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Root-associated bacterial
endophytes from Ralstonia
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Research, Bangalore, India

This study was undertaken to assess if the root-associated native bacterial endophytes
in tomato have any bearing in governing the host resistance to the wilt pathogen
Ralstonia solanacearum. Internal colonization of roots by bacterial endophytes was
confirmed through confocal imaging after SYTO-9 staining. Endophytes were isolated
from surface-sterilized roots of 4-weeks-old seedlings of known wilt resistant (R) tomato
cultivar Arka Abha and susceptible (S) cv. Arka Vikas on nutrient agar after plating the
tissue homogenate. Arka Abha displayed more diversity with nine distinct organisms
while Arka Vikas showed five species with two common organisms (Pseudomonas
oleovorans and Agrobacterium tumefaciens). Screening for general indicators of
biocontrol potential showed more isolates from Arka Abha positive for siderophore, HCN
and antibiotic biosynthesis than from Arka Vikas. Direct challenge against the pathogen
indicated strong antagonism by three Arka Abha isolates (P. oleovorans, Pantoea
ananatis, and Enterobacter cloacae) and moderate activity by three others, while just
one isolate from Arka Vikas (P. oleovorans) showed strong antagonism. Validation for
the presence of bacterial endophytes on three R cultivars (Arka Alok, Arka Ananya, Arka
Samrat) showed 8–9 antagonistic bacteria in them in comparison with four species
in the three S cultivars (Arka Ashish, Arka Meghali, Arka Saurabhav). Altogether 34
isolates belonging to five classes, 16 genera and 27 species with 23 of them exhibiting
pathogen antagonism were isolated from the four R cultivars against 17 isolates under
three classes, seven genera and 13 species from the four S cultivars with eight isolates
displaying antagonistic effects. The prevalence of higher endophytic bacterial diversity
and more antagonistic organisms associated with the seedling roots of resistant cultivars
over susceptible genotypes suggest a possible role by the root-associated endophytes
in natural defense against the pathogen.

Keywords: 16S rRNA homology, bacterial wilt resistance, biological control, confocal microscopy, endophytic
bacteria, Ralstonia solanacearum, Solanum lycopersicum, tomato
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Introduction

Endophytic microorganisms colonize plants internally with-
out any apparent adverse effects on the host (Hallmann et al.,
1997; Gaiero et al., 2013). There is a growing interest in endo-
phytic bacteria on account of their potential use in plant growth
promotion, antagonistic effect on pests and pathogens, alle-
viation of abiotic stress and in phytoremediation (Compant
et al., 2005; Ryan et al., 2008; Mercado-Blanco and Lugtenberg,
2014). Bacterial endophytes are generally known to enter the
host from the surrounding soil through wounds in the roots
(Hallmann et al., 1997; Compant et al., 2010) or through
root hairs (Prieto et al., 2011; Mercado-Blanco and Prieto,
2012). They traverse the root cortex and reach various plant
organs through the vascular system (Hallmann et al., 1997;
Compant et al., 2010, 2011) while some use the apoplastic
route (Sattelmacher, 2001; Reinhold-Hurek et al., 2007). Bacterial
endophytes were earlier considered to be primarily coloniz-
ers in the inter-cellular or apoplastic spaces in the roots being
present in relatively fewer numbers (Hallmann et al., 1997;
Hallmann, 2001). Molecular studies have shown that there is con-
siderable species diversity of bacterial endophytes albeit being
present largely in a non-cultivable form (Lundberg et al., 2012;
Sessitsch et al., 2012; Podolich et al., 2015). Intracellular col-
onization has also been documented in some plant systems
(Pirttilä et al., 2000; de Almeida et al., 2009). A recent study
employing banana shoot tissue has shown abundant endophytic
bacteria in the two intracellular niches, namely in the cyto-
plasm and in the perispace between the cell wall and plasma
membrane, and the terms ‘Cytobacts’ and ‘Peribacts’ have been
coined to recognize the microorganisms in the respective intra-
cellular niches (Thomas and Reddy, 2013; Thomas and Sekhar,
2014).

Bacterial wilt caused by the vascular pathogen, Ralstonia
solanacearum (syn. Pseudomonas solanacearum) is a major con-
straint for tomato cultivation world over (Hayward, 1991; Genin
and Denny, 2012). The wide host range covering major food and
other economically important crops, broad geographic distribu-
tion, adaptation to survive in soil and water for long periods and
the huge economic loss incited make the pathogen a very signif-
icant one worldwide (Genin and Denny, 2012; Mansfield et al.,
2012). R. solanacearum invades the host through root injuries.
The pathogen crosses the root cortex and overruns the xylem ves-
sels leading to sudden wilting and plant death (Hayward, 1991;
Genin andDenny, 2012). The similarities between bacterial endo-
phytes and R. solanacearum in xylem colonization render the
former as potential antagonistic and biocontrol agents against
such vascular pathogens (Achari and Ramesh, 2014; Ting, 2014).
Use of antagonistic bacteria for the biocontrol of bacterial wilt in
tomato has been documented either as rhizospheric organisms
(Vanitha et al., 2009) or as endophytes isolated from the same
crop (Feng et al., 2013) or unrelated crops (Thomas and Upreti,
2014a).

Endophytic bacteria share an intimate symbiotic association
with the host which makes themmore valuable biocontrol agents
(Compant et al., 2005; Bakker et al., 2013). Endophytes get an
edge over their rhizospheric antagonist-counterparts on account

of their ability to enter the host system without stimulating
pathogen induced vulnerability responses but triggering host
defense pathways (Conn et al., 2008; Gómez-Lama Cabanás et al.,
2014; Podolich et al., 2015). Being internal colonizers, they could
provide a barrier against the invading pathogens directly or
through the production of bio-active compounds (Thomas and
Upreti, 2014a; Podolich et al., 2015). Endophytes are better pro-
tected against abiotic stress and competing microbes compared
with the rhizospheric counterparts (Hallmann et al., 1997; Ryan
et al., 2008; Turner et al., 2013). While a vast majority of bac-
terial endophytes are known to be non-amenable for cultivation
on common media (Lundberg et al., 2012; Sessitsch et al., 2012;
Thomas and Sekhar, 2014), it entails that the organisms are eas-
ily cultivated to allow their agricultural exploitations. The present
study was undertaken with a view to explore the extent of cul-
tivable endophytic bacteria in transplantable-stage seedling roots
of tomato cultivars that are either resistant or susceptible to R.
solanacearum. Further, it was envisaged to evaluate the antag-
onistic and biocontrol features of the isolates to determine if
the native endophytes played any role in governing the resilient
property of the resistant cultivars.

Materials and Methods

Plant Material
Ralstonia solanacearum resistant (R) tomato (Solanum lycop-
ersicum L.) cultivar Arka Abha and susceptible (S) cv. Arka
Vikas (Thomas et al., 2015) were taken up as the primary test
material in this study. In order to validate the findings, addi-
tional resistant (Arka Alok, Arka Ananya)/moderately resistant
(Arka Samrat) and susceptible (Arka Ashish, Arka Meghali,
and Arka Saurabhav) cultivars were employed. The names of
genotypes are prefixed with R, MR, or S for easy recogni-
tion as resistant, moderately resistant or susceptible, respec-
tively. Seedlings were raised in pasteurized organic cocopeat
in protrays (Thomas et al., 2015) and used for the isolation
of endophytes after 31/2–4 weeks which corresponded to the
stage of transplanting to the field when seedlings normally get
exposed to the field pathogen inoculum (Thomas and Upreti,
2014b).

Confocal Imaging of Seedling Roots
Seedling roots were examined for bacterial colonization through
confocal laser scanning microscopy (CLSM) after SYTO-9 stain-
ing. For this, tender roots from 3 to 4 weeks-old cocopeat – grown
seedlings were washed, cut to ∼1 cm segments and were treated
with 1× SYTO-9 (12 μM) from the LIVE/DEAD BacLight

R©

bacterial viability kit L13152 (Molecular Probes, Invitrogen) as
per the kit instructions. After 10–15 min staining, the lateral
roots and root hairs were examined using a LSM 5 LIVE con-
focal microscope and the images were processed as described
elsewhere (Thomas and Reddy, 2013). Root tissues were also
examined after surface sterilization which involved a quick dip
in 90% ethanol, a rinse in sterile distilled water (SDW) and 1 min
sodium hypochlorite (2% available chlorine) treatment followed
by six SDW rinses.
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Isolation of Endophytes from Seedling Roots
Twenty randomly picked seedlings from RArka Abha and SArka
Vikas 4 weeks after sowing were lifted with the plug of coco-
peat and washed under running water taking care to minimize
root injury. Seedlings were excised below the cotyledonary node
and surface-sterilized essentially as per Zinniel et al. (2002). This
involved a quick dip in 90% ethanol, a rinse in SDW and 1 min
NaOCl (2% chlorine) treatment as above. After three rinses in
SDW, 2% Na2S2O3 (10 min) was used to remove chloramine
residues before finally rinsing the roots in SDW thrice. Root
part was excised, blotted dry, weighed aseptically and macer-
ated in a mortar employing 12.5 mM potassium phosphate buffer
(Zinniel et al., 2002). After adjusting the volume to 10 ml g−1

tissue weight (100 stock), serial dilutions (101–105) were applied
on NA through spotting- and tilt-spreading (SATS) approach
(Thomas et al., 2012) with three replications per dilution. The
plates were incubated at 30◦C and the colony forming units (cfu)
g−1 root tissue was determined on the third day. The NA plates
used in this study were pre-monitored for absolute microbial
sterility.

Identification of Organisms
Distinct bacterial colony types that emerged on NA from
the root homogenate of RArka Abha (Tm-Ab01 to Tm-Ab09)
and sArka Vikas (Tm-Av01 to Av05), serially numbered in
the order of their relative abundance, were further purified
through three rounds of streaking on NA. They were iden-
tified through partial 16S rRNA sequence homology analysis.
For this polymerase chain reaction (PCR) was carried out with
the primers 27F (5′-AGAGTTTGATCCTGGCTCAG-3′) and
1492R-Y (5′-GGYTACCTTGTTACGACTT-3′; Y = C/T) with
the thermocyling conditions as described elsewhere (Thomas
et al., 2008). The identity of these organisms was established
and validated through megablast analysis to the cultured organ-
isms at the National Centre for Biotechnological Information
(NCBI) and the Seqmatch analysis with the Type Strains at the
Ribosomal Database Project (RDP), Michigan State University.
Wherever the identification was inconclusive based on NCBI
homologies in the case of less common organisms, the high-
est species homology from NCBI or the similarity score from
RDP was adopted to suggest the identity at sequence data
submission to NCBI. The final identity was fixed as per the
genus/species assigned by the GenBank at the acceptance of
sequence data.

Screening of Organisms for the Indicators of
Biocontrol Property
The endophytic organisms were tested for siderophore produc-
tion through chrome azurol S method (Schwyn and Neilands,
1987) and for HCN production as per Ahmad et al. (2008).
The isolates were screened through PCR for functional genes
involved in the biosynthesis of bacterial non-ribosomal pep-
tide synthetase (NRPS) and polyketide synthase (PKS) as
markers for antibiotic production as per Miller et al. (2012).
The primers MTF2 (5′-GCNGGYGGYGCNTAYGTNCC-3′) and
MTR2 (5′-CCNCGDAYTTNACYTG-3′) were employed for
NRPS giving a PCR product of ∼1000 bp, and the primers

DKF (5′-GTGCCGGTNCCRTGNGYYTC-3′) and DKR (5′-
GCGATGGAYCCNCARCARMG-3′) for PKS yielding ∼650–
700 bp PCR product.

Pathogen and Culture Media
Ralstonia solanacearum ‘NH-Av01’ strain (NCBI acc. no.
KJ412034; biovar 3) isolated from the bacterial ooze of a wilted
‘Arka Vikas’ plant as described elsewhere (Thomas and Upreti,
2014b,c) was used in antagonistic assays. The culture was stored
as glycerol stocks at –80◦C and revived on Kelman (1954)
medium containing 1.0 g l−1 casein hydrolysate (C), 10 g l−1

bacteriological peptone (P), 5 g l−1 glucose (G), and 15 g l−1

bacteriological agar (A) and was fortified with 0.005% 2,3,5-
Triphenyltetrazolium chloride (KM-TTC). The media consti-
tutes were sourced from Hi Media Biosciences, Mumbai, except
for TTC (Sigma, St. Louis, MO, USA) employing P14 lot of Type-
1 peptone as per Thomas and Upreti (2014c). This was based
on the observation that the colony characteristics, lawn forma-
tion and inhibition zone development were significantly influ-
enced by the type and batch of peptone. Other media employed
included casein-peptone-glucose-agar (CPGA) or CPG broth.
Three additional Ralstonia isolates, namely, NH-Av05, NH-Av07,
and KAU-Av01 were also used in the antagonistic assays.

Antagonistic Assay
Antagonistic assays were set up essentially as described ear-
lier (Thomas and Upreti, 2014a). Briefly, 200 μl of 2-days-old
CPGA or KM-TTC culture of 0.1 OD at 600 nm (approximately
cfu of 108 ml−1) in peptone – salt (1 g l−1 each peptone and
NaCl; Thomas et al., 2012) was spread over KM-TTC medium
in 12 cm × 12 cm plates (Hi Media Biosciences, Mumbai) and
wells of 6–7 mm diameter were prepared. After allowing R.
solanacearum to establish at 30◦C for 4 h, 50 μl of 0.2 OD endo-
phytic bacterial inoculums in peptone – salt (approximately cfu
in the range of 107–108 ml−1 for 0.1 OD culture depending on
the organism) was applied in marked wells. After 20–25 min
of surface drying, the plates were incubated inverted at 30◦C.
The antagonistic potential was rated based on the extent of
clear zone formation, namely, strong (>20 mm; +++), medium
(15–20 mm; ++), low (10–15 mm; +), or none.

Validation with Additional Tomato Cultivars
This included three additional resistant cultivars/F1 hybrids
(RArka Alok, RArka Ananya F1, MRArka Samrat F1) and
three susceptible cultivars (SArka Ashish, SArka Meghali, SArka
Saurabhav; Thomas et al., 2015). Seedlings were grown in coco-
peat in protrays and 5–10 surface-sterilized seedlings at 31/2–
4 weeks stage were employed for isolating the root endophytes.
Tissue processing, culture purification, identification and assay
for the antagonistic potential against the pathogen were under-
taken as described earlier.

Nucleotide Sequences
The partial 16SrRNA gene sequences of the organisms have been
deposited with the NCBI GenBank. The accession numbers are
indicated in the Tables describing their identification.

Frontiers in Microbiology | www.frontiersin.org 3 April 2015 | Volume 6 | Article 255

http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/
http://www.frontiersin.org/Microbiology/archive


Upreti and Thomas Tomato bacterial endophytes and Ralstonia resistance

Results

Confocal Imaging of Seedling Roots
The tender roots from 3 to 4 weeks-old RArka Abha and SArka
Vikas seedlings showed green fluorescing bacterial cells on the
root surface, inside the roots and in the surrounding film of water
after SYTO-9 staining (Figures 1A1,B1). Root hairs showed
abundant bacteria internally both along the cell periphery and
in the cytoplasm (Figures 1A2,B2) confirming the endophytic
colonization. Following surface sterilization, confocal imaging
was impaired due to rapid signal bleaching (data not shown).
However, it was possible to track the bacterial cells in both tender
roots and root hairs with a notable reduction in the counts.

Isolation and Identification of Endophytes
from RArka Abha and SArka Vikas
Root growth in RArka Abha seedlings at endophyte isolation
stage was relatively low compared with SArka Vikas. However,
both the genotypes showed similar cfu estimates per unit fresh
tissue weight (3.9 × 104 and 4.3 × 104, respectively). A number
of distinct colonies were picked up which were finally assigned
to nine distinct species in RArka Abha and five species in
SArka Vikas (Table 1). The organisms from RArka Abha as
per 16S rRNA gene sequence data accepted at NCBI GenBank
included Pseudomonas oleovorans, Pseudomonas plecoglossi-
cida, Pantoea ananatis, Citrobacter freundii, Staphylococcus
hominis, Sphingobacterium multivorum, Enterobacter cloacae,
Arthrobacter globiformis, and Agrobacterium tumefaciens.
The isolates from SArka Vikas constituted P. oleovorans,
Stenotrophomonas maltophilia, Bacillus pumilus, A. tumefa-
ciens, and Microbacterium pumilum. The resistant cultivar
apparently displayed more endophytic bacterial diversity with
two organisms (P. oleovorans and A. tumefaciens) common to
both the cultivars. Both RArka Abha and SArka Vikas showed
more of Gram-negative bacteria (78 and 60%, respectively)

and γ-subclass of Proteobacterium formed the commonest
single phylogenetic group in both the cultivars (56 and 40%,
respectively).

Assessing the Endophytes for the Indicators
of Biocontrol Property
Two of the RArka Abha isolates (Tm-Ab01, Tm-Ab03) showed
siderophore production, two isolates (Tm-Ab03, Tm-Ab07)
HCN production and three isolates (Tm-Ab02, Tm-Ab06, Tm-
Ab08) proved positive for NRPS/ PKS (Table 2). The respective
numbers for SArka Vikas were one, zero and one. Thus, the resis-
tant cultivar harboredmore organisms with biocontrol properties
than the susceptible cultivar.

Screening of Endophytes for Ralstonia
Antagonistic Activity
Seven isolates from RArka Abha showed varying extents of
antagonistic activity against R. solanacearum with Tm-Ab01 (P.
oleovorans), Tm-Ab03 (P. ananatis), and Tm-Ab07 (E. cloacae)
displaying significant effects, two isolates (Tm-Ab02, Tm-Ab08)
offering medium activity and two others (Tm-Ab05, Tm-Ab06)
showing low activity (Table 2). Among the SArka Vikas isolates,
Tm-Av01 (P. oleovorans) showed strong antagonism while Tm-
Av02 and Tm-Av03 displayed low activity. This was found true in
a repeat assay and with three other isolates of R. solanacearum,
namely, NH-Av05, NH-Av07 and KAU-Av01 (Figure 2).

Validation with Additional Resistant and
Susceptible Cultivars
RArka Alok, RArka Ananya, and MRArka Samrat yielded 8–9 dis-
tinct organisms each while SArka Ashish, SArka Meghali, and
SArka Saurabhav gave rise to four species each constituting a
total of 37 isolates (Table 3). In general, there was a predom-
inance of Gram negative bacteria in four cultivars (78, 62.5,
75, and 75%, respectively in RArka Alok, RArka Ananya, SArka

FIGURE 1 | Confocal laser scanning microscopy images from SYTO-9 treated non-surface sterilized roots of tomato SArka Vikas and RArka Abha
showing green fluorescing bacteria (indicated by arrow heads) on the surface (A1,B1, respectively) and internally along the cell periphery and inside
root hairs (A2,B2, respectively).
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TABLE 1 | Identification of bacterial endophytes isolated from the seedling root tissue of tomato cvs. Arka Abha and Arka Vikas.

No. Isolate ID 16S seq (bp) and
NCBI acc. No

Identity based on closest species
from NCBI/RDP (with acc. no and
homology/similarity score)†

Phylogenic group and
Gram reaction

Isolates from resistant cv. Arka Abha

1 Tm- Ab01 770 (KM349750) Pseudomonas oleovorans
(HQ697330; 99%)

γ-Proteobacterium; −ve

2 Tm- Ab02 767 (KM349751) Pseudomonas plecoglossicida
(KJ395363; 99%)

γ-Proteobacterium; −ve

3 Tm- Ab03 711 (KM349752) Pantoea ananatis
(HQ683996; 98%)

γ-Proteobacterium; −ve

4 Tm- Ab04 793 (KM349753) Citrobacter freundii
(KF769539; 99%)

γ-Proteobacterium; −ve

5 Tm- Ab05 777 (KM349754) Staphylococcus hominis
(KJ018991; 100%)

Firmicute; +ve

6 Tm- Ab06 856 (KM349755) Sphingobacterium multivorum
(KF535161; 99%)

Bacteroidetes; −ve

7 Tm- Ab07 951 (KM349756) Enterobacter cloacae
(KF971358; 99%)

γ-Proteobacterium; −ve

8 Tm- Ab08 725 (KM349757 Arthrobacter globiformis
(KJ124593; 99%)

Actinobacterium; −ve

9 Tm- Ab09 750 (KM349758) Rhizobium radiobacter
(S000721046; 0.967)
#NCBI: Agrobacterium tumefaciens

α-Proteobacterium; −ve

Isolates from susceptible cv. Arka Vikas

1 Tm-Av01 794 (KM349745) Pseudomonas oleovorans
(HQ697330; 99%)

γ-Proteobacterium; −ve

2 Tm-Av02 860 (KM349746) Stenotrophomonas maltophilia
(KM108534; 99%)

γ-Proteobacterium; −ve

3 Tm-Av03 810 (KM349747) Bacillus pumilus
(KC834607; 100%)

Firmicute; +ve

4 Tm-Av04 818 (KM349749) Rhizobium radiobacter
(S000721046; 1.0)
#NCBI: Agrobacterium tumefaciens

α-Proteobacterium; −ve

5 Tm-Av05 662 (KM349750) Microbacterium pumilum
(KC213957; 99%)

Actinobacterium; +ve

†As on 20 August 2014 at sequence submission to NCBI GenBank.
#Identity assigned by NCBI GenBank.

FIGURE 2 | Screening of bacterial endophytes from susceptible cv. Arka
Vikas and resistant cv. Arka Abha for the antagonistic activity against
Ralstonia solanacearum isolates NH-Av05 (A), NH-Av07 (B), and

KAU-Av01 (C). Treatment order: Row 1: Tm-Av01 to Av04; Row 2: Tm-Av05,
Tm-Ab01 to Ab03; Row 3: Tm-Ab04 to Ab07; Row 4: Tm-Ab08, Ab09, distilled
water control, Ralstonia inoculum, respectively.
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TABLE 2 | Screening of bacterial endophytes from Ralstonia resistant Arka Abha and susceptible Arka Vikas tomato cultivars for the indicators of
bio-control property.

Isolate Endophytic organism Bio-control property indicator Extent of inhibition zone

Siderophore HCN Antibiotic markers

NRPS PKS

Isolates from resistant cv. Arka Abha

Tm-Ab01 Pseudomonas oleovorans × _ _ _ +++
Tm-Ab02 Pseudomonas plecoglossicida _ _ _ × ++
Tm-Ab03 Pantoea ananatis × × _ _ +++
Tm-Ab04 Citrobacter freundii _ _ _ _ -

Tm-Ab05 Staphylococcus hominis _ _ _ _ +
Tm-Ab06 Sphingobacterium multivorum _ _ × _ +
Tm-Ab07 Enterobacter cloacae _ × _ _ +++
Tm-Ab08 Arthrobacter globiformis _ _ × _ ++
Tm-Ab09 Agrobacterium tumefaciens _ _ _ _ -

Isolates from susceptible cv. Arka Vikas

Tm-Av01 Pseudomonas oleovorans × _ _ _ +++
Tm-Av02 Stenotrophomonas maltophilia _ _ _ _ +
Tm-Av03 Bacillus pumilus _ _ × _ +
Tm-Av04 Agrobacterium tumefaciens _ _ _ _ -

Tm-Av05 Microbacterium pumilum _ _ _ _ -

_, Negative; × , positive; Antagonistic activity: none (−), low (+), medium (++), or high (+++).

Ashish, and SArka Saurabhav). However, MRArka Samrat and
SArka Meghali showed 88 and 50% Gram positive organisms,
respectively. The resistant cultivars showed more organisms with
antagonistic potential in comparison with susceptible cultivars
(Table 3) as discussed below.

Endophytes in Resistant and Susceptible
Cultivars in Relation to Pathogen
Antagonism
When the whole spectrum of root-associated bacterial endo-
phytes in the four resistant and four susceptible cultivars of this
investigation is considered, γ-Proteobacteria formed the com-
monest group followed by Actinobacteria, α-Proteobacteria and
spore-forming Firmicutes (Figure 3A). The four resistant cul-
tivars together yielded 34 endophytic bacteria which belonged
to five classes (Proteobacteria, Actinobacteria, Firmicutes,
Bacteroidetes, and Flavobacteria), 16 genera and 27 species
while the isolates from susceptible cultivars represented three
classes (Proteobacteria, Actinobacteria, and Firmicutes) includ-
ing seven genera and 13 species (Table 4). The number of
organisms displaying antagonistic activity during agar-well dif-
fusion assay ranged from 4 to 7 in the former group while it
was only one or two in the latter. Thus, among the R-cultivar
isolates, 23 of them displayed varying levels of antagonistic
effects while just seven from the S- category displayed such
responses. Further, the extent of antagonistic activity as indi-
cated by the diameter of clear zone was more with the isolates
from R sources which included P. oleovorans, P. ananatis, and
E. cloacae from RArka Abha, E. cloacae and P. otitidis from
RArka Alok, and E. ludwigii, P. otitidis, and Staphylococcus
haemolyticus from RArka Ananya. Maximum organisms with

the antagonistic activity was observed with the γ-Proteobacteria
group constituted by the genera Enterobacter, Pseudomonas,
and Pantoea spp. with 15 out of 17 isolates showing antag-
onistic effects (Figure 3B). The next most promising group
included non-spore forming Firmicutes, namely S. haemolyticus
and S. hominis with all three isolates displaying good antagonistic
potential.

Discussion

Bacterial endophytes are known to confer protection against
pathogens in a number of diseases (Compant et al., 2005;
Mercado-Blanco and Lugtenberg, 2014) including Ralstonia wilt
in tomato (Tan et al., 2011; Feng et al., 2013) and in related solana-
ceous crops (Ramesh and Phadke, 2012; Achari and Ramesh,
2014). Not many studies have addressed the diversity of endo-
phytes or their possible involvement in offering a natural protec-
tion against this pathogen. The present study covering a number
of tomato cultivars belonging to the resistant and susceptible cat-
egories enunciated the presence of greater cultivable endophytic
bacterial diversity and more organisms with pathogen antagonis-
tic potential in resistant cultivars. The isolates with antagonis-
tic potential from resistant cultivars often showed accentuated
pathogen inhibitory activity with one exception of Arka Samrat,
which belonged to the moderately resistant category (Thomas
et al., 2015). These observations suggested the possibility of an
active role played by the endophytes in providing a natural
protection against the pathogen in resistant cultivars. A recent
study in tomato involving just one cultivar each from Ralstonia
resistant and susceptible categories showed higher endophytic
colonization, greater diversity and more pathogen antagonistic
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TABLE 3 | Identification of bacterial endophytes from additional resistant and susceptible cultivars and their antagonistic activity against Ralstonia
solanacearum NH-Av01 determined through agar-well diffusion assay.

Isolate 16S seq (bp) and
NCBI acc. no

Identity based on closest species
from NCBI/RDP (with acc. no and
homology/similarity score)†

Phylogenic group and
Gram reaction

Antagonistic effect

Arka Alok (Resistant) 6 × 105 cfu g-1 (nine isolates)

Tm-Alk01 910 (KM603626) Bacillus megaterium
(KJ789369; 99%)

Firmicute; +ve +

Tm-Alk02 822 (KM603627) Asticcacaulis benevestitus
(S000592821; 0.798)

α-Proteobacteria; −ve +

Tm-Alk03 850 (KM603628) Microbacterium oleivorans
(KF307652; 99%)

Actinobacteria; +ve -

Tm-Alk04 914 (KM603629) Hydrogenophaga intermedia
(FJ009392; 99%)

β-Proteobacteria; −ve -

Tm-Alk05 892 (KM603630) Novosphingobium subterraneum
(FJ527720; 99%)
#Novosphingobium aromaticivorans

α-Proteobacteria; −ve +

Tm-Alk06 700 (KM603631) Pantoea ananatis
(HE716948; 98%)

γ-Proteobacteria; −ve +

Tm-Alk07 950 (KM603632) Enterobacter cloacae
(KM077045; 99%)

γ-Proteobacteria; −ve +++

Tm-Alk08 725 (KM603633) Pseudomonas taiwanensis
(S001095516; 0.918)

γ-Proteobacteria; −ve +

Tm-Alk09 575 (KM603634) Pseudomonas otitidis
(KF699886; 99%)

γ-Proteobacteria; −ve ++

Arka Ananya (Resistant) 6 × 104 cfu g-1 (eight isolates)

Tm-Ana01 750 (KM603635) Enterobacter ludwigii
(S000539659; 0.972)

γ-Proteobacteria; −ve ++

Tm-Ana02 925 (KM603636) Bacillus megaterium
(KJ789369; 99%)

Firmicute; +ve -

Tm-Ana03 870 (KM603637) Chryseobacterium taiwanense
(KC122691; 99%)

Flavobacteria; −ve -

Tm-Ana04 900 (KM603638) Rhizobium oryzae
(S001168838; 0.846)

α-Proteobacteria; −ve +

Tm-Ana05 770 (KM603639) Staphylococcus hominis
(KJ197177; 99%)

Firmicute; +ve +

Tm-Ana06 780 (KM603640) Pseudomonas otitidis
(LN558646; 99%)

γ-Proteobacteria; −ve ++

Tm-Ana07 900 (KM603641) Staphylococcus haemolyticus
(HG941667; 99%)

Firmicute; +ve +++

Tm-Ana08 720 (KM603642) Pseudomonas taiwanensis
(S001095516; 0.918)

γ-Proteobacteria; −ve +

Arka Samrat (Moderately resistant) 4.7 × 103 cfu g-1 (eight isolates)

Tm-Sam01 920 (KM603643) Microbacterium lacticum
(S000013457; 0.947)

Actinobacteria; +ve -

Tm-Sam02 895 (KM603644) Bacillus megaterium
(KF381342; 99%)

Firmicute; +ve +

Tm-Sam03 555 (KM603645) Microbacterium pumilum
(LK391536; 99%)

Actinobacteria; +ve -

Tm-Sam04 890 (KM603646) Bacillus safensis
(S000458519; 0.996)

Firmicute; +ve +

Tm-Sam05 975 (KM603647) Bacillus soli
(S000323282; 0.948)

Firmicute; +ve -+

Tm-Sam06 915 (KM603648) Bacillus bataviensis
(S000323277; 0.933)

Firmicute; +ve -

Tm-Sam07 810 (KM603649) Corynebacterium amycolatum
(KF539917; 99%)

Actinobacteria; +ve -

Tm-Sam 08 850 (KM603650) Rhizobium radiobacter
(S000721046; 0.987)
#Agrobacterium tumefaciens

α-Proteobacteria; −ve -

(Continued)
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TABLE 3 | Continued

Isolate 16S seq (bp) and
NCBI acc. no

Identity based on closest species
from NCBI/RDP (with acc. no and
homology/similarity score)†

Phylogenic group and
Gram reaction

Antagonistic effect

Arka Ashish (Susceptible) 1.9 × 104 cfu g-1 (four isolates)

Tm-Ash01 550 (KM603651) Microbacterium oleivorans
(KF777385; 99%)

Actinobacteria; +ve -

Tm-Ash02 910 (KM603652) Pseudoxanthomonas mexicana
(KF358265; 99%)

γ-Proteobacteria; −ve +

Tm-Ash03 905 (KM603653) Rhizobium pseudoryzae
(S002221791; 0.913)

α-Proteobacteria; −ve -

Tm-Ash04 930 (KM603654) Acidovorax soli
(S001293324; 0.937)

β-Proteobacteria; −ve -

Arka Meghali (Susceptible) 3.1 × 104 cfu g-1 (four isolates)

Tm-Meg 01 968 (KM603655) Pseudomonas otitidis (KF668329; 100%) γ-Proteobacteria; −ve +
Tm-Meg 02 690 (KM603656) Microbacterium oleivorans (KF777385;

100%)
Actinobacteria; +ve -

Tm-Meg 03 908 (KM603657) Bacillus megaterium
(S000979521; 0.961)

Firmicutes; +ve +

Tm-Meg 04 865 (KM603658) Asticcacaulis benevestitus (S000592821;
0.796)

α-Proteobacteria; −ve -

Arka Saurabhav (Susceptible) 6.5 × 104 cfu g-1 (four isolates)

Tm-Sau01 680 (KM603659) Microbacterium oleivorans
(KF777385; 100%)

Actinobacteria; +ve -

Tm-Sau02 795 (KM603659) Pseudoxanthomonas mexicana
(KF135463; 99%)

γ-Proteobacteria; −ve -

Tm-Sau03 905 (KM603661) Pseudomonas alcaliphila
(KC699534; 99%)

γ-Proteobacteria; −ve +

Tm-Sau04 855 (KM603662) Acidovorax soli
(S001293324; 0.934)

β-Proteobacteria; −ve -

†As on September 2014 at NCBI Submission.
# Identity assigned by NCBI GenBank at sequence acceptance.
Antagonistic activity: low (+), medium (++), or high (+++).

organisms in the former (Feng et al., 2013). Studies with other
plant systems have also suggested the prevalence of a similar rela-
tionship (Araújo et al., 2002; Reiter et al., 2002). The endophytic
communities perhaps are not random guests but essential asso-
ciates interacting with the hosts (Gaiero et al., 2013; Podolich
et al., 2015). It is postulated that the endophytic bacteria, which
are largely in non-cultivable form, perhaps play an active role in
crop protection through their revival to active form in response
to pathogen attack or environmental stress (Podolich et al.,
2015).

It was significant to note that several of the endophytes from
RArka Abha were positive for biocontrol properties compared to
SArka Vikas. The promising antagonistic organisms P. oleovorans
and P. ananatis were siderophore producers while E. cloacae and
P. ananatis showed HCN production indicating a relationship
between antagonistic ability and siderophore/HCN production.
On the other hand, no clear relationship between antibiotic
(NRPS/PKS) biosynthesis capability and antagonistic property
was observed. Therefore, it was imperative to undertake direct
pathogen challenge assays to determine the antagonistic potential
of the organisms.

Past investigations that reported elucidation of wilt-disease
resistance mechanisms against R. solanacearum often laid
emphasis on tissue-structural (Rahman and Abdullah, 1997;

Rahman et al., 1999), genetic (Wang et al., 2000; Yang and
Francis, 2006), or molecular attributes (Jacobs et al., 2012;
Coll and Valls, 2013). It is generally concluded that the resis-
tance trait of different cultivars is under genetic control. A
perusal of reports on genetic basis of Ralstonia wilt resistance in
tomato, however, showed considerable variations in the inher-
itance of this trait depending on the test hybrid combinations
or the pathogen-isolate employed. This varied from mono-
genic to digenic dominant or recessive, or polygenic inheritance
(Grimault et al., 1995; Mohamed et al., 1997; Hanson et al.,
1998). The resistant cultivars have shown considerably low inter-
nal colonization by this pathogen than susceptible genotypes
(Grimault et al., 1994; Rahman and Abdullah, 1997). The obser-
vations documented in this study raise a query whether the
bacterial endophytes play either a direct active part or a sup-
portive role in governing the resistance feature of a cultivar
synergistic with the current concept of genetic inheritance of
resistance.

Generally it is believed that the endophytes are recruited
from the soil environment by the host influenced by the soil
type where the host genotype is also known to have a signif-
icant influence (Compant et al., 2010; Lundberg et al., 2012;
Mueller et al., 2015). It is difficult to visualize selective acqui-
sition/recruitment of endophytes to take place from the soil in
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TABLE 4 | Extent of diversity of endophytic bacteria in Ralstonia resistant and susceptible cultivars of tomato in relation to pathogen antagonistic effect.

S. no Phylogenetic group Resistant cultivars Susceptible cultivars

Arka
Abha

Arka
Alok

Arka
Ananya

Arka
Samrat†

Arka
Vikas

Arka
Ashih

Arka
Meghali

Arka
Saurabhav

α-Proteobacteria

1 Asticcacaulis benevestitus •/+ •/−
2 Agrobacterium tumefaciens •/− •/− •/−
3 Rhizobium oryzae •/−
4 Rhizobium pseudoryzae •/+
5 Novosphingobium aromaticivorans •/+

β-Proteobacteria

6 Acidovorax soli •/− •/−
7 Hydrogenophaga intermedia •/−

γ-Proteobacteria

8 Enterobacter cloacae •/+++ •/+++
9 Enterobacter ludwigii •/++
10 Pseudomonas alcaliphila •/+
11 Pseudomonas oleovorans •/+++ •/+++
12 Pseudomonas otitidis •/++ •/++ •/+
13 Pseudomonas plecoglossicida •/+
14 Pseudomonas taiwanensis •/+ •/+
15 Pseudoxanthomonas mexicana •/− •/−
16 Pantoea ananatis •/+++ •/+
17 Stenotrophomonas maltophilia •/+

Bacteroidetes

18 Sphingobacterium multivorum •/+

Flavobacteria

19 Chryseobacterium taiwanense •/−

Actinobacteria

20 Arthrobacter globiformis •/+
21 Citrobacter freundii •/−
22 Corynebacterium amycolatum •/+
23 Microbacterium lacticum •/−
24 Microbacterium oleivorans •/− •/− •/− •/−
25 Microbacterium pumilum •/− •/−

Firmicutes – non-sporulating

26 Staphylococcus haemolyticus •/+++
27 Staphylococcus hominis •/+ •/+

Firmicutes – sporulating

28 Bacillus bataviensis •/−
29 Bacillus pumilus •/+
30 Bacillus safensis •/+
31 Bacillus megaterium •/+ •/− •/+ •/+
32 Bacillus soli •/+ •/− •/+ •/+

Isolates showing antagonistic effect/Total 7/9 7/9 5/8 4/8 3/5 1/4 2/4 1/4

•, Presence in the cultivar; –, no antagonistic activity; +, ++, +++: low, medium, or strong Ralstonia solanacearum antagonistic activity, respectively.
†Moderately resistant.
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FIGURE 3 | Extent of cultivable bacterial endophytes belonging to
different bacterial classes and sub-classes across four Ralstonia
resistant and four susceptible tomato cultivars (A), and the extent of
organisms belonging to different phylogenetic groups displaying
antagonistic activity against the pathogen (B); a-, b-, g-
Proteobacteria represents α, β, and γ sub-classes; Firmicutes-Nsp and
Sp represent non-sporulating and spore-forming Firmicutes.

a resistant cultivar. The present study in which the seedlings
were grown in pasteurized cocopeat ensured to be devoid of
pathogenic Ralstonia leaves no room for such selective recruit-
ment. The host genotype is known to play a significant role
in governing the plant associated microorganisms, particularly
endophytes (Hartmann et al., 2009; Lundberg et al., 2012; Bakker
et al., 2013; Podolich et al., 2015). There are also reports on
transmission of endophytes through seeds (Hardoim et al., 2012;
Truyens et al., 2014) which would explain their possible inte-
gral association with a particular host cultivar. This study, sup-
ported by the recent reports on intracellular colonization by
bacterial endophytes (Thomas and Reddy, 2013; Thomas and
Sekhar, 2014), suggests the possibility of maternal inheritance of
endophytes as seed colonizers. This hypothesis necessitates the
isolation of same organisms from different batches of a culti-
var. A subsequent trial with SArka Vikas showed three of the
five isolates same as the earlier set (P. oleovorans, A. tumefaciens,
and Microbacterium sp.) while two isolates constituted differ-
ent organisms (Mitsuaria chitosanitabida and Kocuria palustris)
indicating vertical transmission as well as lateral recruitment
of bacterial endophytes. Three repeat trials with RArka Abha

showed antagonistic P. oleovorans as a common associate. The
current opinion on seed-transmission of endophytes appears
divided with some in favor while others remaining inconclusive
(Hallmann, 2001; Hardoim et al., 2012; Truyens et al., 2014).
It now calls for more detailed investigations on seed coloniza-
tion and vertical transmission of endophytes vis-à-vis genetic
control of disease resistance. Observations with aseptically grown
watermelon (Thomas and Aswath, 2014) and preliminary obser-
vations with papaya in vitro systems (Thomas, unpublished data)
endorsed this possibility.

In this study, our main objective was to understand if the
native endophytes in different tomato genotypes had any bear-
ing on the inherent resistance characteristic of a cultivar. This
study was confined to the natural endophytes without any exter-
nal fortifications. It needs further investigations to elucidate how
the organisms protect the crop in natural conditions; whether
they act singly or synergistically, and their interactive action with
other rhizospheric organisms. For instance, P. oleovorans con-
stituted the most common endophyte in Arka Vikas, but this
cultivar was susceptible to the pathogen (Thomas et al., 2015).
It is possible that the population level of this antagonist in
SArka Vikas was low to offer any formidable protection against
the pathogenic intruder. It is feasible to increase the popula-
tion levels of this endophyte through seed/seedling fortification
which perhaps may impart some pathogen resistance in this cul-
tivar. There is a general criticism that the in vitro antagonism
activity by the endophytes may not be translated into effective
biocontrol strategies. Our preliminary trials also suggested that
exploiting antagonistic agents as potential biocontrol agents has
uncertain results. The biocontrol effects are influenced by various
other factors. The significance of microbe–microbe interactions
in antimicrobial activity among soil bacteria is being increasingly
recognized now (Tyc et al., 2014). Therefore, additional trials are
needed to work out the biocontrol strategy which forms the next
action plan.

In this study, the identification of the organisms was deter-
mined based on 16S rRNA sequence homology to the sequences
available at the NCBI GenBank and RDP databases, and the
final identity was fixed as per the genus/species assigned by the
GenBank. The identification of some of the organisms based on
such single gene datamay not be conclusive as demonstrated with
Pseudomonas spp. (Hilario et al., 2004). Classification based on
additional genes is envisaged as we proceed with the biocontrol
studies in the case of promising organisms.

The isolates from RArka Abha (P. oleovorans, P. ananatis, and
E. cloacae) which showed strong antagonistic activity and that
from SArka Vikas (P. oleovorans) are now short listed for fur-
ther biocontrol investigations. The two isolates of P. oleovorans
(Tm-Av01 and Tm-Ab01) and one A. tumefaciens isolate (Tm-
Ab09) also showed higher seedling vigor index over uninoculated
control in both tomato cultivars offering scope for their exploita-
tion in organic vegetable growing (Thomas and Upreti, 2015).
The hallmark of this study has been the elucidation that the
native endophytic bacterial floras associated with the seedlings in
resistant cultivars perhaps play a role in natural defense against
the pathogen which hypothesis goes synergistic with the current
concept of genetic inheritance of disease resistance. The present
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findings contribute to a better understanding of the basic aspects
related to host - pathogen - endophyte interactions and open the
scope for further explorations into the biological control of this
pathogen.
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