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Biosurfactants (BSs) are “green” amphiphilic molecules produced by microorganisms
during biodegradation, increasing the bioavailability of organic pollutants. In this work,
the BS production yield of marine hydrocarbon degraders isolated from Elefsina bay
in Eastern Mediterranean Sea has been investigated. The drop collapse test was used
as a preliminary screening test to confirm BS producing strains or mixed consortia.
The community structure of the best consortia based on the drop collapse test was
determined by 16S-rDNA pyrotag screening. Subsequently, the effect of incubation
time, temperature, substrate and supplementation with inorganic nutrients, on BS
production, was examined. Two types of BS – lipid mixtures were extracted from the
culture broth; the low molecular weight BS Rhamnolipids and Sophorolipids. Crude
extracts were purified by silica gel column chromatography and then identified by thin
layer chromatography and Fourier transform infrared spectroscopy. Results indicate
that BS production yield remains constant and low while it is independent of the
total culture biomass, carbon source, and temperature. A constant BS concentration
in a culture broth with continuous degradation of crude oil (CO) implies that the BS
producing microbes generate no more than the required amount of BSs that enables
biodegradation of the CO. Isolated pure strains were found to have higher specific
production yields than the complex microbial marine community-consortia. The heavy
oil fraction of CO has emerged as a promising substrate for BS production (by marine
BS producers) with fewer impurities in the final product. Furthermore, a particular
strain isolated from sediments, Paracoccus marcusii, may be an optimal choice for
bioremediation purposes as its biomass remains trapped in the hydrocarbon phase,
not suffering from potential dilution effects by sea currents.

Keywords: biosurfactant, marine bacteria, Alcanivorax, rhamnolipid, sophorolipid, crude oil, bioaugmentation,
Paracoccus marcusii

Introduction

Chronic release of oil in the sea from numerous natural and anthropogenic sources poses
a continuous-serious threat for the environment (Nikolopoulou and Kalogerakis, 2010).
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The majority of petroleum hydrocarbon input comes from
natural seeps, while spillage from vessels or operational dis-
charges have nowadays decreased significantly and, e.g., in North
America only 1% of the oil discharges is related to the extraction
of the oil. Approximately, 1.3 million tones of petroleum enters
the marine environment each year (National Research Council
(NRC) of the National Academies - Committee on Oil in the
Sea, 2003; Diez et al., 2007; Ventikos and Sotiropoulos, 2014),
while in the Gulf of Mexico alone after the Deep Horizon inci-
dent > 600,000 tones were released into the sea (International
Tanker Owners Pollution Federation [ITOPF], 2013). Acute acci-
dents such as the Deep Horizon result not only in increased
public concern but also in mass mortality of marine and coastal
life. Fortunately they are rare.

Oil pollution cleanup in marine environments with the
use of biological means-bioremediation (Nikolopoulou and
Kalogerakis, 2008; Nikolopoulou et al., 2013a,b), has emerged
as a very promising ‘green’ alternative technology follow-
ing first response actions (skimmers, boomers, fire, dispersion
with chemical surfactants). Crude oil (CO) is biodegradable.
Hydrocarbon-degrading bacterial consortia exist in nature and
thrive in oil-polluted sites, while using petroleum hydrocarbons
as source of carbon and energy for growth (Hassanshahian et al.,
2012; McGenity et al., 2012; Thomas et al., 2014). The way
hydrocarbon-degrading bacterial consortia and pure strains engi-
neer their way into the oil spill for biodegradation is very complex
and still under investigation. Bacterial cells produce a mixture
of biosurfactant (BS) lipids with the help of which oil is dis-
persed into very fine droplets and thus the bioavailability of CO
is increased.

Biosurfactants are surface-active compounds produced by
microorganisms. They display a variety of surface activities (sur-
face tension decrease from 72 to 30 mN/m Helvaci et al.,
2004) that increase the bioavailability of organic pollutants,
including CO components, and thus enhance biodegradation
(Nguyen et al., 2008; Rahman and Gakpe, 2008; Whang et al.,
2008; Banat et al., 2010, 2014; Nguyen and Sabatini, 2011;
Randhawa and Rahman, 2014). BSs belong to a structurally
diverse group of amphiphilic biomolecules with both hydrophilic
and hydrophobic moieties. They generally are grouped either
as low or high molecular weight BSs, the former consist-
ing of glycolipids and lipopeptides and the latter of high
molecular weight polymeric BS. Due to their biodegradability
and low toxicity they are very promising for use in remedi-
ation technologies as an alternative to the synthetic surfac-
tants (Nguyen et al., 2008). Microbial BSs can replace the
currently used chemical surfactants that are more toxic in
many applications, like combating oil spills, bioremediation
enhancement, micro-extraction of PAHs, pharmaceutical prod-
ucts, and detergent industry (Nguyen et al., 2008; Banat et al.,
2010; Nguyen and Sabatini, 2011). There is a need for eco-
logically friendly and biodegradable surfactants (ionic or non-
ionic) for reliable environmental cleanup. Commercially viable
BSs have to be economically competitive therefore the devel-
opment of good microbial BS producing cultures is required
(Banat et al., 2000, 2010, 2014; Nguyen et al., 2008; Rahman and
Gakpe, 2008; Whang et al., 2008; Nguyen and Sabatini, 2011;

Randhawa and Rahman, 2014). Nowadays BSs still have not been
employed extensively in industry because of the high production
cost.

Biosurfactant production challenges and solutions for increas-
ing the production yield are very well presented by Banat
et al. (2014). Problems that limit BS industrial production
include the required renewable substrate media quantities, slow
growth rate of organisms on the substrate, low yield and
final product purification from substrate impurities. Although
cost effective BS production is still a goal to be attained,
other important issues currently under investigation include the
development-isolation of BS producing microorganisms (con-
sortia or strains), the fine-tuning of their production ability
by changing their incubation conditions (temperature, time,
nutrients) and/or substrate type toward achieving a high yield
and the production of lipid mixtures with an attractive/desired
structure.

The primary objective of this work was to investigate the
BS production efficiency and quality of isolated consortia and
pure strains (that have hydrocarbon-degrading capabilities) iso-
lated from the sediment and water column of a hydrocarbon-
contaminated marine area (Elefsina bay, Attica, Greece) with
CO as sole carbon source. The fact that marine hydrocarbon
degraders are often BS producers as well impelled us to investi-
gate the BS production efficiency of specific marine hydrocarbon-
degraders. The sampling and isolation of hydrocarbon degraders
from Elefsina bay was part of the FP7 project ULIXES. In par-
ticular, the production of two BS types, rhamnolipids (RLs)
and sophorolipids (SLs) by isolated consortia was investigated
regarding the effect of incubation time, temperature, addition of
nutrients N (as KNO3) and P (as KH2PO4), and finally the carbon
source. Therefore, isolation, screening, detection and characteri-
zation techniques were used in order to evaluate/confirm the BS
chemical composition. In addition, promising pure strains were
also tested for their BS production ability. The effect of substrate
on the RL yield of the best BS producing strain was investigated.
In an attempt to explain the BS production yield, we try to answer
the following questions: how the RL production yield by marine
microbes compares to the critical micelle concentration (CMC)?
How this relates to the oil degradation? What is the role - spatial
distribution of BS in the process (emulsion, cell hydrophobicity
increase)?

Materials and Methods

Sampling Locations
Seawater and sediment samples were collected from six loca-
tions in Elefsina bay, Attica, Aegean Sea as shown in Figure 1.
Elefsina bay is a major industrial area, where among other indus-
trial complexes, there are two large petroleum refineries. Due to
several accidents in the past and the slow seepage of CO from
old storage tanks, there is sufficient evidence of low chronic
pollution in the area. The sampling campaign aimed to isolate
consortia and strains from both the water column and the sed-
iment, enhancing the probability to isolate different strains of
interest. The samples were collected downstream of the local
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FIGURE 1 | The sampling campaign map. The locations of all the sampling
sites are represented by red dots. The code(s) of the consortia isolated from
each sampling site is given next to each dot. For consortia isolated from the

water column, i.e., consortia E1–E8, the depth of the water sampled for initial
inoculation is given in parenthesis next to the consortium code. The image was
captured and modified using Google Earth.

current direction (West-to-East). An additional sediment sam-
ple (ESP) was collected at the area where a small stream joins
the bay.

Preparation of Enrichment Cultures
Enrichment cultures were prepared by adding 10 ml of sea-
water or 10 g of sediment (for sediment samples) in 90 ml
ONR7 (Yakimov et al., 1998), with the addition of 0.5% w/v
filter-sterilized CO in 250 ml Erlenmeyer flasks. The cultures
were incubated at 20◦C, in an orbital incubator, agitated at
150 rpm. At each re-inoculation, 1 ml of culture from the early
exponential phase was transferred to 99 ml of ONR7 medium.
Plating count on marine agar for marine heterotrophs and
OD measurements was carried out to establish reliable growth
curves.

Screening of Marine Consortia by the Drop
Collapse Test for the Isolation of Pure
Biosurfactant Producing Strains
The drop collapse test was performed according to (Youssef et al.,
2004). Scoring was performed by setting sterile deionised water
as a negative control and a 10−4 dilution of “S-200 oil-gone”
commercial BS solution (IEP Europe S.L., Madrid) as a positive
(+++) control and comparing the diameter of droplets from the
examined cultures. Scoring, of “−” to “+++” was performed
by comparing the diameter of the droplet (X) to that of the
water droplet (Y) and the positive control (Z). A “−” score was

given if X ≤ Y whereas a “+++” score was given if X ≥ Z.
Finally, a “+” score was given if Y < X ≤ (Z-Y)/2 and a “++”
if (Z-Y)/2 < X < Z.

For the drop collapse test, consortia were incubated at 14◦C
(in an effort to mimic the original aquatic habitat tempera-
ture) for 6 weeks in ONR7/CO 0.5% w/v as a sole carbon
source. Re-inoculations were performed weekly. The drop col-
lapse test was performed once every week, just before the re-
inoculation.

Initial Community Screening of
Biosurfactant Producing Consortia by
Pyrotag Sequencing
Total genomic DNA was extracted according to (Moore et al.,
2004). DNA yield and quality was determined by agarose gel elec-
trophoresis of 5 µl of DNA extract. DNA extracts were stored at
4◦C until use.

PCR and pyrosequencing were performed in Research and
Testing Laboratory (Lubbock, TX, USA) on an FLX Titanium
platform, for the V4 hypervariable region of the 16S rRNA
gene using primers 515F (5′-GTGCCAGCMGCCGCGGTAA-
3′) and 806R (5′-GGACTACHVGGGTWTCTAAT-3′) which are
known to have reduced bias and cover a wide range of bac-
terial and archaeal phyla (Kuczynski et al., 2012). Noise fil-
tering and chimera removal (using the AmpliconNoise pack-
age Quince et al., 2011), operational taxonomic unit (OTU)
clustering (at 97% similarity, using uclust Edgar, 2010), OTU
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table construction, Good’s coverage index estimation (Good,
1953) and phylogenetic assignments (comparing against the latest
Greengenes database release McDonald et al., 2012 with uclust)
were performed in QIIME v1.8 (Caporaso et al., 2010). The sam-
ples for the whole project have been deposited in the NCBI
short read archive (SRA) database under the BioProject accession
number PRJNA190077.

Isolation and Characterization of Pure
Biosurfactant Producing Strains
Hundred µl of each mixed culture taken at the early station-
ary phase were initially spread on Zobell marine agar or ONR7
agar/CO 0.5% w/v in triplicates, at a dilution of 10−4 and
10−6. Colonies of distinct morphology were carefully picked and
reinoculated on the same medium. Single colonies were then
picked and the growth of each isolated strain was tested in both
ONR7/CO 0.5% w/v and marine broth at 14◦C.

For the characterization of pure isolates, 200 µl of each cul-
ture was centrifuged for 5 min at 10000 g and after aspiration of
the supernatant, the resulting pellet was incubated for 15 min at
95◦C with 50 µl STE buffer (100 mMNaCl, 10 mM Tris-HCl pH
8, 1 mM EDTA pH 8) and 1 µl of the resulting solution was used
as a template for PCR. PCRwas prepared in a laminar flow cham-
ber under aseptic conditions and performed in an Eppendorf
Mastercycler gradient. Negative controls (autoclaved ultra-pure
water) were used in every reaction. A ∼1500 bp fragment of the
bacterial 16S rRNA locus was amplified using the universal bacte-
rial primers 27F (5′-AGAGTTTGATC(AC)TGGCTCAG-3′) and
1492R (5′-ACGG(CT)TACCTTGTTA CGACTT-3′; Weisburg
et al., 1991), as described in Fodelianakis et al. (2014). Quantity
and quality of the PCR products were evaluated by agarose (1.2%)
gel electrophoresis. PCR products were then purified using the
Nucleospin Gel and PCR cleanup (Machery-Nagel) commercial
kit. Purified PCR products were sequenced in StarSEQ GmbH,
Mainz, Germany from both the forward and reverse primers.
The overlapping sequence (∼890 bp) was compared against the
NCBI nr and 16S database using the BLAST algorithm in order
to find the closest relative and the closest described species
respectively.

Biosurfactant Production
Cultivation
The isolated BS producing consortiums or pure strains were inoc-
ulated in 200 ml of ONR7 medium supplemented with 0.5%w/v
carbon source and incubated on an orbital shaker at 150 rpm
for 5–6 and 10–12 days at different temperatures. The nutrients
added were KNO3 and KH2PO4 until the final ratio of C:N:P was
equal to 100:10:1. The origin of the CO used as the carbon source
for the experiments was Kazakhstan. The isolated single strains
were cultivated at 14◦C (aquatic habitat temperature) for 6 and
12 days, in 200 ml ONR7 medium with 0.5% w/v CO as the car-
bon source. To test RL production of strain E8Y (see Results)
under different carbon sources, the following media were used:
(i) Glucose 0.5% wt, (ii) glucose 0.25% wt and CO 0.25% wt, (iii)
glucose 0.25% wt and heavy CO fraction (asphaltene-aromatics
fraction with less than 7% saturates) 0.25% wt and (iv) 0.5%
wt CO.

Liquid-Liquid Extraction
The extraction of crude BS extract, free from the aqueous cul-
ture medium, was performed by liquid–liquid extraction. RLs
were extracted with equal volume of ethyl-acetate, after centrifu-
gation at 13,000 × g for 15 min at 4◦C to remove the bacterial
cells and acidification of the culture medium at PH = 3 with
6 N HCl (Smyth et al., 2010), while SL extract was obtained
from the whole culture using three times equal volume of ethyl-
acetate (Nuñez et al., 2001). Anhydrous sodium sulfate was added
to the ethyl acetate layer to remove residual water, filtered, was
collected in a round-bottom flask and connected to a rotary
evaporator to remove the solvent. The process yielded a viscous
honey-colored BS.

Biosurfactant Purification
Purification of the produced BS crude extract was conducted
using Silica Gel Column Chromatography. Silica gel 60 (240–
425 mesh) was the stationary phase in all cases. Neutral
lipids, Rha-C10-C10 and Rha-Rha-C10-C10 purified fractions
were obtained using CHCl3:CH3OH (50:3 v/v), CHCl3:CH3OH
(50:5 v/v) and CHCl3:CH3OH (50:50 v/v) as the mobile phase,
respectively. Acidic and lactonic types of SLs were obtained
using CHCl3:CH3OH (98:2 v/v), CHCl3:CH3OH (83:17 v/v),
CHCl3:CH3OH (71:19 v/v) and CHCl3:CH3OH (60:40 v/v) as the
mobile phase (Smyth et al., 2010; third and fourth fraction carried
the different types).

Biosurfactant Detection-Characterization
A RL mixture of Rha-C10-C10 and Rha-Rha-C10-C10 (Aldrich
Chemistry, R-95 RL 95%) was used as standard to compare the
RLs produced.

Thin Layer Chromatography (TLC)
Biosurfactant detection was performed on the crude extract by
TLC on pre-coated silica gel of standard 20 × 20 Kiesel-gel 60
F254Merck plates using the appropriate solvent system and visu-
alization agent for each BS. In the case of RLs, the solvent system
used was chloroform : methanol : acetic acid (65:15:2, v/v/v), the
spray reagent was antrone (Smyth et al., 2010), while SLs were
detected via chloroform : methanol : water (65:15:2, v/v/v) and
the development agent was p-Anisaldehyde (100◦C for 5 min;
Asmer et al., 1988).

Fourier Transform IR Spectroscopy (FT-IR)
Infrared spectroscopy is a simple method for structure analysis.
Samples were liophilized and milled with KBr to form a uni-
form capsule and were characterized via FT-IR spectroscopy on a
Perkin Elmer 2000 FTIR spectrometer operated in the absorbance
mode at a resolution of 4 cm−1.

Mass Spectrometry (LC-MS)
Rhamnolipid mixtures were separated and identified by liquid
chromatography coupled to mass spectroscopy using an Agilent
Technologies 6110 quadrupole LC–MS (Smyth et al., 2010).
Samples were prepared with ACN:H2O (80:20 v/v; LC grade)
with a concentration of 10 mg/l and 100 µl of the same was
injected into a C18 (150mm × 2.1mm × 5 µm) column. The
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LC flow rate was 0.25 ml/min. For mobile phase, an acetonitrile–
water gradient was used starting with 40% of acetonitrile for
4 min, followed by 40–90% acetonitrile in 20 min then return
to the initial condition in 6 min. Ammonium acetate buffer was
added.

Results

Mixed Culture Screening and Pure Strain
Isolation
Eleven enrichment cultures, namely E1-E9, ESP and ESPI were
obtained from the respective seawater and sediment samples.
Those cultures were then screened by the drop collapse test for
BS production. As presented in Table 1, consortium E8 achieved
the highest overall scores within the given time period, followed
by consortium E4. An additional consortium, namely EB8, was
subsequently created from the E8 consortium by re-inoculating
material only from the oil-culture interface, to further test if
the BS production could be enhanced further by these isolates
(adaptation of the MATH test isolation method).

Subsequently, the community structure of consortia E8, EB8
and E4 was examined with 16S rRNA gene pyrotag sequencing.
Consortium E9 was also included in this analysis due to its dif-
ferent origin (sediment) and therefore its potential to contain
different BS producing strains. Good’s coverage estimates ranged
between 0.97 and 0.99, indicating that the sampling depth was
enough for an adequate description of the bacterial diversity of
each of the examined consortia.

Phylogenetic analysis of the pyrotag reads revealed the
presence of seven families among the examined con-
sortia; Rhodobacteraceae (0.07–2.5% per sample reads),
Rhodospirillaceae (5.3–54.5% per sample reads), Shewanellaceae
(0–4% per sample reads), Alcanivoracaceae (36.2–68.5%
per sample reads), Halomonadaceae (0–22.4% per sample
reads), Oceanospirillaceae (0–42.4% per sample reads) and
Pseudomonadaceae (0.4–21.6% per sample reads; Figure 2).
For some reads (0.8–5.4% per sample) phylogenetic assignment
down to the family level was not possible (Figure 2).

TABLE 1 | Drop collapse test results for each consortium.

Sample Origin W1 W2 W3 W4 W5 W6

E1 Water − − − − +++ −
E2 Water + + + + + ++
E3 Water − + − − + −
E4 Water ++ ++ + ++ ++ ++
E5 Water − − − ++ +++ −
E6 Water − − + − + −
E7 Water − − − − − −
E8 Water ++ ++ ++ +++ ++ ++
E9 Sediment + − + ++ − ++
ESP Sediment − + + − + +
ESPI Sediment − − + + + +
W1, W2, W3, W4, W5, and W6 stand for scores on weeks 1, 2, 3, 4, 5, and 6
respectively.

Upon further examination we found that within-family even-
ness was very low; the majority of reads within each family could
be assigned to a single OTU. These OTUs were the most prob-
able to be isolated and tested for their ability to produce BSs.
The representative sequences of the most abundant OTUs within
each family were then compared against the NCBI 16S database
using BLAST in order to find the closest cultivated representative
to each abundant OTU. Table 2 summarizes the distribution of
reads within each of the seven families and the BLAST results for
the most abundant OTUs within each family.

Pure Strain Isolation and Biosurfactant
Production Screening
As shown in Table 2, the number of possible isolates obtained
from consortia E4, E8 and E9 was limited, as these were dom-
inated by a handful of dominant strains. Thus, the chance of
isolating strains other than those was statistically disfavoured.
In order to increase the total number of possible BS produc-
ers, two more sediment samples from Elefsina, namely ESP
and ESPI, were included. Isolation and purification of single
strains was subsequently performed as described in Experimental
Procedures.

Fifty pure cultures were obtained in total and their taxonomy
was identified (see Experimental Procedures). Twelve of these
strains were actually different. The ability of each different strain
to grow in rich (marine broth) and minimal (ONR7a) medium
with CO 0.5% w/v as a sole carbon source was then examined.
All taxonomically different isolates were consequently screened
for BS production by the drop collapse test in the medium(s)
were growth was possible. The isolated strains’ phylogenetic iden-
tity, growth ability and drop collapse test scores are shown in
Table 3. Strains E8Y, E4D, E4F (Alcanivorax borkumensis SK2)
in ONR7a/CO 0.5% w/v and ESP-A (Paracoccus marcusii) in
ONR7a/CO 0.5% w/v achieved the highest scores. BS production
of these strains was then quantified.

Biosurfactant Production by Mixed Bacterial
Community – Effect of Time, Temperature,
and Carbon Source
EB8 consortium was isolated as the most promising BS producing
mixed culture based on the drop collapse test. The EB8 isolated
community growth curves under the different incubation con-
ditions are shown in Figure 3. All samples exhibited the same
trend, reaching the stationary phase within 48 h. Bacterial growth
reached the highest level when molasses and CO were used as a
carbon source at 30◦C, without addition of N and P sources.

In Figure 4 the BS production from BE8 isolated consortium
is presented for different incubation conditions. We observe that
RL concentration remained constant and low at ∼20 ± 10 mg/l
in the culture broth, independent of incubation conditions. The
BS production yield of BE8 was about double compared to the
BS production yield of the E8 consortia (∼10 mg/l of purified
RL), at 20◦C with CO as carbon source. Addition of molasses
led to increased biomass production of BE8 that decreased as
temperature increased from 20 to 30◦C but did not enhance BS
production. In the presence of CO as carbon source, biomass
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FIGURE 2 | The distribution of the bacterial Families among the screened consortia. The “Other” category stands for reads for which assignment down to
family level was not possible.

TABLE 2 | Within-family read distribution and closest relative of the most abundant OTUs.

Family # of within-family
OTUs

% of the most
abundant OTU

Closest Relative of the most abundant OTU (% of similarity)

Rhodobacteraceae 3 91 Roseovarius crassostreae (99)

Rhodospirillaceae 18 96 Thalassospira lucentensis strain QMT2 (98)

Shewanellaceae 3 98 Shewanella frigidimarina strain NCIMB 400 (99)

Alcanivoracaceae 29 95 Alcanivorax borkumensis SK2 (99)

Halomonadaceae 3 93 Halomonas marina (99)

Oceanospirillaceae 11 97 Marinomonas vaga strain 40 (99)

Pseudomonadaceae 3 96 Pseudomonas pachastrellae strain KMM 330 (99)

concentration remained constant at all temperatures and approx-
imately at 0.5 g/l. Nutrients addition (N and P) did not have a
significant effect on biomass growth or BS concentration.

Sophorolipid production is shown to be in the same range as
that of the RLs (20 ± 10 mg/l). Similar to RLs, the production
of SLs remained constant over time and does not depend on the
carbon source, temperature or biostimulation with N and P.

Biosurfactant Production by Single Strains
Both RL and SL BS production using the isolated strains E8Y,
E4F, E4D, and ESP-A, were investigated, focusing now on the RLs
production. The results are shown in Figure 5. Interestingly, we
observed that biomass remained more or less constant from day
6 to day 12 while RL production yield was also in the same levels
for the case of E8Y, E4D, and E4F strains, i.e., 50 ± 10 mg/l (more
than 100% increase in the production of purified RL). Strain E4F

exhibited the highest production yield of BS at the lowest biomass
content. Strains ESP-A, E4F, and E8Y were further tested for SL
production. A low production yield of 20 mg/l in all cases was
observed.

The biomass of strain ESP-A remained within the CO phase
and did not precipitate by centrifugation. The corresponding BS
production was low compared to the rest of the other three iso-
lated strains; however, this strain may have significant advantages
for “sustainable” bioaugmentation in the open sea environment
(no dilution by seawater currents).

It must be noted that the purified BS production yield from the
crude BS extract was low of the order of 0.01–0.03 g BS/g crude
extract, when CO was used as carbon source. This is a significant
disadvantage of the use of CO as carbon source as it contaminates
the crude extract with CO impurities, and a purification step with
column chromatography becomes necessary.
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TABLE 3 | Code, phylogenetic identity, growth ability and drop collapse test results of the isolated pure strains.

Strain
code

Closest Relative Growth in
marine broth

Growth in ONR7a/
crude oil 0.5% w/v

Drop collapse test
in marine broth1

Drop collapse test in
ONR7a/ crude oil 0.5% w/v1

XP2 Pseudomonas pachastrellae strain KMM 330 Yes No + n/a

XP3 Marinomonas vaga strain 40 Yes No − n/a

XP4 Thalassospira lucentensis strain QMT2 Yes No − n/a

XP5 Thalassospira lucentensis strain QMT2 Yes No − n/a

XP6 Roseovarius crassostreae Yes No + n/a

E8Y Alcanivorax borkumensis SK2 No Yes n/a +++
E4D A. borkumensis SK2 No Yes n/a +++
E4F A. borkumensis SK2 No Yes n/a +++
ESP-A Paracoccus marcusii Yes Yes + +++
ESP-C Sulfitobacter pontiacus ChLG-10 Yes No + n/a

ESPI-G Pseudoalteromonas agarivorans strain KMM 255 Yes No +++ n/a

ESP-B Paracoccus carotinifaciens strain E-396 Yes Yes − −
1The median score value of three biological replicates (separate cultures) is reported.

FIGURE 3 | Growth curves, colony forming units vs. time, under
different conditions. (where mol, molasses and crude oil; co, crude oil; NP,
additional nutrients and the number in the legend represents temperature).

Rhamnolipid Production by Strain E8Y –
Effect of Carbon Source
In order to understand the mechanism that drives BS producing
strains toward BS production, and hence enable us to fine-
tune the production yield, we investigated BS production using
different carbon substrates as energy source.

As shown in Figure 6, strain E8Y, a marine bacterial isolate,
produced low concentrations of BS 50 ± 20 mg/l in the presence
of the different carbon sources. In the absence of hydrocarbons,
production of RLs decreased in half. Furthermore, the sample
with CO as carbon source was made in duplicate and the BS
concentration, extracted from the whole culture (0.5% wt CO-2),
was compared to the one extracted by the culture without the oil
phase (0.5% wt CO-1). A small difference (∼10 mg) is observed
with the whole culture giving a better yield (∼70 mg purified
BS/l). In addition, the culture with the heavy oil fraction (HOF)

was made also in duplicate, one with E8Y strain (E8Y + 0.5% wt
HOF) and a second one with acclimated to the HOF substrate
E8Y strain (acclimated E8Y + 0.5% wt HOF). A better yield is
observed when the acclimated strain was used (∼70 mg/l com-
pared to 55 mg/l). Biomass remained low in all cases in the range
0.5 to 1 g/l.

When the heavy CO fraction was used, BS production was the
highest (∼70 mg/l) and comparable to the BS concentration pro-
duced when CO was used as carbon source (50 ± 20 mg/l). This
result is quite interesting because the HOF remains at the sur-
face of the culture broth at all times and the extraction of the BS
does not involve oil hydrocarbons as the substrate can be readily
removed from the culture medium. The hydrocarbon-free cul-
ture medium is extracted without substrate impurities and the BS
product is easily purified and produced.

Characterization of the Purified
Biosurfactants
All samples were characterized by the following techniques in
order to confirm/identify the BS characteristics of the generated
product.

Thin Layer Chromatography
Thin layer chromatography results confirmed the presence of
RLs and SLs in the crude extract and the purified BS products
(Figure 7). Thin-layer chromatogram of isolated RL had an Rf
value of 0.74 (band/solvent front ratio). SLs showed five promi-
nent bands of Rf values of 0.08, 0.2, 0.36, 0.5, and 0.6 which
compare with those published by Asmer et al. (1988).

FT-IR Measurements
Fourier transform infrared characteristic peaks at 3350, 2930,
2860, 1400, 1638, confirmed the presence of glycolipid type BSs
(Figure 8A). FT-IR is a powerful tool to study the different forms
of BSs. Figure 8A shows FT-IR spectrums of the purified RL and
SL. In the entire spectrum, similar absorption arising from the
O-H stretching vibrations occurs in the region of 3350 cm−1.
The carbonyl functional group (C = O) had a peak in the region

Frontiers in Microbiology | www.frontiersin.org 7 April 2015 | Volume 6 | Article 274

http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/
http://www.frontiersin.org/Microbiology/archive


Antoniou et al. Biosurfactant production from marine hydrocarbon-degraders

FIGURE 4 | Biomass concentration (g/l), and purified Rhamnolipid (RL) and Sophorolipid (SL; mg/l) for the different inoculation conditions and
substrates of BE8 consortium (where NP means additional nutrients; and the number in the legend represents temperature).

FIGURE 5 | Biomass (g/l), purified RL and SL concentration (mg/l) from the cultivation of strain E8Y, E4D, ESP-A, E4F for 6 and 12 days.

of 1744 cm−1. The asymmetrical stretching (VasCH2) and sym-
metrical stretching (VasCH2) of methylene occurs at 2926–2930
and 2850–2860 cm−1, respectively. The stretch of C-O band of
C (-O)-O-C in acetyl esters appears at 1247 cm−1 (RL curve).
The band at 1445 cm−1 that corresponds to the C-O-H in plane
bending of carboxylic acid (–COOH; Silverstein and Webster,
1998).

Detection of Rhamnolipids with LC-MS
Rhamnolipids Rha-Rha-C10-C10 and Rha-C10-C10 were detected
with pseudomolecular ion being 649 and 503 respectively
(Figure 8B).

Discussion

The Biosurfactant Production Capacity of
Marine Microbial Populations
The community structure of the four screened hydrocarbon
degrading mixed consortia (E4, E8, BE8, E9) was rather sim-
ple. Overall, Alcanivoracaceae was the most abundant bacte-
rial family with A. borkumensis SK2 strain being the dominant
strain. That specific strain is very well described in the liter-
ature (Yakimov et al., 1998; Golyshin et al., 2003; Schneiker
et al., 2006) and it is one of the major players in hydrocar-
bon degradation in the water column; being commonly found
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FIGURE 6 | Biomass (g/l), BS crude extract (g/l), purified RL (mg/l) concentration produced by the cultivation of strain E8Y for 12 days with
substrates pure or mixtures of glucose, crude oil (CO), and heavy oil fraction (HOF). In sample E8Y CO 0.5% wt_1 BS was extracted by the culture without
the oil phase. In sample E8Y CO 0.5% wt_2 BS was extracted by the whole culture.

FIGURE 7 | Rhamnolipids (left) and Sophorolipids (right) TLC detection.

in enrichment cultures and contaminated areas (Yakimov et al.,
1998; Golyshin et al., 2003; Schneiker et al., 2006). Members
of the Rhodobacteraceae, Rhodospirillaceae, Halomonadaceae,
Oceanospirillaceae, Pseudomonadaceae, and Shewanellaceae fam-
ilies have also been reported to encompass oil-degraders and
BS producers (Cui et al., 2008; Fredrickson et al., 2008; Mnif
et al., 2009; Raaijmakers et al., 2010; Jiménez et al., 2011; Kostka
et al., 2011; Ibacache-Quiroga et al., 2013). However, the sin-
gle strains isolated from these families in this study did not
show significant BS production (drop collapse test). This fact
may indicate that these strains were acting mainly as hydro-
carbon degraders and not BS producers in the mixed cultures.
On the contrary, the three tested A. borkumensis SK2 strains
were found to produce BS, indicating that those were the main

producers in the mixed cultures. These findings highlight the
functional plasticity of microbial communities in the presence
of hydrocarbon contaminants; hydrocarbon degradation is not
a trait “bound” by taxonomy, as the cassettes of genes that
encode for hydrocarbon degradation are typically found within
mobile genetic elements and can be transmitted horizontally
(Top and Springael, 2003). Thus, a microbial community can
adapt and regulate its functions depending on the community
composition and the presence of different substrates. Despite
the above, there is a “core set” of bacteria (such as members
of the Alcanivorax, Marinobacter, and Cycloclasticus genera)
that are commonly isolated frommarine hydrocarbon-degrading
consortia as they are obligate oil-degraders (Yakimov et al.,
2007).
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FIGURE 8 | (A) Fourier transform infrared (FT-IR) spectrum of isolated rhamnolipids and sophorolipids. The characteristic peaks at 2930 (CH2, CH3), 2830–2850
(CH2, CH3), 1725 (C = O), 1450 (COO− ), 1300-1100 confirm the presence of glycolipid type biosurfactant. (B) Rhamnolipids Rha-Rha-C10-C10 and Rha-C10-C10
detected with pseudomolecular ion being 649 and 503 respectively.

The EB8 consortium that was created using material from
the oil-water interface of E8 consortium, consisted mainly of
Alcanivoracaceae and Pseudomonadaceae as opposed to the
“mother” E8 consortium that also contained Oceanospirillaceae
in a high proportion. That indicates that members of the latter
family were mainly present in the planktonic form in the water
phase of the culture. A mixture of mono-, di-rhamnolipid and SL
glycolipids was produced by the EB8 consortium. BS concentra-
tion in all cases was low, in the range of 20± 10mg/l (comparable
to the concentration produced by the mixed consortia E8 at 20◦C
with CO as the carbon source) and remained constant over time
(after the stationary phase is reached). A temperature increase
from 20 to 30◦C or addition of glucose (molasses) to the car-
bon source had no significant effect on the BS production even
though biomass increased (from 0.5 to 3.5 g/l) in the presence
of molasses and temperature increase. Biostimulation with N
and P had no major effect on the biomass or the BS concen-
tration. To the best of our knowledge a constant BS production

by hydrocarbon degrading-BS producing single strain or consor-
tia regardless of biomass and culture conditions has not been
reported as of yet. Rahman et al. (2003) report BS production
yield that is not related to the biomass concentration (high yield-
low biomass or the opposite). In this work the BS production
yield depends on the amount of the non-soluble substrate. In the
case of marine Bacillus sp. the BS product to biomass ratio varies
with substrate variation (Mukherjee et al., 2008). This was also
observed in this work.

There are only few reports available about production of BSs
by bacterial consortiums isolated from hydrocarbon contami-
nated soil or marine water column (Rahman et al., 2003; Darvishi
et al., 2011; Trejo-Castillo et al., 2014) and even fewer that at the
same time use CO as the carbon source. In particular, Rahman
et al. (2003) and García-Rivero et al. (2007) used crude and diesel
oil as sole carbon source respectively. Furthermore, the consor-
tium they used is a mixed culture comprising from the best single
strains that had a specific characteristic, e.g., good BS production
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or hydrocarbon degradation as opposed to ours that has been
subcultured directly from environmental samples. Darvishi et al.
(2011) and Rahman et al. (2003) reported BS production yield of
1.67 g/L and 4.9 g/L by mixed consortia, respectively. There is an
evident difference of an order of magnitude in the BS production
yield and this is probably due to our consortium being totally
different in composition or the initial inoculum amount being
substantially different (we started with a total inoculum of
107 CFU). Our consortium composed mainly by members
of the Rhodobacteraceae, Rhodospirillaceae, Shewanellaceae,
Alcanivoracaceae, Halomonadaceae, Oceanospirillaceae and
Pseudomonadaceae families (Figure 2), whereas Rahman et al.
(2003) used a consortium of five isolates (Micrococcus sp.
GS2-22, Bacillus sp. DS6- 86, Corynebacterium sp. GS5-66,
Flavobacterium sp. DS5-73 and Pseudomonas sp. DS10-129),
and Darvishi et al. (2011) used a consortium of two isolates
E. cloacae and Pseudomonas sp.. In all cases, the common
denominator is the Pseudomonas family members that are
well-known hydrocarbon degraders and BS producers. Rahman
et al. (2003) also observed that “when oil degraders were
introduced individually, the amount of surfactant production
was more when compared to the production of surfactant by
mixed bacterial consortium,” which is similar to our results.
This indicates that there may be a competition between the
bacteria for nutrient substrate. However, BS production by the
mixed bacterial consortium reported here has not been reported
earlier.

When single A. borkumensis SK2 strains E8Y, E4D, E4F where
incubated with CO as the sole carbon source at 14◦C the RL pro-
duction yield increased up to 50 ± 20 mg/l. This represented
a more than 100% increase compared to the concentration that
complex marine consortia E8 and EB8 produced. SL concentra-
tion remained low at 20 mg/l. Alcanivorax is known for its gly-
colipid production as well as hydrocarbon degrading capability
(Yakimov et al., 1998; Golyshin et al., 2003). It has been reported
in the literature that mainly laboratory strains of Pseudomonas
aeruginosa (a well described class II pathogen and RL producer)
are used to produce yields of 10–20 g/l of RLs, whereas SLs are
already produced by manufacturers using Candida bombicola
yeasts with yields greater than 100 g/l (Wei et al., 2005; Marchant
and Banat, 2012; Banat et al., 2014). Daniel et al. (1998) reported
a surprisingly high yield (422 g/l) of SLs production by Candida
bombicola ATCC 22214. The BS yields obtained by marine BS
producers and reported here are at least one order of magnitude
lower compared to the ones in literature (Rahman et al., 2003;
Darvishi et al., 2011).

Most of the published works, study the time course of BS pro-
duction kinetics in optimal media and substrate conditions, using
BS producers whereas in our study we explore the BS production
yield by consortia from the marine environment, which produce
BS and consume CO.

Best Hydrocarbon Degrader Strain for
Bioaugmentation in Open Sea?
The ESP-A strain, Paracoccus marcusii obtained from marine
sediment, produced low amounts of BS, ∼20 mg/l of each gly-
colipid, while keeping its biomass trapped in the oil phase (CO).

This observation is particularly interesting from a bioremedi-
ation point of view. If this strain is used for bioaugmentation
purposes, no dilution effects are expected due to sea currents.
Paracoccus marcusii strains have been reported present in hydro-
carbon contaminated areas as general hydrocarbon degraders
(Harker et al., 1998; Chaerun et al., 2004), as a promising pol-
yaromatic hydrocarbon (PAH) degrader (Pouli et al., 2008) as
well as carotenoid producer (Hirschberg and Harker, 1999). In
oil spills, where PAHs are the predominant compounds, bioaug-
mentation with Paracoccus marcusii strains maybe an optimal
choice.

Effect of Substrate Type and Concentration
on BS Production
The BS production by A. borkumensis SK2 strain (E8Y) was
investigated for possible enhancement through the use of alter-
native media. In particular, the tested media were: the substrate
hydrocarbon concentration was modified from zero to 0.5% with
the use of glucose as the alternate carbon source. No signifi-
cant increase in the BS concentration was observed by E8Y. This
strain when fed with glucose (either entirely 0.5% w/v or partially
0.25% w/v) did not increase at all production, on the contrary RL
concentration decreased approximately in half.

This may be an indication that the specific strain needs to be
stressed by the presence of a non-water soluble substrate (like
CO) to produce “only” the required amount of BS, otherwise
acts as hydrocarbon degrader alone. Higher concentration was
observed in all cases when as carbon source CO or a heavy frac-
tion of CO was used. Interestingly, when a heavy CO fraction is
used as the sole carbon source the final product is not contami-
nated by the substrate as the latter remains as a different phase in
the culture broth and it can be readily removed. One of the main
issues the BS industry faces, is the final product contamination
with substrate impurities (Banat et al., 2014), when a water insol-
uble substrate is used (i.e., CO). Here, strain E8Y when fed with
soluble substrates, like glucose, BS production was not promoted.
Although water-soluble substrates may be attractive for process-
ing (clean facilities), the fact that the same substrate can be easily
used over and over again and the ability to be readily replaced in
one piece, makes HOFs of CO (high in asphaltene concentration)
quite attractive.

Implications in Bioreactor Operation for BS
Production
The above observations lead us to consider the case of bioreac-
tor configuration/operation for BS production using a heavy CO
product as carbon source. The latter stresses the marine bacterial
isolates to produce BS without being able to solubilize it. Thus,
the extraction of the RLs from the aqueous phase is easy and
no purification of the BS oil extract is necessary (silica gel col-
umn chromatography) as no substrate is dissolved in this case. A
comparative process flowchart is given in Figure 9.

Interfacial Behavior of the
Rhamnolipids-Sophorolipids Lipid Mixture
How much is the “required amount of BSs that enables dissolu-
tion -degradation of the CO?” It is known that addition of RL
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FIGURE 9 | Comparative process flowchart for BS production: (A) Typical substrates (i.e., crude oil) that cannot be readily removed from the culture
broth and hence the chromatographic separation step is required; (B) Use of HOF (rich in asphaltenes) which can be readily removed from culture
broth, overcomes the requirement for chromatographic separation step.

and/or SF increases substantially the solubility of diesel when
in concentration higher than the CMC (Whang et al., 2008). In
order to answer the above question we made rough calculations
on the amount of BS that is required based on its use and interfa-
cial behavior. The calculations were made with the use of RL data
since RL has been proven as a very efficient bioremediation agent
(Nikolopoulou et al., 2013b) while it increases the cell surface
hydrophobicity (Al-Tahhan et al., 2000).

Assuming that RL is utilized as emulsifier around the oil
droplets we calculated (using literature data Helvaci et al., 2004)
the number of RLs attached to the oil droplet surface using 0.01–
1 µl droplet size emulsion of CO (0.5% wt or 6 ml/l) in water.
The amount was in the range of 0.1–0.01 mg/l depending on the
oil droplet size (the smaller the emulsion droplet size, the higher
the amount of RL needed). This amount is very close to the CMC
value of RL 0.1–0.04 mM for 0 up to 1 M NaCl environments
(Helvaci et al., 2004). Assuming 50% degradation and decrease of
the oil droplet size from 1 to 0.5 µl, the amount of RL/l needed
to cover the oil droplets interface remains low (0.012 mg/l). In
the extreme scenario of 100% degradation of oil droplets (6 ml/l)
0.01µl size (big interfacial area) the amount increases to 0.9 mg/l,
still small quantity compared to the concentration of RL in the
culture broth.

Rhamnolipids also attach on the microbial cell surface
(Sotirova et al., 2009). Rough calculations show that for 107 cells

per ml (at stationary phase) and 1µm radius (as a nominal value)
of the cell, 8 mg/l RLs could be attached on the microbial sur-
faces. It is quite interesting as, this value is comparable to the
concentration of RLs produced by the mixed consortia E8 and
EB8. Hence, the assumption that bacteria produce BS at the same
rate they consume (bacteria consume the oil droplets with the BS
attached) is probably wrong since most of the RL is attached on
their cell surface and dissolved in the culture broth, while a very
small amount is used for emulsification (0.01–0.1 mg/l) of the
hydrocarbons.

Conclusion

The BS production capability (RLs and SLs) by marine
hydrocarbon degraders isolated from Elefsina bay in Eastern
Mediterranean Sea was investigated. The best-isolated micro-
bial consortia based on the drop collapse test exhibited a
relatively low productivity with average yields in the order
of 20 mg/l. In addition isolated strains, consisting mainly of
Alcanivorax species, performed significantly better in RLs pro-
duction (50 ± 20 mg/l) in the presence of CO as substrate.
A particular strain isolated from sediments, Paracoccus mar-
cusii, may be an optimal choice for bioremediation purposes
as it produces BSs, degrades hydrocarbons (especially PAHs)
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and remains trapped in the hydrocarbon phase not suffering
from potential dilution effects by sea currents. The HOF of CO
emerged as a promising substrate for BS production by marine
BS producers as it can be easily removed from the bioreactor
and the BS extract has no impurities by the substrate. Thus,
the need for additional column chromatographic separation is
bypassed.
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