daylight (wavelength 400–600 nm) and (2) its
absorption by water molecules, which increases at wavelengths
above 800 nm (Plaetzer et al., 2009; Sekkat et al., 2012). More
recently, researchers have designed modern carriers such as lipo-
somes, nanoparticles, and microspheres to reduce chromophore
self-aggregation in fluid mediums and increase the selectivity of
the PS (Nyman and Hynninen, 2004).

The major PSs used in modern clinical trials are the
phenothiazine salts toluidine blue O (TBO) and methylene
blue (MB), with wavelengths of absorption of 600–660 nm
(Calzavara-Pinton et al., 2012). Both are clinically approved for
human use and, notably, they can effectively act on the fun-
gal membrane, causing structural damage (Plaetzer et al., 2009;
Calzavara-Pinton et al., 2012; Dai et al., 2012). Other substances,
such as porphyrins, phthalocyanines, 5-aminolevulinic acid
(ALA) and curcumin, have also been used as PSs. Porphyrin
dyes (absorption at 400–650 nm range), can cause alterations at
cell membranes, allowing the penetration of the PS into the cell
with consequent damage to intracellular targets (Cormick et al.,
2009; Calzavara-Pinton et al., 2012). Phthalocyanines (absorp-
tion at 630–720 nm range) are similar to porphyrins compounds
(Calzavara-Pinton et al., 2012; Sekkat et al., 2012); however, they
are strongly hydrophobic, a characteristic that is usually bal-
anced bymodifications in its chemical structure to improve water
solubility (Mantareva et al., 2011; Sekkat et al., 2012). ALA is
not intrinsically photodynamically active, but irradiation of cells
containing ALA produces a range of endogenous PS that gener-
ate reactive oxygen species (ROS), which damage mitochondria
and plasma membranes (Harris and Pierpoint, 2012). Curcumin
(absorption at 408–434 nm range) is a yellow dye (also known
as the spice turmeric) isolated from Curcuma longa that is a
well established PS (Dovigo et al., 2013) and PDT with curcumin
generates high levels of ROS that cause cell death by apoptosis
(Sharma et al., 2010).

Currently, both coherent (lasers) and non-coherent (diode
emission of light – LED and lamps) light sources are used for PDT
(Nyman and Hynninen, 2004; Calin and Parasca, 2009). Lasers
are able to deliver light with high degrees of monochromaticity
that can be focused into an optic fiber. However, the high cost
and the difficulties to transport are some of the drawbacks for
the use of lasers in PTD. LEDs are less expensive, easily trans-
portable and, with the discovery of PSs with longer wavelengths,
are increasingly being used in experimental and clinical applica-
tions of PDT (Hamblin et al., 1996; Nyman and Hynninen, 2004).
For white or fluorescent lamps, it is very important to minimize
ultra-violet emissions to avoid mutagenesis, as well as infrared, to
minimize the risk of heating host tissues (Donnelly et al., 2008).
In order to reduce damage to normal tissues, the light dose
should not be higher than 200 mW/cm2 (Nyman and Hynninen,
2004; Donnelly et al., 2008). In addition, the light source should

be chosen according to the targeted tissue, because the dose
is dependent on the thickness of the tissue. For example, red
light penetrates ∼3.0 nm whereas blue light penetrates ∼1.5 nm
(Donnelly et al., 2008; Garland et al., 2009).

Mechanism of Action

Photodynamic therapy typically induces the production of ROS
and RNS (Hamblin and Hasan, 2004; Dai et al., 2012). The basic
protocol of treatment involves PS administration followed by
a wait time of varying duration to allow for the accumula-
tion of the PS in the cells/tissue, after which the target tis-
sue is irradiated with light source. The ground state of a PS
is the singlet state (S0). Activation by irradiation results in
the transit of electrons to a different orbital, exciting the PS
to the form of an unstable molecule with a short half-life
(first excited singlet-state, S1). In order to return to its stable
ground state, the PS emits fluorescence or phosphorescence (by
intersystem crossing; Nyman and Hynninen, 2004; Garland et al.,
2009). Fluorescence emission does not alter the electron spin,
phosphorescence changes in the spin rotation from an excited
singlet-state to an excited triplet state, which has a long half-
life (Hamblin and Hasan, 2004; Garland et al., 2009). The excited
triplet state is the main mediator of the photodynamic reactions.
The photophysical process is illustrated in Figure 1, using the
energy levels, or Jablonski, diagram.

Two types of photodynamic reactions can occur, type 1
and type 2. In the type 1 reaction, the PS triplet directly
transfers an electron or hydrogen to a biomolecule, producing
reactive intermediates such as anion superoxide (O2

−), hydro-
gen peroxide (H2O2), hydroxyl radials (OH−), nitric oxide
(NO·), and peroxide nitrite (ONOO·; Hamblin and Hasan, 2004;
Baltazar Lde et al., 2013; Figure 2). In the type 2 reaction, the
PS transfers energy to molecular oxygen yielding the produc-
tion of singlet oxygen (1O2), which is an extremely powerful
oxidant with a very short life time, but it can react with several
biomolecules, such as lipids and proteins (Hamblin and Hasan,
2004).

An important aspect of the generation of oxidative and
nitrosative stresses by this process for antimicrobial applica-
tions is that the diverse cellular targets of these radicals reduces
the probability of the selection of resistant strains, which is
the main problem faced by the current antifungal therapies
(Calzavara-Pinton et al., 2005, 2012). The radicals generated by
PDT have extremely short half-lives and they react only in their
sites of formation, which reduces their toxicity to adjacent normal
tissues (Nyman and Hynninen, 2004).

The generated radicals alter the structure of the fungal cell
wall and membrane, which provides the further translocation
of the PS into the cell. Subsequently, these ROS and RNS pro-
duced outside and within the fungal cell cause an imbalance in
cellular homeostasis, including damaging cytoplasmic organelles
and nucleic acids, resulting in cell death by apoptosis, necro-
sis, or autophagy (Mroz et al., 2011). Interestingly, treatment
using high doses of light and high concentrations of PS leads to
cell death by necrosis, while treatment with low doses tends to
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FIGURE 1 | Simplified schematic representation of a Jablonski diagram. The photosensitizer (PS) at the ground state (S0) transitions after irradiation by a light
source to its first single activate state (S1). To return to its ground state, the PS emits energy by fluorescence or phosphorescence (after reaching the triplet
state – T1).

FIGURE 2 | Schematic illustration of the aPI (TBO + LED 630 nm)
effects on fungal cell. In this illustration with Trichophyton rubrum conidia,
toluidine blue O (TBO) and LED light were used as example according to
present the mechanism described by Baltazar Lde et al. (2013). Activation of
TBO (both intra and extracellular) increases L-arginine levels, the substrate of
oxide nitric synthase (NOS), which results in increasing NO• levels. The
increased availability of free electrons increases H2O2 production. Moreover,
NO• can react with O2

−, generating ONOO•. In eukaryotic cells generation of
NO• occurs by oxidation of L-arginine. All these toxic radicals can react with
the cell membrane and cytosolic components, leading to cell damage.

induce cell death by apoptosis (Lennon et al., 1991; Noodt et al.,
1996; Mroz et al., 2011). Depending on the amount of ROS pro-
duced and degree damage, death by autophagy can also occur
(Mroz et al., 2011).

In vitro Studies of Photodynamic
Inhibition Targeting Fungal Cells

The in vitro effect of aPI against fungal cells has been
demonstrated using different treatment regimes (Table 1).
Takahashi et al. (2014) recently reported that Malassezia furfur
is effectively killed using TONS504, a cationic PS, and 670 nm
LED. The cidal effect onM. furfur is dose dependent and a reduc-
tion >80% was achieved using 100 J/cm2 and 1 µg/mL of light
and PS, respectively. Smijs and Schuitmaker (2003) reported that
T. rubrum cells are killed (based on a cut off of two colonies) after
treatment with porphyrins deuteroporphyrin monomethylester
(DP mme) and 5,10,15-tris(4-methylpyridinium)-20-phenyl-
[21H,23H]-porphine trichloride (Sylsens B) in concentrations
of 3 µg/mL or higher in combination with white light
(1080 kJ/cm2). The study also highlights the possibility of using
Sylsens B as a PS to treat tinea infections using red light to more
deeply penetrate the skin. Kamp et al. (2005) showed that aPI
using ALA (10 mmol l−1) as PS and quartz-halogen lamp (dose
of 10 J) reduces T. rubrum growth by about 50% compared to
untreated control conditions. Treating T. rubrum cells using a
phenothiazine PS, Baltazar Lde et al. (2013), determined that aPI
with TBO at a concentration of 10 µg/mL and an LED dose
48 J/cm2 is cidal to this microbe. Notably, this work also pro-
vides a description of the mechanism of action of aPI, which
involves the production of ROS, NO·, and ONOO·. In addi-
tion, Baltazar et al. (2015) recently showed that curcumin (curc)
and curcumin-nanoparticle (curc-np) aPI, at optimal conditions
of 10 µg/mL of PS with 10 J/cm2 of blue light (417 ± 5 nm),
completely inhibited T. rubrum growth via induction of ROS
and RNS, which was associated with fungal death by apopto-
sis. Delivery of curc by nanoparticle enhanced apoptosis due
to increased NO· production. Romagnoli et al. (1998) reported
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TABLE 1 | In vitro studies using antimicrobial photodynamic inhibition (aPI).

Fungus species aPI Final outcome Reference

Malassezia furfur TONS504, a cationic PS, and 670-nm LED >80% reduction Takahashi et al. (2014)

Trichophyton rubrum 3 µg/mL or higher of each
deuteroporphyrin monomethylester (DP
mme) or Sylsens B in and irradiation with
white light (1080 kJ/cm2 )

Eradication Smijs and Schuitmaker (2003)

T. rubrum ALA (10 m mol l−1 ) and quartz-halogen
lamp (dose of 10 J/cm2 )

50% reduction Kamp et al. (2005)

T. rubrum TBO concentration of 10 µg/mL and LED
(dose 48 J/cm2 )

Complete inhibition Baltazar Lde et al. (2013)

T. rubrum curc and curc-np aPI, at of 10 µg/mL of PS
with 10 J/cm2 of blue light (417 ± 5 nm)

Complete inhibition Baltazar et al. (2015)

T. rubrum, T. mentagrophytes, T.
tonsurans, Microsporum cookei, M.
gypseum, and Epidermophyton
floccosum

Combination of BBTOH with UVA light >50% reduction Romagnoli et al. (1998)

Candida albicans MB (concentrations of 0.027–0.27 mM) and
laser (683 nm, 28 J/cm2 )
Germ tube formation: MB (concentrations
0.013 and 0.134 mM) with the same light
dose

40% or more reduction depending on the
PS concentration and >75% reduction in
germ tube formation

Munin et al. (2007)

C. albicans MB (0.05 mg/mL) and laser (684 nm, dose
of 28 J/cm2 ).

50% reduction Giroldo et al. (2009)

C. albicans MB (0.05 mg/mL) and TBO (0.1 mg/mL)
and two different LED lights (dose of
28 J/cm2 ) with wavelengths of 684 nm and
660 nm, respectively

80–90% reduction Carvalho et al. (2009)

C. albicans, C. tropicalis, and C.
parapsilosis

TBO (25 µM) and LED (dose of 180 J/cm2 ) Inhibited in vitro growth and adhesion to
buccal epithelial cells

Soares et al. (2009)

C. albicans wild-type and mutant – Mutant cells had reduced accumulation of
the PS in the cytoplasm and reduced aPI
killing

Prates et al. (2011)

C. albicans Planktonic cells: curcumin (20 µM) and
dose of blue LED (440–460 nm) of
5.28 J/cm2 .
Biofilm: LED dose of 5.28 J/cm2 and
cumcumin concentration of 40 µM and
time of pre-incubation of 5 and 20 min.

Eradication of planktonic cells and 68 and
87% reduction, depending on the
pre-incubation time.

Dovigo et al. (2011)

Cryptococcus neoformans Polycationic conjugate of polyethyleneimine
and photosensitizer (PS) chlorin (e6;
concentration of 10 µM) and LED 665 nm.

Cells were susceptible to photodynamic
treatment

Fuchs et al. (2007)

C. gattii TBO (25 µM) and LED (dose of 54 J/cm2 ). Reduction of growth Soares et al. (2011)

C. neoformans melanized cells 4.5 µM of CIAIPc/NE and light 675 nm
(dose of 10 J/cm2 ).

Melanized cells were reduced up to 6 Logs Rodrigues et al. (2012)

C. neoformans MB, rose Bengal, EtNBSe, cationic
fullerene, and conjugate between
poly-l-lysine and chlorin (e6), each
irradiated with appropriate light source

Cell wall, laccase, and melanin protected
the cells

Prates et al. (2013)

Sporothrix schenckii MB, NMB, or DMMB and LED
(639.8 ± 10 nm) light dose of 37 J/cm2

6 Log10 fungicidal effect Gilaberte et al. (2014)

Fonsecaea pedrosoi and C.
carrionii.

MB (32 µg/mL) combined with LED
(200 mW/cm2 )

Cidality Lyon et al. (2013)

F. monophora ALA-PDT and LED (635 nm, 10 J) Reduced CFUs and reduced colony
diameter.

Hu et al. (2015)

that the combination of the thiophene 5-(4-OH-1-butinyl)-2,2′-
bithienyl (BBTOH) with concentration of 50 µg/mL with UVA
light (320–400 nm) over 90 min results in a >50% reduction in
the growth of several dermatophytes, including T. rubrum, T.
mentagrophytes, T. tonsurans, Microsporum cookei, M. gypseum,

and Epidermophyton floccosum, with E. floccosum having the
greatest susceptibility to this regimen.

In addition to the dermatophytes, aPI is effective against sev-
eral yeast species. Candida albicans is a common microorganism
used as model to study aPI. Munin et al. (2007) reported that aPI

Frontiers in Microbiology | www.frontiersin.org 5 March 2015 | Volume 6 | Article 202

http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/
http://www.frontiersin.org/Microbiology/archive


Baltazar et al. aPDT against fungal cells

using MB (concentrations of 0.027–0.27 mM) and laser (683 nm,
28 J/cm2) reduced the growth of C. albicans in 40% or more,
depending on the PS concentration. In addition, germ tube for-
mation (the transition from a yeast cell to the hyphal form) was
reduced by more than 75% using MB in the concentrations 0.013
and 0.134 mM with the same light dose. This work was the first
to show the ability of aPI to inhibit the transition from yeast
to hyphae cells, a step essential to the virulence of this species,
suggesting that aPI could decrease the ability of C. albicans cells
to cause disease. Similarly, Giroldo et al. (2009) found that MB
(0.05 mg/mL) and laser (684 nm, dose of 28 J/cm2) reduced
the viability of C. albicans by 50%. The results were associated
with the permeabilization of the cells by MB, which damaged the
plasma membrane. In addition, Carvalho et al. (2009) reported
that aPI using MB (0.05 mg/mL) and TBO (0.1 mg/mL) and two
different LED lights (dose of 28 J/cm2) with wavelengths of 684
and 660 nm, respectively, effectively decreased fungal viability
by 80–90%. Notably, the phototoxic effect of MB was calcium
dependent, a fact not observed with TBO, suggesting that they
have different mechanisms of action against C. albicans. For MB,
toxicity was related to alterations in plasma membrane calcium
channels and the generation of ROS (Carvalho et al., 2009). Using
TBO (25 µM) and LED (dose of 180 J/cm2), Soares et al. (2009)
found that aPI reduced cell growth, reducing the median to Log10
3.41 and adhesion ∼55% of different clinical isolates of Candida
(C. albicans, C. tropicalis, and C. parapsilosis) to buccal epithelial
cells. The study also reported that isolates that were resistant to
fluconazole were susceptible to aPI.

Antimicrobial photodynamic inhibition efficacy may be
impacted by cellular resistance strategies. Prates et al. (2011)
reported that a C. albicans mutant overexpressing an ATP-
binding cassette (ABC), a multidrug efflux system (MES), were
not significantly damaged byMB-aPI due to the reduced accumu-
lation of the PS in the cytoplasm. However, they showed that the
combination of aPI with verapamil (an ABC inhibitor) increased
MB uptake and enhanced the killing of C. albicans. Using cur-
cumin (concentration of 20 µM) as PS, Dovigo et al. (2011)
showed complete inactivation of planktonic C. albicans after irra-
diation by blue LED (440–460 nm) of 5.28 J/cm2. The study
suggested that curcumin could either bind to or be taken up by
the planktonic yeast cells. However, the efficacy of this approach
was lower in the setting of biofilm growth as the same light dose.
Nevertheless, higher concentration of curcumin (40 µM) with
different pre-incubation times (of 5 or 20 min) reduced viabil-
ity to 68 and 87%, respectively. Additionally, the conditions used
for planktonic C. albicans cells were also toxic to macrophages,
which limits the systemic clinical application of this approach.

Antimicrobial photodynamic inhibition is also effective
against Cryptococcus sp. Fuchs et al. (2007) showed that
Cryptococcus neoformans was susceptible (killing at a Log10 of
2) to a polycationic conjugate of polyethyleneimine and the PS
chlorin (e6; concentration of 10 µM) and LED 665 nm. The
importance of cell wall integrity in the outcome of aPI was
demonstrated in this work using a C. neoformans mutant rom2
(with alterations in cell wall integrity) in which they found that
the rom2 mutant accumulated higher amounts of the PS inside
the cell cytoplasm compared to wild-type. Using TBO (25 µM)

and LED (dose of 54 J/cm2), Soares et al. (2011) reported the
efficacy of aPI in a set of C. gattii isolates with different suscep-
tibility profiles to antifungal drugs, suggesting that aPI could
be an alternative tool to inhibit C. gattii growth. The pattern
of reduction was variable among the strains which showed
reduction of viability in the range of 1.78 Log10 to 6.45 Log10.
The study also reported that aPI induced massive production of
ROS/ONOO·, which was correlated to its killing effect; however,
higher catalase and peroxidase activities were related with lower
susceptibility to aPI.

Supporting the role of cell wall integrity in modifying the
efficacy of aPI, Rodrigues et al. (2012) found that melanized
C. neoformans cells were killed (up to 6 Logs) by aPI with
4.5 µM of CIAIPc in nanoemulsion (CIAIPc/NE) and light
675 nm (dose of 10 J/cm2). The study also showed that using
lower CIAIPc/NE concentration (0.045 µM) and lower light
dose (5 J/cm2) melanized cells had slightly reduced susceptibil-
ity compared non-melanized cells. Similar results were found by
Prates et al. (2013) using five different PSs [MB, rose Bengal, sele-
nium derivative of a Nile blue (EtNBSe), tris-cationic fullerene
(BB6), and conjugate between poly-l-lysine and chlorin (e6)]
and an appropriate light source. The presence of cell wall, lac-
case (the enzyme responsible for melanization of C. neoformans)
and melanin protected the cells from the harmful effects related
with aPI, but cidality could nevertheless be achieved with certain
combinations of PS and light dose.

Similar to the work with dermatophytes, aPI has been success-
fully employed against agents of subcutaneous mycosis such as
Sporothrix schenckii, Fonsecaea pedrosoi, and Cladosporium car-
rionii. Gilaberte et al. (2014) described the success of aPI against
S. schenckii, obtaining a 6 Log10 fungicidal effect using different
phenothiazinium PSs [MB, new methylene blue (NMB), or 1,9-
dimethylmethylene blue (DMMB)] and LED (639.8 ± 10 nm)
light dose of 37 J/cm2. Lyon et al. (2013) reported that MB
(32 µg/mL) combined with LED (200 mW/cm2) was effective
in killing F. pedrosoi and C. carrionii. These two pathogens are
etiological agents of chromoblastomycosis, which is a disease
that is severely resistant to standard antifungal treatment. Hence,
these results indicate that aPI could be a promising approach
to chromoblastomycosis. Hu et al. (2015) reported that ALA-
PDT and LED (635 nm, 10 J) also reduced the viability of F.
monophora.

In vivo Studies

The in vitro efficacy of aPI against different fungal pathogens has
been confirmed in vivo using various animal models (Table 2). In
a murine cutaneous C. albicans infection model, Dai et al. (2011)
evaluated aPDT using NMB and red light (at 635 ± 15 nm or
660 ± 15 nm delivered at 78 J/cm2 for “prophylaxis” at 30 min
or 120 J/cm2 at 24 h for treatment post-infection). A luciferase-
expressing strain of C. albicans was used to allow real-time mon-
itoring through bioluminescence imaging. aPDT initiated either
at 30 min or at 24 h post-infection significantly reduced the C.
albicans burden 95.4 and 97.4%, respectively, compared to con-
trols. Teichert et al. (2002) evaluated the efficacy of MB-mediated
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TABLE 2 | Pre-clinical studies.

Disease Fungus species aPDT Synergist Final outcome Reference

Murine model
of cutaneous
candidiasis

C. albicans NMB-red light Control the fungal
burden in the skin

Dai et al. (2011)

Murine model
of oral
candidiasis

C. albicans MB- diode
laser light

– Eradicated the
fungus from the
oral cavity

Teichert et al. (2002)

Rat model of
buccal
candidiasis

C. albicans MB-leser Reduction in
chronic
inflammation

Junqueira et al. (2009)

Murine model
of oral
candidiasis

C. albicans Photogem�

and LED
Reduced fungal
burden

Mima et al. (2010)

Murine model
of oral
candidiasis

C. albicans Curcumin-
LED

– Reduced fungal
viability and fungal
burden

Dovigo et al. (2013)

Murine model
of ear pinna
infection

C. albicans TMP-1363
and Irradiation

– Controled the
fungal burden in
the pinna

Mitra et al. (2011)

Murine model
of vaginitis

C. albicans MB and red
laser

– Reduced fungal
growth and
decreased
inflammatory cells

Machado-de-Sena et al. (2014)

Murine model
of
Dermatophytosis

T. rubrum TBO-LED CPX,
0.65 mg/mice

Reduced fungal
burden and
decreased skin
damage

Baltazar et al. (2014)

Candiditis on
Galleria
mellonella

C. albicans MB and red
light

Fluconazole Reduced fungal
burden and
prolonged survival

Chibebe Junior et al. (2013)

PDT to treat oral candidiasis in an immunosuppressed murine
model, in an attempt to mimic thrush in patients. Mice with
severe immunodeficiency disease were inoculated orally with C.
albicans by swab three times a week for a 4-week period. Before
treatment, mice were cultured for baseline fungal growth and
received a topical oral cavity administration of 0.05 mLMB solu-
tion at different concentrations (250, 275, 300, 350, 400, 450, or
500 µg/mL). After of 10 min of MB solution treatment, mice
were irradiated with light at 664 nm using a diode laser light with
a cylindrical diffuser. MB aPDT had a dose-dependent effect as
concentrations from 250 to 400 µg/mL reduced fungal growth
but did not eliminate C. albicans while concentrations of 450 and
500 µg/mL totally eradicated the fungus from the oral cavity.
Junqueira et al. (2009) evaluated the effects of aPDT on buccal
candidiasis using a rat model. After inducing candidiasis on the
dorsal aspect of rat tongues, aPDT was achieved using a laser
and MB, and Candida colonization, epithelial alterations, and
chronic inflammation were analyzed using histology. The effect
was more visible on day 5 after treatment; at day 5 treated rats had
fewer epithelial alterations (pathological score 1.00 treated and
1.50 in control group) and less chronic inflammation (patholog-
ical score 1.00 treated and 1.50 in control) than control animals.
Mima et al. (2010) conducted an in vivo oral candidiasis study
in immunosuppressed mice to evaluate the efficacy of aPDT of
oral candidiasis using Photogem, a hematoporphyrin derivative,
at 400, 500, or 1000 mg/L which was followed 30 min later by

illumination with LED light (305 J/cm2) at 455 or 630 nm. aPDT
resulted in 1.05, 1.59, and 1.40 log10 reductions, respectively, in
tongue C. albicans colony counts; however, there was no differ-
ence in fungal burden between the concentrations of Photogem
and LED light wavelengths used. Notably, histological evaluation
of the tongue revealed that aPDT did not cause any significant
adverse effects to the local mucosa. A murine oral candidiasis
model was also utilized to explore the efficacy of curcumin as
a PS (Dovigo et al., 2013). Five days after C. albicans infection,
mice received topical curcumin (20, 40, and 80 µM) and illu-
mination with LED light at 455 nm. This treatment significantly
reduced the C. albicans viability in a dose dependent manner with
80 µM of curcumin associated with light leading to the highest
reduction, 4 logs, in colony counts.

Mitra et al. (2011) investigated the efficacy of aPDT for the
treatment of C. albicans ear pinna infection using a mouse model.
They selected TMP-1363 as the PS after showing its efficacy for
killing C. albicans in vitro. The intradermal space of the ear
pinna was inoculated with C. albicans. After 2 days, 0.3 mg/mL
TMP-1363 was administered topically and the ears were irra-
diated at 514 nm using a fluence of 90 J/cm2 delivered at an
irradiance of 50 mW/cm2. aPDT with TMP-1363 resulted in a
50-fold reduction of C. albicans CFU/ear compared to untreated
controls, and the infected ears subjected to aPDT completely
healed over time without any residual damage to the pinna.
Machado-de-Sena et al. (2014) evaluated the efficacy of aPDT for
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TABLE 3 | Clinical trials using aPDT as treatment.

Disease Fungus
species

aPDT Additional
treatment

Final outcome Reference

Pityriasis versicolor Malassezia
species

ALA-PDT – Complete
clearance

Kim and Kim (2007)

Onychomycosis T. rubrum ALA-PDT Treatment with
40% urea
ointment for 12 h
prior to aPDT

Clinical and
microbiological
cures

Piraccini et al. (2008)

Onychomycosis – ALA and red light – Significant
improvement after
treatments

Sotiriou et al. (2010)

Malassezia infection M. folliculitis MAL-PDT Control of the
tissue fungal
burden

Lee et al. (2010)

Onychomycosis F. oxysporum
and A. terreus

MAL 16% and LED Treatment with
40% urea
ointment for 12 h
prior to aPDT

Clinical and
microbiological
cures

Gilaberte et al. (2011)

Denture stomatitis
(DS)

Candida
species

Photogem� and LED – Mycological
cultures

Mima et al. (2012)

Sporotrichosis S. schenckii
complex

MB-PDT Low dose
itraconazole

Complete
microbiological and
clinical response

Gilaberte et al. (2014)

Chromoblastomycosis F. pedrosoi and
C. carrionii

MB and LED light Control of the
tissue fungal
burdens

Lyon et al. (2011)

treatment of C. albicans vaginal infection using MB and red light.
Mice were inoculated intravaginally with C. albicans, and then
were treated with aPDT 5 days later using MB and red laser.
This approach significantly reduced C. albicans growth 1.66 log
CFU/mL and percentages of inflammatory area were significantly
reduced with just two sessions of aPDT.

Recently, we reported the in vivo application of aPDT against
T. rubrum (Baltazar et al., 2014). C57BL/6mice were cutaneously
infected with T. rubrum and treated with aPDT for 7 days every
24 h using a TBO 0.2% gel formulation and an LED 630 nm
dose of 42 J/cm2. aPDT was compared to treatment with the
antifungal cyclopiroxolamine (CPX, 0.65 mg/mice) administered
topically every 48 h for 7 days. aPDT was 64% more efficient
than CPX in reducing the fungal burden, and both treatments
reduced the damage caused by the fungus in the skin. aPDT
also reduced myeloperoxidase (MPO) levels, but not the activity
of N-acetylglucosaminidase (NAG), suggesting that there was a
reduction in neutrophils but not macrophages in the affected tis-
sues. Furthermore, the study associated the effective production
of ROS with aPDT efficacy.

Antimicrobial photodynamic inhibition of C. albicans was
also studied using the non-vertebrate host Galleria mellonella,
the wax moth (Chibebe Junior et al., 2013). aPDT MB with red
light significantly reduced the fungal burden and prolonged
the survival of C. albicans infected G. mellonella larvae com-
pared to controls. A fluconazole-resistant C. albicans strain
was also used to test the combination of aPDT and flucona-
zole, and this combined approach significantly prolonged the
survival of the larvae compared to each individual treatment
alone.

PDT for Human Fungal Infections

The increased incidence of drug resistant pathogens has led
investigators to explore innovative approaches to infectious dis-
eases in clinical studies, including using aPI to combat fungal
infections. In this section, we highlight the human studies for the
treatment of fungal infection using aPDT (Table 3).

Kim and Kim (2007) using ALA-PDT (two sessions) and red
light (70–100 J/cm2) showed the efficacy of this approach for
treating pityriasis versicolor. The study reported that there were
no hyphae or spores found in the infected area at 10 days after
treatment. Piraccini et al. (2008) described the success of ony-
chomycosis (caused by T. rubrum) treatment using aPDT in a
patient with had failed to respond to the treatments with con-
ventional topical antifungal drugs. Before each session (three
sessions at 15 day intervals between treatments), the patient’s nail
was first coated with a 40% urea ointment that was then kept
under occlusion for 7 days to soften the plate and then the dis-
eased nail was subjected to aPDT using ALA (160 mg/g) and red
light (630 nm, 37 J/cm2). After the three aPDT sessions during a
period of 45 days, the patient was evaluated every 3 months for
24 months. Cultures were positive at the third aPDT session, but
became negative 3 months after the last treatment. At the 12th
month visit, cultures were still negative and the toenails were con-
sidered clinically cured and disease had not recurred at the 24th
month evaluation. In another clinical trial of 30 patients with
onychomycosis, patients that received aPDT therapy combining
ALA and red light (570–670 nm, dose of 40 J/cm2) had a 43%
cure rate at 12 months after the treatment and 37% remained
disease free at 18 months (Sotiriou et al., 2010). Lee et al. (2010)
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reported that four of six patients with recalcitrant Malassezia fol-
liculitis demonstrated significant improvement after treatment
with methyl 5-ALA (MAL)-PDT and red LED light (630 nm, light
dose of 37 J/cm2).

Gilaberte et al. (2011), reported treatment of two patients with
fingernail onychomycosis unresponsive to standard antifungals
with disease caused by the Fusarium oxysporum or Aspergillus
terreus. In both cases, the nail plate was first softened with 40%
urea ointment under occlusion for 12 h. aPDT was performed
using MAL 16% cream and illumination using a 635-nm LED
(dose of 37 J/cm2). A single treatment clinically improved the nail
appearance and cultures were thereafter negative. Two additional
treatments were administered and both patients remained disease
free during subsequent follow up evaluations.

Mima et al. (2012) compared aPDT with topical antifungal
cream for the treatment of denture stomatitis (DS) caused by
Candida species. Patients were randomly assigned (n = 20 each)
to receive either nystatin (NYT) or aPDT. In the NYT group,
patients received topical treatment with nystatin (100 000 IU)
four times daily during 15 days. The aPDT group each had
500 mg/L of Photogem� applied to their dentures and palates.
After 30 min of incubation, the Photogem coated surfaces were
illuminated with LED light (455 nm, doses of 37.5 and 122 J/cm2,
respectively) three times a week for 15 days. Mycological cultures
were taken from dentures at baseline (day 0), at the end of the
treatment (day 15) and at the follow-up time intervals (days 30,
60, and 90). Both treatments significantly reduced the fungal bur-
den at the end of the treatments and on day 30 of the follow-up
period; however, there were no significant differences between the
two treatment modalities (53 vs. 45% for NYT and PDT, respec-
tively). The study highlighted that fewer sessions of aPDT were
necessary to achieve the same result that NYT achieved, albeit the
NYT approach did not require clinic visits.

Gilaberte et al. (2014) used aPDT in a patient with recalcitrant
cutaneous sporotrichosis. They used intralesional applications
of 1% MB and LED light at 635 nm to administer 37 J/cm2

to each lesion in combination with low doses of itraconazole
(100 mg/day). The aPDT was performed three times every other
week and this approach resulted in a complete clinical and
microbiological cure (Gilaberte et al., 2014). In a clinical trial,
Lyon et al. (2011) treated 10 patients with chromoblastomyco-
sis with a combination of MB and red LED (660 nm, dose of
28 J/cm2). The patients underwent six treatment sessions (every

week) and, although the treatment did not result in complete
healing of the lesions, aPDT resulted in clear reductions of the
volume and cicatrization of 80–90% of the lesions.

Perspectives and Conclusion

The significant burden of dermatophytoses and the worldwide
increase in fungal strains resistant to the current antifungals
(Cowen, 2008) increases the urgency for the development of new
therapeutic strategies, such as aPDT. In this review we described
in vitro and in vivo studies as well as the few, small human expe-
riences and trials that support the development of the aPDT
either as adjuvant or as a primary therapeutic approach against
cutaneous mycoses.

The in vitro mechanism of action described thus far demon-
strate that aPI induces the generation of ROS and RNS, which
effectively damage a range of fungal cellular structures and induce
cell death. There are no reports of mutagenic or genotoxic effects
to the fungal or human cells. However, there is an ongoing need
for deeper study of the mechanisms of aPDT to facilitate the
expanded clinical use of this promising therapeutic approach.
Although the majority of aPDT studies have focused on Candida
biofilms, it is important to also investigate the application of
this approach using other major fungal pathogens, including
Cryptococcus species orCoccidioides species where biofilm forma-
tion contributes to disease severity in the central nervous system
(Sardi Jde et al., 2014). The incorporation of PSs into liposomes,
micelles, or nanoparticles is a promising approach to reduce the
PS self-aggregation and to enhance the targeted delivery of the
PS. The development of these vehicles is particularly important
for the potential expansion of aPDT for the treatment of deep
fungal infections using fiber optic lasers, applied endoscopically,
or interstitially.
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