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Powered by recent advances in next-generation sequencing technologies,
metagenomics has already unveiled vast microbial biodiversity in a range of
environments, and is increasingly being applied in clinics for difficult-to-diagnose
cases. It can be tempting to suggest that metagenomics could be used as a “universal
test” for all pathogens without the need to conduct lengthy serial testing using specific
assays. While this is an exciting prospect, there are issues that need to be addressed
before metagenomic methods can be applied with rigor as a diagnostic tool, including
the potential for incidental findings, unforeseen consequences for trade and regulatory
authorities, privacy and cultural issues, data sharing, and appropriate reporting of results
to end-users. These issues will require consideration and discussion across a range
of disciplines, with inclusion of scientists, ethicists, clinicians, diagnosticians, health
practitioners, and ultimately the public. Here, we provide a primer for consideration on
some of these issues.

Keywords: viral metagenomics, ethics, medical, metagenomics, data interpretation, incidental findings, diagnos-
tic tools, biomarkers

Introduction

Efforts to discover and describe new viral species have lagged behind other organisms such as
bacteria, fungi, or eukaryotes (Rosario and Breitbart, 2011; Delwart, 2013; Hurwitz and Sullivan,
2013). In part, this is due to the lack of a universal conserved genetic element shared between
viral genomes which could be exploited for the purposes of viral genome discovery. For other
microbes, there are conserved elements which can be targeted to detect new taxa, such as the 16S
ribosomal RNA (rRNA) gene for bacteria, or the internal transcribed spacer (ITS) region for fungi.
Next-generation sequencing in shotgun metagenomics has greatly increased the capacity for, and
discovery of, new viruses (Mokili et al., 2012). This topic has been the subject of intense scientific
effort and review since the first application of this technology in 2002 to describe uncultured viruses
in the marine environment (Breitbart et al., 2002). Given the common application of metage-
nomics for virus discovery in basic and applied research, it is not surprising that there is a growing
interest for use in a diagnostic capacity. Potential diagnostic applications of viral metagenomics
span many areas, from horticulture (Kehoe et al., 2014) to veterinary medicine (Blomstrom, 2011;
Belak et al., 2013) through to human health (Miller et al., 2013). Similarly, metagenomics can be
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used as a tool in forensics (Karlsson et al., 2013) and for mon-
itoring environmental samples such as water quality (Ng et al.,
2012).

A Universal Test: Incidental Findings
In the example of human health, diagnostic tests traditionally
proceed as follows. First, a clinician examines a patient and
makes a provisional diagnosis, which may then require fur-
ther laboratory testing. If an infectious disease is suspected,
the clinician is likely to request that pathogen A, B, or C be
tested for, and a diagnostic laboratory will use culture, antigen,
or antibody detection (immunoassay), or molecular methods.
This process is similar for the diagnosis of infectious disease
in animals or plants. Syndromic diseases, such as influenza-
like respiratory illness in humans, vesicular disease in livestock,
or “virus-like symptoms” in plants may require a more com-
plex diagnostic workup, which could take place as a multi-
plex PCR or parallel/serial specific testing. In general terms,
most PCR, culture, or immunoassay-based diagnostic methods
only provide evidence for the presence or absence of specific
pathogens. This is often all that is required to enable appro-
priate therapy. Additional techniques may be needed if other
attributes of a pathogen are to be determined, i.e., antiviral or
antimicrobial resistance, or presence of virulence genes/toxins.
In contrast, metagenomics has the potential to detect all known
organisms within a sample in a single experiment, and is par-
ticularly useful for viruses given the lack of a universally con-
served genetic element. Deep metagenomic sequencing has the
potential to not only identify viruses with a high level of tax-
onomic resolution, but may also reveal other attributes that
are clinically relevant, such as resistance to antiviral medica-
tions (Quinones-Mateu et al., 2014). Because of these advan-
tages, metagenomics is being increasingly applied in diagnos-
tics, and is already being offered as a commercial diagnostic
service1,2.

Thus far, the potential ethical implications of metagenomics
to detect all organisms in a sample have received less attention,
with a notable absence of discussion in relation to the detection
and diagnosis of pathogens. For example, the technique has an
inherent capability for incidental detection of pathogens that may
not be relevant to the condition for which the patient is seek-
ing treatment. It is therefore prudent to consider the possible
impacts of an incidental diagnosis before proceeding with such a
test. Consider the hypothetical example of a stool sample sent to
a medical laboratory for norovirus testing. If the patient is HIV-
positive and metagenomics is applied, then it is likely that HIV
sequences will be detected in the metagenomic data (especially
relevant for the RNA metagenome, also known as the metatran-
scriptome), given that up to 60% of HIV patients have detectable
levels of HIV in their stool (van der Hoek et al., 1995). Both
patient and physician need to be aware of this potential. In cases
where such incidental findings are unwanted, a technical solution
is possible: using bioinformatics, a panel of high-consequence

1http://www.pathogenica.com/
2http://www.aperiomics.com/

viruses (or pathogens of concern) could be rapidly filtered from
the data before reporting took place.

The potential for incidental findings may seem alarming,
but is not unprecedented. Technologies such as magnetic reso-
nance imaging (MRI) or computer-tomography (CT) scanning
can detect cancer as an incidental finding, but patients will usu-
ally be made aware of this possibility before consenting to a test.
The physician will have a clear understanding of how to manage
the finding of malignancy, should it be observed. Moreover, we
observe a parallel with individualized complete human genome
or exome sequencing, where an average human being carries
approximately 250–300 loss-of-function variants in annotated
genes, and 50–100 variants previously implicated in inherited
disorders (Genomes Project et al., 2010). We contend that it is
the responsibility of any researcher or diagnostician who uses
metagenomics in a clinical setting to ensure that both the physi-
cian and patient are aware of the potential for detection of
any pathogen, even those unrelated to their disease, and that
informed consent information is clear about the processes in
place for supporting the patient in case of incidental findings.
There are, however, to our knowledge, not yet any established
guidelines for how such informed consent should be handled in
the case of clinical diagnosis using metagenomic assays, which
makes the requirement of informed consent very difficult to
implement in practice for individual testing labs.

For clinical exome or whole-genome sequencing of patients,
recommendations on incidental findings have been developed
by the American College of Medical Genetics and Genomics
(ACMG), including: a “minimum list” of serious disease variants
which are recommended to be reported from the genetic lab to
the ordering clinician; a recommendation on the type of (likely)
pathogenic incidental findings to report; guidelines for pre- and
post-test counseling of the patient; and recommendations for a
patient to opt-out of receiving incidental findings (Green et al.,
2013). Guidelines for consent, processing and reporting of inci-
dental findings for clinical metagenomic sequencing addressing
the above issues are urgently required to ensure that adequate eth-
ical considerations are met when handling and analyzing human
metagenomic data.

The Host Genome: Culture, Ethnicity,
and the Law

A metagenomic dataset is likely to contain significant amounts
of host genome sequence, depending on the sample type and
sequencing protocol. Routine clinical samples in human health
such as feces, swabs, tissue biopsy, sputum, and urine, are all
likely to contain human DNA and RNA. In some countries,
there are strict legal controls in place that govern the use of
human tissue. For example, in New Zealand, consent of the
patient for the use of their tissue for any future unspecified
research purposes is an absolute statutory requirement (Ministry
of Health, 2007), and the tissue may only be used for the express
intention for which it was collected (New Zealand Government,
2008). In particular, the indigenous people of New Zealand,
Māori, have a unique cultural perspective on the ownership
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of human genetic information, which is not held to be the
property of the individual, and decisions about investigating
DNA should be made collectively (Baird et al., 1995; Hudson,
2009; New Zealand Health Research Council, 2010). Thus, it is
possible that the incidental sequencing of human DNA could
lead to legal, ethical, and/or cultural obligations when conduct-
ing a metagenomic analysis. Of course, the controls around
sequencing of human DNA will vary greatly between jurisdic-
tions, but the implications of generating incidental information
should be accounted for. Once again, technical solutions such
as bioinformatic filtering of the data for human DNA may pro-
vide a solution, but there would need to be some confidence
around the quality of this process for deleting human genomic
sequences. Without the removal of human sequence, human
metagenomic datasets are likely to be subject to legislation for
health-related personal data, which implies requirements for
subject anonymization and restricted data access (Mascalzoni
et al., 2014). To ensure the highest level of sharing and deposi-
tion of metagenomic data in research data repositories, we urge
repositories and ethical review committees to develop guide-
lines on which methods are considered adequate for the removal
of potentially personally identifiable human sequences from
metagenomic data sets, to allow for deposition and sharing of
metagenomic data without restrictions. Comprehensive guide-
lines should take into consideration both the benefit of data
usage to inform research and any potential harm for patients
as a result of non-compliance to guidelines. Consequences for a
breach of ethical approval, and procedures to recall shared data
in the event of a breach should also be considered. The ethi-
cal considerations for developing governance and guidelines have
been discussed in depth by the Nuffield Council on Bioethics in
their report concerning the collection and usage of biomedical
data for research and health care (Nuffield Council on Bioethics,
2014).

Trade Implications

The detection of pathogens of agricultural or horticultural sig-
nificance can have dire consequences for productivity and trade.
Most nations have government veterinary or plant health lab-
oratories that provide testing and surveillance for significant
pathogens. These laboratories specialize in screening animals and
goods for trade purposes, preventing the spread of pathogens,
and playing a crucial role in demonstrating that a country or
region is free of specific diseases. In the case of trade in ani-
mals and animal products, the World Organization for Animal
Health (OIE) maintains a list of the veterinary diseases of
greatest concern worldwide, tracks, and reports on their global
occurrence, and sets diagnostic testing standards for these dis-
eases to aid international trade. New outbreaks of OIE-listed
diseases in countries previously considered free of the disease
can have severe trade implications, resulting in either block-
age of relevant trade permits, or a massive increase in the
testing and documentation required to certify products for
export. The cost of such outbreaks can greatly affect trade-
based economies, and proving freedom from such a disease once

it is detected (or even suspected) can be a major economic
burden.

Due to the sensitivity and untargeted nature of metagenomics,
its application to animal or plant samples presents a challenge
for regulatory authorities (MacDiarmid et al., 2013). Methods for
assigning metagenomic sequencing reads to species may not be
perfect, and incomplete reference databases as well as evolution-
ary conservation between species can easily lead to an incorrect
diagnosis. Additionally, genetic databases are still skewed towards
heavily researched organisms – particularly pathogens – and this
bias increases the chance of relatively benign viruses being clas-
sified as “similar to” viruses of significant agricultural or clinical
concern. A hypothetical example of a fish metagenome can be
used to illustrate this point. Such a metagenome could con-
ceivably contain sequences from a relatively benign virus in the
family Orthomyxoviridae, which has some genetic similarity to
the trade-sensitive Isavirus that causes Infectious Salmon Anemia
(ISA) in salmon. If such a sequence, found in a healthy fish, is
reported as “similar to ISA virus,” this finding could have sig-
nificant implications for trade in salmon, given that even the
suggestion that an OIE-listed virus may be present can be enough
to impose significant trade restrictions on an exporting country.

Responsibility must be taken by researchers and diagnosti-
cians performing metagenomic analyses to ensure the veracity of
their results and to engage with regulatory authorities early on
in the process once an initial discovery has been made, to avoid
unintended economic harm from falsely declaring the presence
of an organism with trade implications.

Use of the Data

It is important that metagenomic datasets are freely and openly
shared upon the publication of scientific results, for example
by deposition in a database such as EBI Metagenomics (Hunter
et al., 2014), MG-RAST (Meyer et al., 2008), or Genbank (Benson
et al., 2014). This allows other researchers to investigate the data,
to substantiate or refute claims made by the original authors,
and enables alternative research projects to be developed for
which the samples were not originally obtained. Sharing metage-
nomic datasets also allows significant scientific discoveries to
be made (Dutilh et al., 2014), and restricting access to datasets
can seriously delay scientific progress. For example, the Fourth
Paradigm of data-driven scientific discovery describes how the
advancement of a scientific field depends on how well researchers
collaborate with one another (Hey et al., 2009).

However, there are several concerns when it comes to pub-
lishing diagnostic metagenomic datasets. For example, as we
discuss here, misinterpretation can have serious consequences.
Moreover, there is a possibility that pathogens could be missed
by the original submitters, or even discovered at a later date.

Additionally, in human diagnostic settings sharing of metage-
nomic data becomes ethically complex due to issues of patient
confidentiality and privacy infringements. For example, if human
samples were obtained for a specific purpose like virus discovery,
then ethical permissions may only be granted for that purpose
alone. If a researcher were to investigate any other aspect of the

Frontiers in Microbiology | www.frontiersin.org 3 March 2015 | Volume 6 | Article 224

http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/
http://www.frontiersin.org/Microbiology/archive


Hall et al. Considerations before applying metagenomic diagnostics

metagenomic data – such as looking for a correlation between
a human genetic mutation and infection status or outcome –
this would be in breach of the original ethical approval and/or
statutory obligations.

Expectations of the End-User

Ultimately, a decision must be made on how to act upon the
result of a diagnostic test. Such decisions are made every day
by clinicians, veterinarians, ecologists, epidemiologists, scien-
tists, farmers, and private citizens. Commercially available tests
for pathogen detection often condense a reported result into a
binary “presence or absence” call, with much of the technical
detail being deliberately and carefully hidden, to make interpre-
tation easy. Metagenomic analyses currently provide end-users
with a “shotgun” picture of the microbiome that includes a
list of the organisms that are theoretically present based on
sequence similarity. Interpretation relies on an expert examin-
ing the data and making assessments based on their experience,
particularly in regard to the reliability of the methodology,
nuances between viral or bacterial strains, genetic similarities
between viruses, bacteria, and eukaryotes, and the potential
for contamination of genome databases (Gonzalez et al., 2014;
Merchant et al., 2014) and nucleic acid extraction kits (Salter
et al., 2014). Therefore, the reports currently generated for
metagenomic datasets are not yet conducive to widespread
use, as witnessed by the recent mass public reporting of the
alleged detection of anthrax and the bubonic plague on the
New York City subway system, based on a metagenomic anal-
ysis which contained potential but non-definitive hits to the
these pathogens (Afshinnekoo et al., 2015; Mason, 2015; Yong,
2015).

At least in the US, no tests for human genetic testing are
allowed to enter the market as medical devices without strict
analytical and clinical validation to ensure consistent and robust
results. One recent example is the case of the direct-to-consumer
(DTC) human genotyping service provided by the company
23andMe. In November 2013, the 23andMe Personal Genome
Service product was banned from marketing and providing
“medical reports” of “health risks” and “drug response” when the
company failed to deliver adequate evidence to the FDA for vali-
dation of specificity and sensitivity (Woods, 2013). Similarly, we
see a big challenge for the metagenomics community to develop
robust analysis methods before metagenomics can be approved
for widespread clinical use. We note that, as of February 2015,
the FDA has eased access to DTC DNA screening for several
inherited diseases.

Another recent case illustrates the dangers of misinterpreta-
tion of metagenomic analysis (based on unpublished data). In this
case, an automated metagenomic pipeline, MG-RAST (Meyer
et al., 2008) was used to analyze a metagenomic dataset from
environmental sample source. Prior to the data analysis, a worker
involved in sampling was suffering from an undiagnosed illness.
During the preliminary analysis a sequence hit to a Risk Group
3 pathogen was observed in the results from MG-RAST, and the
group involved in the sampling suspected that this could be the

cause of the worker’s illness. When the affected worker requested
testing and prophylactic treatment for this notifiable zoonotic
disease at a clinic, government organizations in human and ani-
mal health became involved. However, upon detailed review of
the data, it was revealed that the “sequence hit” in MG-RAST
actually matched a known archaeal contaminant in the draft
genome assembly of the pathogen, rather than the pathogen itself.
Although the contaminant sequences were clearly unrelated to
the pathogen and had already been retracted from Genbank, they
were still present in the automated annotation pipeline, which
relied on an outdated database. We anticipate that such situa-
tions are likely to become increasingly common as metagenomics
becomes mainstream.

It is our experience that when collaborators are presented with
the taxonomic report from a metagenomic study for the first
time, they may be overwhelmed. After some time spent study-
ing the data, some even become skeptical. This is due to three
factors: (i) the sheer enormity of microbial taxonomic diversity
in any given sample, (ii) the confounding effect of gene con-
servation between taxonomic groups, and (iii) the potential for
relative scarcity of reads representing a pathogen, even in samples
with a significant viral load. Another example in our experience
was revealed when a collaborator asked why a small number of
cetacean sequence reads (derived fromwhales and dolphins) were
present within the metagenomic data from an animal slaughter-
house that was processing cattle and sheep (Hall et al., 2013).
This particular study was aimed at virus discovery, and was
designed to be very sensitive, using sequence similarity search
parameters that allowed identification of distantly related hits to
enable the detection of novel viruses with low-level homology
to known sequences. However, especially in eukaryotes, genetic
sequences can be highly conserved, and in this case, the homolo-
gous matches occurred due to genetic conservation between the
spuriously observed cetaceans, and ruminants such as the cattle
and sheep processed in the slaughterhouse.

Explaining such cases to collaborating researchers takes time
and careful communication, to allay their concerns about the
inherent inaccuracies of the metagenomic method. Imagine,
then, how difficult it could be to allay the concerns of a patient
reading a report containing a non-significant hit to smallpox, or
a farmer reading a report containing a spurious hit to foot-and-
mouth disease.

Considerations for Clinical Use of
Metagenomics

Before incorporating metagenomics into routine clinical diag-
nostics, viral databases need to be vastly expanded, so that
sequences can be more accurately annotated (Dutilh, 2014).
Thus, efforts to map the complete viromes of humans and
economically relevant animal or crop species will provide a
baseline for allowing metagenomics to be applied in the clinic.
Moreover, a good reference database allows novel viruses to
be readily detected. Novel viruses that are observed in humans
for the first time, e.g., after genomic recombination of known
viruses or by zoonotic transfer from risk species like bats,
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can be flagged as potentially dangerous (Temmam et al.,
2014).

Moreover, general considerations need to be made, such as the
time taken to generate results, how these results are reported,
how performance attributes like sensitivity are assessed, and
how quality assurance programs and criteria for accreditation
should be developed. Indeed, recent concerns about the poten-
tial for false-positive detection of pathogens in metagenomics
datasets (Naccache et al., 2014; Rosseel et al., 2014) underscore
the need to develop proper quality control procedures before
routine deployment of metagenomics in the clinic or diagnostic
laboratory.

Large-scale deployment of diagnostic methods in clinical lab-
oratories is facilitated by simplicity, repeatability, low costs,
established quality assurance programs, and quick turn-around
times for the production of results. The time and cost of pro-
cessing a sample through a next-generation sequencer, albeit
rapidly reducing, is still prohibitive when considering large
scale diagnostic testing. Additionally, metagenomics is cur-
rently too complex for immediate release into the diagnostic
laboratory. There is a lack of standardization in the labora-
tory methods applied, such as the choice of sequencing plat-
form or upstream sample preparation that is used. The ad
hoc and heterogeneous tools currently employed for the anal-
ysis of high-throughput metagenomic datasets will also need
to be further streamlined and unified. Reliability values are

needed to account for the conservation of identifying sequences
between pathogens and non-pathogens. In addition, depending
on the methodology used, even a virus present in high titer
might be represented by only a few reads in a metagenomic
dataset. Thus, protocols need to be optimized, and in cases
where coverage of a potential pathogen is low, other diagnos-
tic methods, such as PCR, culture, immunoassays, or electron
microscopy may be necessary to confirm the presence of the
pathogen.

Nucleic acid amplification technologies (NAAT) such as real-
time (quantitative) PCR already offer a rapid, cheap, sensi-
tive and specific test for application in a broad range of set-
tings (Gray and Coupland, 2014). Existing NAAT diagnostic
tests already have a high degree of utility and meet diagnos-
tic requirements for many areas – namely those requiring the
detection of specific pathogens. Ultimately, the most valuable
application of metagenomics in the clinic may be to replace
serial testing/multiple single-plex assays, by offering a univer-
sal metagenomics-based test. Costs and turn-around times will
still need to reduce significantly, and as mentioned above, quality
assurance and method standardization are areas that will need
major development. The Critical Assessment of Metagenome
Interpretation3 (CAMI) is currently addressing these bioinfor-
matic challenges in the form of a competition, by inviting

3http://www.cami-challenge.org/

TABLE 1 | A summary of seven major issues identified when considering the use of metagenomics as a diagnostic method, and the proposed actions
that could resolve these issues.

Issue Description of problems Proposed actions to resolve

(1) Handling of incidental
findings

Incidental detection of a pathogen that is unrelated to
the investigation is possible when using metagenomics.
This may be of high consequence for a patient or
industry. (For industry, see point 2 below.)

Adopt protocols used for incidental findings from medical imaging
studies (magnetic resonance imaging, MRI) or genome sequencing.
The clinician and patient should understand the potential for
incidental findings, and a plan should be in place for acting on
findings as required.

(2) Agricultural/Horticultural
Implications for trade

Pathogens affecting industry or trade may be detected
or suspected. Even unsubstantiated reports of a high
risk pathogen can have deleterious economic effects.

Independent and accredited diagnostic methods should be used to
confirm the finding. Regulatory authorities should be contacted
early to raise these issues.

(3) Host genome Host genome sequence may be present in clinical
metagenomic datasets. This may contravene ethical
approval or legislation for handling human genome
sequence (depending on jurisdiction).

Bioinformatic filtering of the host genome or restricted data access
may provide some protection. Ethics committees and repositories
should develop guidelines for the handling of potentially personally
identifiable data in the metagenomics data.

(4) Data sharing Deposition of metagenomic datasets from clinical
samples into public databases may be problematic due
to conflict with ethical, privacy, and legal concerns.

Sharing of metagenomic data is critical to the advancement of
scientific understanding. However, legal and ethical constraints
need to be considered and appropriate measures taken, e.g.,
review by ethics boards and sharing through of an appropriate
data-sharing repository.

(5) Cost Next-generation sequencing is still costly when
compared to conventional diagnostic testing, especially
for detecting known pathogens.

We expect that sequencing costs will continue to drop.
Metagenomics is already cheaper than performing a large series of
specific tests, but conventional diagnostic methods may still be
preferred when searching for specific targets.

(6) Quality assurance Currently, there are no standardized metagenomic
methods: sample processing, sequencing instruments,
bioinformatic analyses, and reporting of results all vary
widely.

Guiding authorities will need to consider the role of metagenomics
in diagnostic testing and provide protocols and quality assurance
programs. For bioinformatic interpretation, the Critical Assessment
of Metagenome Interpretation (CAMI) paves the way by evaluating
methods.

(7) Etiology The detection of a micro-organism in a sample does
not necessarily mean it has caused the disease.

As with all diagnostic assays, prior evidence of pathogenicity or
further study to determine causation (Lipkin, 2010) will be necessary
to conclude that a specific organism is causing the disease.
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tool developers to compete in the analysis of defined metage-
nomic datasets. CAMI evaluates the metagenome analysis tools
and methods independently, comprehensively, and without bias.
Thus, CAMI is paving the way for consistent and reliable
metagenome interpretation tools to surface and receive interna-
tional recognition.

Etiology

Many end users will viewmetagenomics as a new technology, and
in terms of application outside of a research setting, it certainly
is. With the advent of new technologies come high expectations.
For example, given the widely held apocryphal notion that many
unsolved diseases are caused by viruses (Lipkin, 2014), will such
diseases of unknown etiology now be resolved? Depending on the
situation, this may or may not be the case, but it is certain that
there are many other possible reasons for an unresolved etiology,
such as an inadequate specimen or a diagnostic test that did not
include the relevant pathogen, or a toxigenic or genetic cause of
the disease.

One criticism of metagenomic virus discovery projects is that
the mere detection of a micro-organism in a disease-state is not
sufficient to establish etiology (Canuti et al., 2014). However, this
holds equally true for any other detection protocol. There are cer-
tainly high profile instances of a “virus in search of a disease,”
and of a “disease in search of a virus”. This has become par-
ticularly apparent for syndromic diseases such as encephalitis,
where orthodox testing regimes have failed to identify a cause,
and for cancers or autoimmune disease of unknown etiology.
Evidence for the involvement of viruses in some cases of type 1
diabetes, inflammatory bowel disease, and asthma has recently
been summarized (Foxman and Iwasaki, 2011). However, it is
now generally recognized and accepted that viral metagenomics
is primarily suitable as a discovery and detection method, and
that any claims made in regard to etiology require extensive
supporting information to fulfill Koch’s postulates, or variations
thereof where applicable (Mokili et al., 2012).

Another criticism is that virus discovery, including viral
metagenomics, is a descriptive research field that lacks hypotheses
or the pursuit of knowledge about higher level biological pro-
cesses.While this is a fair criticism, it should not be used to hinder
or halt efforts to discover new viruses. The processes of infection,
pathogenesis, or disease ecology cannot be fully understood with-
out a basic fundamental description of the viral ecosystem, e.g.,
of the human virome in the case of the human body. Similarly,
the development of therapeutics, vaccines, and culture meth-
ods may be informed by the discovery of new viruses. Highly
divergent viral genomesmay provide information about critically
conserved genes and thus reveal targets for antiviral therapies, or
epitopes for vaccine development. Finally, the notoriously preva-
lent “unknowns” in viral metagenomes can only be resolved if

we face the grand challenge of mapping viral sequence space first
(Dutilh, 2014).

Conclusion

Virus discovery by metagenomics is still a fresh and developing
field. Huge gains have already been made in the discovery of new
viral species in a wide range of host species and samples (sev-
eral examples can be found in the Frontiers in Virology Research
Topic “Virus discovery by metagenomics: the (im)possibilities”
of which this article is part). However, the application of viral
metagenomics outside of the research setting remains relatively
unexplored. Importantly, the issues surrounding the use of these
methods to complement or replace existing clinical diagnostic
tools need to be discussed in detail. The increase in sequencing
efforts to characterize the viromes of various host species will lay
a foundation for further analysis of viral metagenomes by provid-
ing a reliable reference database. To facilitate this, metagenomic
datasets need to be made publicly available and mined (Dutilh,
2014), but at the same time this needs to be balanced against
ethical, legal, and cultural factors and potentially include filter-
ing steps to remove sequences matching the human reference, as
a safeguard for the privacy of the individual. Incidental detec-
tion or spurious reporting of viruses, especially those of high
consequence for health or trade, will require special considera-
tion. Moreover, any application of viral metagenomics outside of
a research project, for example for use in the clinic, will require
good communication between patients, clinicians, and scientists,
including informed consent about the handling and reporting of
any incidental findings. In the case of agriculture, similar com-
munication and agreement is required between the production
sector, veterinarians, and regulators. We present a summary of
the seven main points of concern and our proposed actions for
resolving these in Table 1.

History shows that care is required when delivering a new and
potentially disruptive technology. No doubt, larger debate and
more deeply held concerns lie ahead in the area of sequencing
eukaryotic genomics, especially for the human genome, but it is
worth beginning the discussion on where viral metagenomics is
heading, beyond research, on the way towards application of viral
metagenomics in the field and clinic.
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