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Bacterial multidrug exporters are intrinsic membrane transporters that act as cellular

self-defense mechanism. The most notable characteristics of multidrug exporters is that

they export a wide range of drugs and toxic compounds. The overexpression of these

exporters causes multidrug resistance. Multidrug-resistant pathogens have become a

serious problem in modern chemotherapy. Over the past decade, investigations into the

structure of bacterial multidrug exporters have revealed the multidrug recognition and

export mechanisms. In this review, we primarily discuss RND-type multidrug exporters

particularly AcrAB-TolC, major drug exporter in Gram-negative bacteria. RND-type

drug exporters are tripartite complexes comprising a cell membrane transporter, an

outer membrane channel and an adaptor protein. Cell membrane transporters and

outer membrane channels are homo-trimers; however, there is no consensus on the

number of adaptor proteins in these tripartite complexes. The three monomers of a

cell membrane transporter have varying conformations (access, binding, and extrusion)

during transport. Drugs are exported following an ordered conformational change in

these three monomers, through a functional rotation mechanism coupled with the

proton relay cycle in ion pairs, which is driven by proton translocation. Multidrug

recognition is based on a multisite drug-binding mechanism, in which two voluminous

multidrug-binding pockets in cell membrane exporters recognize a wide range of

substrates as a result of permutations at numerous binding sites that are specific for the

partial structures of substrate molecules. The voluminous multidrug-binding pocket may

have numerous binding sites even for a single substrate, suggesting that substrates may

move between binding sites during transport, an idea named as multisite-drug-oscillation

hypothesis. This hypothesis is consistent with the apparently broad substrate specificity

of cell membrane exporters and their highly efficient ejection of drugs from the cell.

Substrates are transported through dual multidrug-binding pockets via the peristaltic

motion of the substrate translocation channel. Although there are no clinically available

inhibitors of bacterial multidrug exporters, efforts to develop inhibitors based on structural

information are underway.
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Multidrug Resistance and the Emergence of RND Efflux Pumps

Multidrug resistance of pathogens and cancer cells are serious problem of modern chemotherapy.
Multidrug resistance generally reflects the accumulation of many drug resistance factors, e.g.,
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enzymes detoxifying antibiotics, mutations in drug targets and
permeability barriers. Multidrug exporters are active perme-
ability barriers and, among resistance factors, only multidrug
exporters alone can cause multidrug resistance without addi-
tional factors (Blair et al., 2014). In many cases, high-level mul-
tidrug resistance in pathogens is caused by a synergetic effect
of multidrug exporters and the other drug resistance factors
(Bhardwaj and Mohanty, 2012).

There are three categories of multidrug efflux transporters
(Figure 1), that is, transporters driven by ATP-hydrolysis (ABC
type), drug/proton or cation antiporters (MFS, MATE, and SMR-
types) and tripartite transporters (RND-type), which is also
drug/proton antiporter but driven by remote-conformational
coupling as mentioned below. ABC (ATP-Binding Cassette)-type
exporters including P-glycoprotein was first identified as a mul-
tidrug resistance factor in cancer cells (Chen et al., 1986; Ger-
lach et al., 1986). There are several ABC-type exporters also in
bacteria and reported to contribute multidrug resistance mainly
in Gram-positive organisms (Luberski et al., 2007). However,
the majority of multidrug exporters in bacteria use ion motive
force. MFS (Major Facilitator Superfamily)-type drug/proton
antiporters (Marger and Saier, 1993) are mainly contribute to
multidrug resistance of Gram-positive bacteria. SMR (Small
Multidrug Resistance)-type transporters also contribute drug
resistance to lipophilic drugs (Grinius and Goldberg, 1994;
Paulsen et al., 1996). MATE (Multidrug And Toxic compound
Extrusion)-type drug/cation antiporters including NorM con-
tributes multidrug resistance especially in quinolone resistance
in some Gram-negative pathogens (Kuroda and Tsuchiya, 2009).
MATE-type transporters has also been known in mammalian
cells as multidrug and toxin extrusion family (Motohashi and
Inui, 2013). However, the major multidrug efflux transporters in
Gram-negative bacteria are RND-type exporters (Li and Nikaido,
2015). RND-type exporters have most broad substrate specificity
among bacterial multidrug exporters (Elkins and Nikaido, 2002)
and the structural studies have been first advanced (Murakami
et al., 2002). This review focuses the structural mechanism of
RND-type multidrug export.

Gram-negative bacteria tend to exhibit higher tolerance
against antibiotics than Gram-positive organisms. The reason
for this antibiotic tolerance in Gram-negative bacteria was pre-
viously thought to be due to the barrier formed by their outer
membranes (Nikaido, 1988). Pseudomonas aeruginosa exhibits
the highest level of antibiotic tolerance among Gram-negative
organisms. Thus, expanding the antibacterial spectrum to tar-
get P. aeruginosa was one of the most important early antibi-
otic developments. In the 1970’s, porin proteins were identified
as molecular sieves by which hydrophilic compounds can pen-
etrate outer membranes (Nikaido and Vaara, 1983). The iden-
tification of carbapenem antibiotics, which are efficient against
P. aeruginosa, represented a major milestone in antibiotic devel-
opment (Slack, 1981). In the 1980’s, there was controversy regard-
ing the efficacy and pore size of the porins of P. aeruginosa
(Hancock et al., 1979). This controversy seemed to be settled at
the end of the 1980’s. The pore sizes of the porins of P. aerug-
inosa were shown to be smaller than those of other Gram-
negative bacteria, which are only of a sufficient size to allow the

passage of monosaccharides (Yoshihara and Nakae, 1989); one
of these porin proteins is specifically permeable to imipenem
in molecular size exceeding the upper limit of the molecular
sieve (Trias et al., 1989). However, shortly following this con-
troversy, the drug efflux transporter MexAB was identified as a
multidrug resistance factor in P. aeruginosa (Poole et al., 1993; Li
et al., 1994a,b). Mutants that are deficient in these efflux trans-
porters show hypersensitivity to multiple drugs, indicating that
the intrinsic drug resistance of P. aeruginosa primarily reflects the
constitutive expression of intrinsic efflux pumps (Nikaido, 1994).
Small pore size of porin proteins also contributes to the drug
tolerance of P. aeruginosa but the importance is less than efflux
transporters (Li et al., 1994a). MexAB functions as a tripartite
complex comprising the inner membrane transporter MexB, the
outer membrane channel OprM and the adaptor protein MexA.
Subsequently, in E. coli, AcrAB-TolC was identified as similar
multidrug efflux transporter (Okusu et al., 1996) and homologs
of AcrAB-TolC are found to be distributed throughout most
Gram-negative bacteria (Paulsen et al., 2000). These tripartite
exporters were named the RND (resistance/nodulation/division)
family (Tseng et al., 1999). Several RND transporters have been
identified in P. aeruginosa including MexAB-OprM (Li et al.,
1995), MexXY-OprM (Mine et al., 1999), MexEF-OprN (Kohler
et al., 1997), and MexCD-OprJ (Poole et al., 1996). In Escherichia
coli, five RND-type drug efflux transporters have been iden-
tified (Nishino and Yamaguchi, 2001) including AcrAB-TolC
and AcrAD-TolC. All of these transporters in E. coli couple
with TolC. TolC is a multifunctional outer membrane chan-
nel (Buchanan, 2001) that not only couples with RND-type
exporters but also with other types of transporters including
ABC-type exporters (MacAB) (Kobayashi et al., 2001) and MFS-
type exporters (EmrAB and EmrKY) (Furukawa et al., 1993; Kato
et al., 2000) and the enterotoxin secretion system (Forman et al.,
1995).

Clinical isolates showing multidrug resistance due to the
overexpression of intrinsic multidrug exporter genes have been
identified (Nikaido, 1998). RND-type multidrug exporters con-
tribute to the multidrug resistance observed in most multidrug-
resistant Gram-negative pathogens (Nikaido and Pages, 2012;
Blair et al., 2014) and the inhibition of multidrug exporters
restores the antibacterial activity of known antibiotics against
multidrug pathogens (Pages and Amaral, 2009). Although a
number of inhibitors of bacterial multidrug exporters have been
developed, there has been no clinically available inhibitor until
now (Bhardwaj and Mohanty, 2012). Although the physiologi-
cal roles and intrinsic substrates of various types of RND-type
multidrug exporters are not completely understood, these pro-
teins have some physiological functions, beyond drug resistance
2011 (Piddock, 2006; Alvarez-Ortega et al., 2013). These proteins
export intrinsic intracellular toxic metabolites, surround toxic
compounds (Thanassi et al., 1997) and microbial toxins (For-
man et al., 1995), and play a role in quorum sensing (Minagawa
et al., 2012) and bacterial virulence (Nishino et al., 2006). Thus,
intrinsic RND-typemultidrug exporters likely participate in basic
cellular self-defense mechanisms.

Most notably, these proteins demonstrate an extraordinarily
wide substrate specificity (Elkins and Nikaido, 2002). The
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FIGURE 1 | Classification of multidrug efflux transporters.

compounds exported through a typical RND-type exporter
includes antibiotics, detergents, antiseptics and toxic dyes as
well as anionic, cationic, zwitter ionic, and neutral compounds
(Figure 2). These compounds also include both aromatic and
aliphatic compounds. Moreover, there is no common chem-
ical characteristic of these molecules, with the exception of
amphiphilic, a characteristics of drugs and cellular toxins that
assists them in moving through fluid to the target and in invad-
ing cells through the lipid bilayer of the cell membrane. How-
ever, multidrug exporters are not non-specific transporters. These
proteins do not export nutrients or non-toxic metabolites such
as glucose or amino acids. Additionally, these proteins trans-
port a defined spectrum of drugs: e.g., AcrB in E. coli and
MexB in P. aeruginosa do not export aminoglycoside antibi-
otics such as kanamycin and streptomycin, whereas AcrD in
E. coli and MexY in P. aeruginosa do (Masuda et al., 2000;
Elkins and Nikaido, 2002). Various inhibitors are also specific
for certain multidrug exporters: e.g., pyridopyrimidine deriva-
tives are potent inhibitors of AcrB and MexB but not MexY
(Yoshida et al., 2007). Therefore, multidrug exporters recognize
their substrates and are inhibited through specific mechanisms.
At the start of the twenty-first century, crystal structure deter-
minations of multidrug exporters first in RND-type (Murakami
et al., 2002) followed by ABC-type (Dawson and Locher, 2006)
revealed mechanisms of multidrug recognition and the active
export of multidrug efflux transporters. In this review, we sum-
marize the structural basis of multidrug recognition and active
export, primarily focusing on AcrB and MexB, the most-studied
RND-typemultidrug exporters.We also discuss future avenues of

research into the structural and mechanical aspects of multidrug
exporters.

X-ray Crystallographic Structure of
RND-type Multidrug Exporter

The first X-ray crystallographic structure of a bacterial multidrug
exporter AcrB was reported by Murakami et al. (2002), show-
ing a 3.5 Å resolution drug-free homo trimeric structure with
a three-fold symmetry axis (R32 crystal). The monomer struc-
ture is an impressive shape like a sea horse (Figure 3A), having a
long hairpin structure. The structure is divided into two parts: the
transmembrane domain of approximately 50 Å in thickness and
the headpiece protrudes approximately 70 Å into the periplasm.
The head piece consists of two domains: the porter (or pore)
domain and the TolC-docking domain. The topology diagram
of AcrB monomer (Figure 3B) has a pseudo-two-fold symmetry.
Each of the N- and C-terminal halves comprises six transmem-
brane helices, two subdomains (PN1 and PN2 or PC1 and PC2)
with a β-α-βmotif in the porter domain and one subdomain (DN
or DC) with a short vertical hairpin protruding upward. From the
DN subdomain, a long hairpin structure protrudes toward the
DC domain of the next monomer.

Three monomers of AcrB are tightly interacted to form a jelly-
fish or mushroom-like structure (Figure 4A). Long hairpins are
deeply inserted into the next monomers to form the shape that is
likened to the figure called “it takes three to tango” (Lomovslaya
et al., 2002). Three PN1 subdomains form a core for the head-
piece and the three central α-helices form a pore-like structure at
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FIGURE 2 | Examples of the substrates and non-substrates of AcrAB-TolC system in E. coli. Black and red frames indicate the substrates and

non-substrates of this exporter.

the center of the trimer (Figure 4B). The funnel-like 30 Å open-
ing at the top of the TolC-docking domain is the same size as
the bottom of the TolC channel (Koronakis et al., 2000). In the
transmembrane domain, there is a central hole of 30 Å diameter
surrounded by three 12-α-helix bundles (Figure 4C). The central
hole is not a water-filled channel: it is filled with a phospho-
lipid bilayer (Nakashima et al., 2013). There is a central cavity
on the putative surface of the phospholipid bilayer in the cen-
tral hole and below the closed pore-like structure (Figure 5A).
The central cavity comprises three windows, named vestibules,
to the surface of the inner membrane (Figures 5, 6). Initially, this
central cavity was identified as a substrate binding site, at which
the substrates are taken up through vestibules from the outer
leaflet of the phospholipid bilayer membrane, bound to the cen-
tral cavity, transferred through the central pore when it is open,
and ultimately extruded from the funnel-like exit at the top of
the AcrB trimer into the TolC channel (Murakami et al., 2002).
Although the substrate-binding structures of the three-fold sym-
metry crystals in the central cavity were reported in 2003 (Yu
et al., 2003), subsequent studies have not been able to identify
significant electron densities of bound drugs in the central cavity

[Pos et al. (2004); Murakami et al. (unpublished observation)] of
the symmetric crystal.

Functional-Rotation Mechanism of Drug
Efflux

The physiologically-relevant drug-binding structures of AcrBwas
determined using C2 crystals, which have no three-fold symme-
try (Murakami et al., 2006) (see Figure 4, which is the overlay
structure of the four drug-bound AcrB structures later deter-
mined). Initially, the bound drug was identified using a bromine
derivative of minocycline. Unlike symmetric crystals that show
three or more bound substrates (Yu et al., 2003, 2005; Drew et al.,
2008; Hung et al., 2013), only one drug molecule was bound to
the AcrB trimer. The three monomers have different conforma-
tions from each other, representing three major steps of drug
export, that is, access, binding, and extrusion. The minocycline or
doxorubicin molecule bound not to the central cavity (Figure 4)
but in the phenylalanine-rich pocket at the center of the porter
domain between PC1 and PN2 of binding monomer (Figure 4B).
An intramolecular water-accessible channel continued from
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FIGURE 3 | Structure and its topology diagram of AcrB

monomer. (A) The ribbon model of AcrB monomer in

three-fold-symmetric R32 crystal. (B) The topology diagram of AcrB.

The hook-like bent characteristic in the C-terminal half was later

identified as switching loop (Eicher et al., 2012) [or Phe617-loop

(Nakashima et al., 2011)].

entrances to the minocycline binding pocket (Figure 5). One
entrance (entrance 1 in Figure 5) opens to the outer layer of
the inner membrane. This inner-membrane entrance is in the
vicinity of the “vestibule” that was previously identified as a drug
entrance to the central cavity, but the inner-membrane entrance
is distinct from this vestibule (Figure 6A). The inner-membrane
entrance shows opening and closing movements during drug
transport (Figures 6B,C): however, the previously identified
“vestibule” is constitutively open. The channel is interrupted at
the distal end of the drug-binding pocket by steric hindrance via
a central α-helix of the extrusion monomer (Figure 5B), which
is inclined to block the exit from the drug-binding pocket of the
binding monomer. Thus, the binding monomer is in an inside-
open form. Notably, the closed-exit conformation of the binding
monomer reflects the cooperation of the next monomer.

The conformation of the monomer next to the binding
monomer showed an outside open form. That is, the inner
membrane entrance (entrance 1) is closed because of the elon-
gation of N-terminus of TM8 (Figure 6C). The periplasmic
entrance (entrance 2) is also closed because the PC2 subdomain
swings toward the PC1 subdomain and the outside cleft is closed
(Figure 4B). In contrast, the exit is open because the central α-
helix is inclined at 15◦ away from the exit toward the binding
monomer and because the PN1 subdomain swings away from
the PN2 subdomain (Figures 3B, 4B). Additionally, the bind-
ing pocket shrinks because PC1 swings toward PN2. Thus, the
bound substrate is squeezed from the binding pocket into the
central funnel. This outside-open monomer was identified as the
extrusionmonomer.

The third monomer also has an inside open conformation
similar to the binding monomer with the exception that the bind-
ing pocket is not expanded. Thus, the third monomer is referred
to as the access monomer. Drugs are transported through con-
certed sequential conformational changes: access, binding and
extrusion (Figures 3B, 4B). The conformational changes of the
monomers are inter-dependent, and no two monomers have the
same conformation at the same time. This process is referred
to as a functional-rotation mechanism (Murakami et al., 2006)
(Figure 8).

Symmetric forms of AcrB trimers likely reflect “resting forms”;
the conformations of the three symmetric monomers are simi-
lar to the access monomer of the asymmetric trimers. Regarding
the drug-binding symmetric crystal, the bound drugs may not
reflect the physiological function. Most likely, the resting form
without a substrate is symmetric, and drug binding triggers the
conformation change to the asymmetric, functional form. The
crystallized asymmetric structure of MexB without drugs con-
tained bound detergent in the drug-binding pocket (Sennhauser
et al., 2009). The drug-free asymmetric structure of AcrB may
contain a detergent or an intrinsic substrate that has not yet been
identified. Most of substrates including drugs, that bind to the
AcrB crystal, are difficult to identify because these substrates may
be disordered.

Seeger et al. (2006) independently reported the asymmet-
ric structure of drug-free AcrB and Sennhauser et al. (2007)
reported the structure of DARPin-bound AcrB. Asymmetric
structures have also been reported for MexB (Sennhauser et al.,
2009). Functional-rotation mechanism is also supported by the
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FIGURE 4 | Crystal structure of drug-binding AcrB trimers in which

bound minocycline, doxorubicin, rifampicin and erythromycin overlap

in the asymmetric C2 crystal structure (Murakami et al., 2006;

Nakashima et al., 2011). Only one drug molecule can bind to the AcrB

trimer at a time. The overall structure of the drug-free symmetric AcrB trimer

in the R32 crystal is similar to the structure shown in this figure. The

monomeric conformation of the symmetric structure is similar to the access

monomer in the asymmetric crystal. The protein structures are shown as

ribbon models. Green, blue and pink indicate access, binding and extrusion

monomers, respectively. The bound drugs are depicted as space-filling

models and stick models (inserts). Cyan, orange, magenta, and yellow

indicate minocycline (MINO), doxorubicin (DOX), rifampicin (RIF), and

erythromycin (EM), respectively. (A) Side view. (B) Horizontal cut view of the

porter domain with magnified drug binding sites (insert). PN1, PN2, PC1, and

PC2 are subdomains of the porter domain showing pseudo-symmetric β-α-β

motifs. The three central α-helices (one for each monomer) are highlighted in

dark colors. (C) Horizontal cut view of the transmembrane region of the

asymmetric AcrB trimer. Asp407, 408, and Lys940, which form ion pairs in

the transmembrane core region, are depicted as ball and stick models. The

insert shows the electron density observed in the transmembrane hole at the

center of the MexB transmembrane trimers, indicating the hole is filled with a

phospholipid bilayer (Nakashima et al., 2013).

experiments using covalently-linked AcrB trimer (Takatsuka and
Nikaido, 2009) and the experiments using engineered disulfide
bonds (Seeger et al., 2008). The functional-rotation mechanism
including two or more binding monomers were also proposed
(Pos, 2009; Ruggerone et al., 2013) mainly due to explain bi-site
activation. However, bi-site activation can be explained by peri-
staltic mechanism via two drug binding pockets mentioned in
the next section. Symmetric drug-binding structures, which have
been reported so far (Yu et al., 2003, 2005; Drew et al., 2008; Hung
et al., 2013), are completely different from the binding monomer
of functional-rotation cycle, and no pseudo-two-fold symmetric
crystal structure comprising two bindingmonomers or two access
monomers has been identified. If two of the three monomers
have the same conformation at any given moment, then the
structural inter-dependence between these monomers will be
loose, and one monomer can independently transport drugs.
Takatsuka and Nikaido (2009) verified the strict functional-
rotation mechanism using covalently linked AcrB trimers that
function in intact cells. When one of the three monomer units
in the covalently-linked trimers was inactivated through muta-
tions in the proton relay network in the transmembrane region
or through disulfide cross-linking of the external cleft in the
periplasmic domain, the entire trimeric complex was inactivated.
These results clearly indicate that each monomer does not work
independently. We believe that each monomer works strictly
in concert with the other monomers and all monomers have

different conformations in each other in anymoment at the active
state until pseudo-two-fold symmetric structure of AcrB will be
identified.

Multi-Pocket Multisite Drug Binding with
Multiple-Entrances and the Peristaltic
Mechanism of Drug Efflux

Following minocycline and doxorubicin-binding structures,
the drug binding structures of AcrB bound to the high
molecular mass drugs (HMMD) rifampicin and erythromycin
were reported (Nakashima et al., 2011). Similar to the low
molecular mass drugs (LMMD) minocycline and doxorubicin,
one molecule of rifampicin or erythromycin bound to one
AcrB trimer. However, rifampicin and erythromycin bind-
ing monomer was not a binding monomer but an access
monomer (Figures 4A,B). The rifampicin- and erythromycin-
binding pocket is located between PC1 and PC2 in the sub-
strate translocation channel between the entrance(s) and the
LMMD binding pocket (Figure 5). Thus, the HMMD-binding
pocket is referred to as a proximal pocket, and the LMMD-
binding pocket is referred to as a distal pocket. Shortly after the
report of proximal drug binding (Nakashima et al., 2011; Eicher
et al., 2012) independently reported the presence of the prox-
imal pocket in the access monomer in which the doxorubicin
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FIGURE 5 | Intramolecular water-accessible channels in the AcrB

trimer (Nakashima et al., 2011). The channels are shown as colored solid

surfaces, as calculated using the CAVER program (Medek et al., 2007). The

proximal pocket, distal pocket, entrances and funnel-like exit are depicted in

green, pink, gray, and yellow, respectively. The channel apertures at the

entrance and exit are depicted in black. (1) Inner membrane entrance

(Murakami et al., 2006), (2) periplasmic entrance (Seeger et al., 2006), (3)

central cavity entrance (Nakashima et al., 2011). (A) Side view. The channels in

the accessmonomer behind the figure have been omitted. The central cavity

and central hole are depicted as dotted lines. (B) Horizontal cut view of the

porter domain. The yellow circle indicates the closed pore-like structure

comprising three central α-helices (depicted as a ribbon model with dense

color), which was postulated to be a part of the putative substrate translocation

channel during the early stages, however, it was not the case. The central

α-helix of extrusion monomer is inclined 15◦ toward binding monomer more

than the other two α-helices and, as a result, blocks the exit from the drug

binding site. Bound minocycline (cyan), doxorubicin (orange), rifampicin

(magenta), and erythromycin (yellow) overlap in the space-filling model.

dimer is bound. The proximal pocket in the access monomer is
voluminous permitting typical multisite-binding of the HMMDs
rifampicin and erythromycin (Figure 4B insert). However, in
access monomer, the distal pocket is smaller than the proximal
pocket. In contrast, in the binding monomer, the distal pocket
expands and the proximal pocket shrinks. Both pockets are sepa-
rated by a switch loop (Figure 7). The path under the switch loop
is too narrow for the HMMDs to move into the distal pocket.
The switch loop swings during the conformational change from
the access stage to the binding stage. HMMDs could be trans-
ferred from the proximal pocket to the distal pocket through the
swinging of the switch loop and proximal pocket shrinking, fol-
lowed by distal pocket expansion during the transition from the
access to the binding stages (Nakashima et al., 2011). The impor-
tance of switch loop flexibility in export is supported by the fact
that when site-directed mutagenesis fixes the loop through the
introduction of double proline residues into the loop (Nakashima
et al., 2011) or a G616N mutation (Cha et al., 2014), the resultant
mutants have completely lost or significantly decreased the drug
export activity. The crystal structure revealed that a double pro-
line mutation fixed the loop conformation at a state between the
access and binding stages (Nakashima et al., 2011).

The roles of both pockets have been demonstrated through
using site-directed mutagenesis. The resistance of AcrB-
expressing E. coli cells to erythromycin is not only completely
lost after site-directed mutagenesis in the proximal pocket but

also reduced through mutations in the distal pocket. Doxoru-
bicin export activity is lost through mutations in the distal
pocket but remains unaffected by proximal mutations. Doxoru-
bicin export is competitively blocked not only by the distal-
binding drug minocycline but also by the proximal-binding
drugs erythromycin and rifampicin (Nakashima et al., 2011).
These observations indicated that both HMMDs and LMMDs
are transported through both proximal and distal pockets during
export.

The double drug-binding AcrB trimer structure (in which
rifampicin binds in the proximal pocket of the access monomer
and minocycline binds in the distal pocket of the binding
monomer) was determined. No drugs were detected in the dis-
tal pocket of the access monomer or the proximal pocket of the
binding monomer, indicating that the proximal pocket and distal
pocket are only activated during the access stage and the bind-
ing stage, respectively (Nakashima et al., 2011). Now the story
of drug export is as follows: drugs initially enter the proximal
pocket at the access stage. At this stage, HMMDs are bound
and recognized in the expanded proximal pocket, but LMMDs
are hardly or only weakly bound. Subsequently, the drugs are
transferred to the distal pocket through the swinging of a switch
loop and the relative motion of the subdomains, PC2, PC1,
and PN2, resulting in a reduction in the volume of the prox-
imal pocket and the expansion of the distal pocket during the
transition from the access stage to the binding stage. LMMDs
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FIGURE 6 | Surface model of the AcrB trimer and magnified view of

the inner membrane entrance. (A) Side view of the AcrB trimer surface

model. Access, binding, and extrusion monomers are depicted in green, blue

and pink, respectively. The entrances are shown as circles. Minocycline

(cyan) and rifampicin (magenta) are illustrated in space-filing models in the

putative drug export route. The “vestibule” indicates window of the central

cavity. (B) Open inner membrane entrance (entrance 1) of the binding

monomer. The untied random coil upon N-terminal of TM8 is depicted in red.

(C) The closed inner membrane entrance (entrance 1) of the extrusion

monomer. The extended α-helix at the N-terminus of TM8 is depicted in red.

are bound and recognized in the distal pocket: HMMDs are
not tightly bound but are instead occluded in the distal pocket
because the path under the switch loop is too narrow to permit
the return of HMMDs to the proximal pocket. Ultimately, the
drugs are squeezed out through the TolC channel via a funnel-
like opening as a result of conformational changes at the extrusion
stage. In other words, drugs are moved through the intramolec-
ular channels by a peristaltic motion of the two tandem
drug-binding pockets (Figure 8). Multi-pockets having differ-
ent substrate-binding specificity contribute to expand substrate
spectrum.

An AcrB trimer with one drug bound to the access monomer
and a second drug bound to the binding monomer may form the
structural basis for the reported allosteric bi-site activation of the
AcrAB-TolC pump (Seeger et al., 2006; Pos, 2009). Notably, the
dual drug-binding structure does not indicate the presence of two
binding monomers in one trimer. The two drug binding struc-
tures differ: one is an access monomer and the other is a binding
monomer. There is no structural evidence for the presence of two
or three binding monomers in one trimer.

Sennhauser et al. (2007) reported two possible substrate
entrances: the inner-membrane entrance (entrance 1 in Figure 5)

and the periplasmic entrance (entrance 2 in Figure 5). The inner-
membrane entrance is the entrance described by Murakami et al.
(2006). The periplasmic entrance is open to the periplasm at
the bottom of the cleft between PC1 and PC2. Site-directed
mutagenesis revealed that both entrances perform drug export
(Husain et al., 2011; Nakashima et al., 2011). The third pos-
sible entrance (entrance 3 in Figure 5) from the central cav-
ity is also identified (Nakashima et al., 2011): however, there is
no evidence that the entrance 3 has any functions. The chan-
nels from all three putative drug entrances are merged at the
proximal pocket. Molecular simulation studies showed that the
inner-membrane entrance and the periplasmic entrance play a
role in the export of hydrophobic compounds and hydrophilic
compounds, respectively (Yao et al., 2013). Thus, it is reasonable
to assume that the outer-layer entrance takes up hydrophobic
drugs with relatively low-molecular-mass from the outer layer
of the inner membrane (thereby acting as a membrane “vac-
uum cleaner” mechanism) and that the periplasmic entrance
takes up hydrophilic drugs with relatively large molecular mass
from the periplasm (acting as a periport). Multi-entrances con-
tribute to expand the physico-chemical characteristics of the
substrates.
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FIGURE 7 | Cut view of the transmembrane channels of the binding monomer (A) (blue) with bound doxorubicin (orange) and that of the access

monomer (B) (green) with bound rifampicin (magenta). The switch loop containing Phe617 at the tip is depicted using a red ribbon model.

FIGURE 8 | Functional-rotation mechanism of drug export mediated

through the AcrAB-TolC tripartite complex. The upper and lower panels

show side and horizontal views, respectively. The green, blue and red colors

indicate the access, binding and extrusion stages of AcrB, respectively. The

yellow and pale blue colors indicate AcrA and TolC, respectively. The jagged

circles indicate substrates.

Structural Basis of Multidrug Recognition

The induced-fit mechanism is one potential mechanism for the
enzymatic recognition ofmultiple substrates with different chem-
ical structures (Vogt et al., 2014). In this mechanism, the size
of the substrate binding site and/or the arrangement of amino
acid side chains in the binding site changes with the chemi-
cal structure of the substrates. In AcrB, the doxorubicin and
minocycline binding structures of the distal pocket of the binding

monomer, and the rifampicin and erythromycin binding struc-
tures of the proximal pocket of the access monomer, are not sig-
nificantly different from each other with the exception of some
minor changes in the orientation of the side chains directly inter-
acting with the bound drugs. Thus, although the protein struc-
tures of AcrB, including the drug translocation channel, changes
considerably during the functional-rotation cycle, the induced-fit
mechanism is not the primary mechanism of multidrug
recognition.
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Multisite drug binding is another potential mechanism of
multidrug recognition as has been described for the multidrug-
binding transcription regulator QacR (Schumacher et al., 2001).
In this mechanism, as mentioned above, the substrate-binding
pocket is voluminous, permitting the presence of numer-
ous binding sites for various substrates. The pocket possesses
numerous binding sites that correspond to the partial struc-
tures of various compounds. The substrates are recognized
through permutations of these binding sites. Although minocy-
cline and doxorubicin have a common tetracyclic structure, the
binding site of doxorubicin only partially overlaps with that
of minocycline in the distal pocket (Figure 4B insert). Dox-
orubicin and minocycline interact with almost different sets
of amino acid side chains. Rifampicin and erythromycin show
the similar multisite binding in the proximal pocket (Figure 4B
insert).

Recent molecular dynamics simulations have revealed that a
number of structurally-distinct drugs bind to a number of sites
that may slightly or substantially differ in the voluminous bind-
ing pocket of AcrB (Takatsuka et al., 2010; Vargiu and Nikaido,
2012). Additionally, the presence of two voluminous multisite
drug-binding pockets, the proximal and distal pockets, with dif-
ferent substrate specificities greatly contributes to expanding the
specificity. Multiple entrances also expand the drug specificity by
facilitating drug uptake from two physically different spaces (the
outer leaflet of the inner membrane and the periplasm).

Identifying bound drugs in the asymmetric AcrB struc-
ture is difficult for most substrates and inhibitors. A drug
may not tightly bind to specific sites. However, multidrug
exporters exhibit strikingly high efficiency at rejecting substrates.
When multidrug exporters are sufficiently expressed, most drug
molecules are rejected prior to entering cytoplasm. Experiments
using fluorescent dye (Figure 9) have shown the drug rejection
efficiency of multidrug exporters (Matsumoto et al., 2011). FDG
is a pre-fluorescent compound that has no fluorescence itself but
demonstrates fluorescein emission when hydrolyzed by intrinsic
β-galactosidase in E. coli. However, when FDGwas added to wild-
type E. coli cells, almost no fluorescence was observed. In acrB-
deficient E. coli cells, the entire medium was fluorescent, likely
reflecting the export of fluorescein from the cell through other
RND-type drug exporters that do not completely reject FDG.
When tolC was deleted, all RND-type exporters became inactive,
and the cell body showed strong fluorescence because of fluores-
cein accumulation in the cell. However, how is this efficient rejec-
tion consistent with the apparently weak binding affinity of drugs
to multidrug exporters, as predicted in crystallographic studies?

The multisite-drug-oscillation hypothesis may present a pos-
sible mechanism that explains the compatibility of high export
efficiency with the apparently low affinity of substrate binding
to specific sites (Figure 10). A recent molecular simulation study
(Takatsuka et al., 2010) showed that the voluminous distal bind-
ing pocket of AcrB has binding sites for many drugs. These drugs
have been classified as groove, cave and mixed binders. Interest-
ingly, there are a number of possible binding sites for a single
drug: however, a simulation study indicated that most of the pos-
sible binding sites were not equal to the actual site in the crystal.
The results of this simulation study suggest that drug molecules

oscillate in this voluminous binding pocket. In this mechanism,
when the affinity of binding to each site is low, the total binding
efficiency in the pocket may be high. The positions of the sub-
strates that are “oscillating” in the binding pocket are difficult to
detect in the crystal structure. Eicher et al. (2012) reported a dox-
orubicin dimer bound to the proximal pocket of AcrB. The low
electron density of proximal doxorubicin molecules might indi-
cate that doxorubicin molecules are not be dimers but instead a
mixture of two different doxorubicin-binding AcrB trimers, i.e.,
each molecule binds at a different site in the proximal pocket.
This result may indicate that the doxorubicin molecule oscillates
between two binding sites in the proximal pocket and that the
average electron density could be apparent in the crystal struc-
ture. Substrates tightly bound to one site can be detected, whereas
substrates oscillating between multiple sites are rarely detectable
in the crystal structure. The apparently fuzzy substrate recogni-
tion by AcrB may reflect such a multisite-drug-oscillation mech-
anism. HMMDs may be occluded without specific binding in the
distal pocket (Figure 10B).

Rauch proposed the concept of “oscillating drug transporters”
in order to explain multi-specificity of P-glycoprotein (Rauch,
2011). However, this “oscillating transporters” model is different
from our “drug oscillation” hypothesis. “Oscillating transporters”
means that transporter proteins oscillate between open/drug-
accepting and closed/drug-expelling conformations in a mem-
brane. Oscillating transporters stochastically catch substrates
located in the membrane at the open form and then expels
with the protein conformation change by oscillation. Specific
drug binding sites are not assumed in oscillating transporter
model. In contrast, our “multisite drug-oscillation” hypothesis
does not mean transporter protein oscillation but means drug
molecule oscillation between numerous drug-binding sites in the
voluminous drug binding pockets. Both models can contribute
multi-specificity, however, the selectivity of the substrates in the
oscillating transporter model depends on the substrate solubility
into the membrane. On the other hand, in the drug oscillation
model, substrate selectivity depends on the affinity of each drug
binding site and this model can explain the difference in the drug
specificity between exporters, e. g., aminoglycoside antibiotics are
not exported by AcrAB-TolC andMexAB-OprM systems but effi-
ciently exported by MexXY system (Masuda et al., 2000; Elkins
and Nikaido, 2002; Lau et al., 2014).

Remote-Conformational Energy Coupling

Drug efflux by RND-type exporters is driven by the proton
motive force (Thanassi et al., 1997; Li et al., 1998; Zgruskaya
and Nikaido, 1999). Four essential charged residues, Asp407,
Asp408, Lys940 (Lys939 in MexB), and Arg971, in addition to
Thr978, are thought to form a transmembrane proton-relay net-
work, based on findings from site-directed mutagenesis (Guan
and Nakae, 2001; Su et al., 2006; Takatsuka and Nikaido, 2006).
Asp407 and Asp408 in TM4 and Lys940 in TM10 form ion pairs
in the transmembrane core (Figure 4C) (Murakami et al., 2002,
2006). TM4 and TM10 are located at the center of a 12 α-helix
bundle. Arg971 is in the vicinity of the cytoplasmic surface of
themembrane (Figure 11). Because this putative transmembrane
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FIGURE 9 | Fluorescence assay of drug ejection from the cell by

multidrug exporters (Matsumoto et al., 2011). (A) Microfluidics device

used in this experiment. E. coli cells and the pre-fluorescent dye FDG were

mixed and injected to the wells of the device. After incubation, microfluidics

tubes were observed by a fluorescence microscope. Upon entering the

cytoplasm, FDG is hydrolyzed by intrinsic β-galactosidase and fluorescein is

produced. When fluorescein accumulates in the cytoplasm, the cells

fluoresce. When fluorescein is exported from the cytoplasm, the medium

fluoresces. (B) Fluorescence of the microfluidics tubes. Wild: wild-type E. coli

MG1655 cells, 1acrB: acrB-deficient cells, 1tolC: tolC-deficient cells.

1acrB/p, 1acrB/pXY, 1acrB/pAB indicate acrB-deficient cells transformed

with vector (pMMB67HE) and the plasmids recombined with P. aeruginosa

efflux pump genes mexXY-oprM and mexAB-oprM, respectively (Matsumoto

et al., 2011).

FIGURE 10 | Multisite-drug-oscillation hypothesis. (A) Access stage. A

drug is oscillating between multiple drug binding sites in the proximal pocket.

(B) Binding stage. Most of LMMDs may be oscillating in the distal pocket as

in the proximal pocket but HMMDs may be just occluded in the distal pocket

without specific binding sites. Space-filling models in (A,B) show doxorubicin

(orange) and erythromycin (yellow), respectively.

proton-relay network is approximately 50 Å apart from the
drug binding pocket, the energy coupling must reflect a remote-
conformational coupling. In the asymmetric trimer, the ε-amino
group of Lys940 is placed between the carboxyl groups of Asp407
and Asp408 and forms ion pairs in the access and binding
monomers. In extrusion monomer, the side chain of Lys940
is twisted approximately 45◦ clockwise when viewed from the

periplasm, and the ion pairs are abolished (Figure 4C insert)
(Murakami et al., 2006), likely reflecting the protonation of the
carboxyl group(s). Based on this side chain twisting, a TM bun-
dle of the six N-terminal TMs (TM1-TM6) and a TM bundle
of the six C-terminal TMs (TM7-TM12) are also twisted around
each other. This bulky twisting movement in the transmembrane
region occurs in conjunction with a series of conformational
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FIGURE 11 | Conformational changes in transmembrane proton

relay residues during the functional-rotation cycle. (A,B) show cut

views of the lower transmembrane regions of the binding (blue) (A) and

extrusion (pink) (B) monomers that have been drawn with Cα traces

and the residues associated with proton relay depicted using ball and

stick model. Blue and pink surfaces indicate the molecular surface of

AcrB or the inside surface of the intramolecular void space. Gray color

indicates the back of the surface or the surface of the intramolecular

void space. (C) Magnified overlay of the vicinity of Arg971 in the

binding and extrusion monomers. These figures were drawn based on

the crystal structure of the asymmetric AcrB trimer using PyMol

(Murakami et al., 2006).

changes that result in the entrance closing, the exit opening and
the drug being squeezed from the binding pocket at the extru-
sion stage. During the transition from the extrusion stage to the
access stage, the deprotonation of carboxyl group(s) rebuilds the
tripartite ion pairs. To drive drug export via the outside posi-
tive proton motive force, protonation during the transition from
the binding to the extrusion stage should occur in the periplasm,
and deprotonation during the transition from the extrusion to
the access stage should occur in the cytoplasm. This result sug-
gests an exchange mechanism involving the proton (or water)
channel between the inward and outward configurations. Arg971
may be the “valve” that allows switching between inward and
outward proton flow. As shown in Figure 11, the side chain of
Arg971 is bent and is separated from the cytoplasmic bulk water
by Phe948 and Met970 in the binding monomer (Figure 11A).
However, this side chain faces the water-accessible void in the
center of the transmembrane region that includes the Asp-Lys
ion pairs. The void continues to a channel that is connected to
the periplasm. Thus, Arg971 can receive a proton from Asp407
and/or Asp408 in the binding monomer. In contrast, in the extru-
sion monomer, the guanidino-pentanoic moiety of Agr971 is

extended and slightly slanted downward, followed by the benzene
ring of Phe948 and the methylthio-butanoic acid side chain of
Met970 being pushed down and away fromArg971 (Figure 11C).
As a result, the guanidino group of Arg971 is exposed to cyto-
plasmic bulk water (Figure 11B). At the extrusion stage, the void
in the center of the transmembrane region is not present. Thus,
Arg971 is an inside-facing structure from which protons can be
released into the cytoplasm.

Figure 12 shows a potential scheme for proton translocation
via the proton relay network based on observations of the crys-
tal structure. Lys940 is postulated to be permanently protonated.
All of the residues are protonated at the extrusion stage: thus
the two aspartates are neutral, and the ion pair is abolished. At
this stage, the side chain of Arg971 faces the cytoplasmic bulk
water, and protons can be released into the cytoplasm via the
proton motive force. Before the access stage, there is a transient
state TE−A. The deprotonated guanidino side chain of Arg971
swings away from the bulk water toward the transmembrane
core. Next, one proton bound to Asp408 is transferred to Arg971
probably via water molecules, because Arg408 is located closer to
Arg971 than Asp407. As a result, Lys-Asp ion pairs are reformed

Frontiers in Microbiology | www.frontiersin.org 12 April 2015 | Volume 6 | Article 327

http://www.frontiersin.org/Microbiology
http://www.frontiersin.org
http://www.frontiersin.org/Microbiology/archive


Yamaguchi et al. Structural basis of RND-type multidrug exporters

FIGURE 12 | Schematic diagram of the proton relay cycle in the

transmembrane region of AcrB. (E) Extrusion stage, (TE−A ) putative

transition state from the extrusion stage to the access stage. (A) Access stage,

(B) Binding stage, (TB−E) putative transition stage from the binding stage to

the extrusion stage. The blue color indicate permanently bound protons.

at the access stage. Next, one proton bound to Asp407 is subse-
quently transferred to Asp408 during the binding stage. Subse-
quently, prior to the extrusion stage, an additional transient stage,
TB−E is needed, in which Asp407 is protonated from periplasm,
tripartite ion pairs are abolished and the side chain of Lys940
swings away from the aspartate pair. There are some transferable
proton residues, such as Asp566, Asp924, His338, and Glu346
(Eicher et al., 2014) on the periplasmic side of the transmem-
brane domain and the water accessible channel continues to the
core ion pair region (Fischer and Kandt, 2011), potentially lead-
ing to the protonation of Asp407 from periplasm. Subsequently,
the conformation returns to the extrusion stage via swinging of
the protonated Arg971 side chain. In this scheme, one proton
flows from the periplasm through Asp407, Asp408, and Arg971
to the cytoplasm in one cycle.

After determining the structures of the asymmetric AcrB
trimers and identifying the transmembrane ion pair conforma-
tion changes during drug export (Murakami et al., 2006; Seeger
et al., 2006; Sennhauser et al., 2007), molecular dynamics stud-
ies were performed to reveal the actuating mechanism of AcrB
trimers, including an examination of the proton translocation
pathway (Fischer and Kandt, 2011; Eicher et al., 2014). Water
channels connecting the periplasm to the transmembrane core
region were observed, including ion pairs involved at the binding
and access stage, but these disappeared at the extrusion stage. The
results of these analyses principally support the scheme shown in
Figure 12. Eicher et al. (2014) reported changes in the orientation
of Arg971 that may allow this amino acid to act as a valve for
proton flow. Although Eicher et al. (2014) suggested that two

protons are transported in one cycle (both Asp407 and Asp408
are deprotonated at the binding stage and protonated at the extru-
sion stage), it seems difficult to determine how Arg971 medi-
ates the proton relay from the ion pairs to the cytoplasm, when
carrying two protons in one cycle. Molecular dynamics simula-
tions have their own limitations and do not necessarily reflect the
actual phenomenon. It is likely that there is no need to change the
simple one-way model in Figure 12 until experimental data con-
flicting with the scheme are reported or until detailed structures
of the protons are determined.

Tripartite Structure of RND Exporters and
the Drug Sweeping/Extrusion
Mode-Switching Hypothesis

The crystal structure of each component of the AcrAB-TolC
complex has been determined (Koronakis et al., 2000; Murakami
et al., 2002; Mikolosko et al., 2006): however, the complete tripar-
tite crystal structure has not been solved. The crystal structure of
a bi-partite complex of the inner membrane transporter and the
adaptor protein of RND-type transporters has been solved but
only for the CusBA complex (Su et al., 2011). Active forms of
AcrB and TolC are most likely trimers (Koronakis et al., 2000;
Murakami et al., 2002). The crystal structure of the bottom of
native TolC channels is closed: however, this channel should
remain open during drug export. The open form of the mutant
TolC structure has been experimentally determined (Bavro et al.,
2008; Pei et al., 2011). The crystal structures of AcrB and TolC
suggest that both trimers directly dock to each other in a top-to-
bottom manner (Murakami et al., 2002; Symmons et al., 2009)
because the diameter and the shape of the funnel-like opening
at the top of the AcrB trimer fit directly into the bottom of
the open form of the TolC channel. This direct-docking model
is experimentally supported by in vivo cross-linking between
AcrB and TolC (Tamura et al., 2005; Weeks et al., 2010) and by
the in vitro detection of the direct AcrB-TolC interaction with-
out AcrA through surface plasmon resonance (Tikhonova et al.,
2011).

Regarding AcrA, bi-partite AcrA-AcrB, and AcrA-TolC com-
plexes are detected (Tikhonova and Zgurskaya, 2004; Touze et al.,
2004), and AcrA is thought to recruit TolC to form a tripar-
tite complex (Tikhonova et al., 2009). The AcrA structure has
four domains: the α-hairpin, lipoyl, β-barrel, andMP (membrane
proximal or β-roll) domains (Mikolosko et al., 2006; Symmons
et al., 2009). Cross-linking between AcrA and AcrB showed a
1:1 stoichiometry (Symmons et al., 2009). AcrA-TolC cross link-
ing (Lobedanz et al., 2007) and MexA-OprM (the P. aeruginosa
homolog) cross linking (Ferrandez et al., 2012) also showed a
1:1 stoichiometry. Thus, the most likely model for the tripartite
complex is that three AcrA molecules are attached to the TolC3-
AcrB3 direct docking complex (Figure 13A) (Symmons et al.,
2009). The α-hairpins of AcrA interact with TolC, and three other
domains interact with the DN and PN2 domains of AcrB.

Although this AcrB3-AcrA3-TolC3 direct docking model
seems probable on the basis of individual crystal structures and
cross-linking experiments, this model was recently challenged in
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FIGURE 13 | AcrAB-TolC tripartite complex and the drug

sweeping/extrusion mode-switching hypothesis. (A) Currently

postulated structure of the tripartite complex. The TolC (brown)

trimer is directly docked with AcrB (green) trimer and three AcrA

(pink) monomers are attached to the side. (B) Drug

sweeping/extrusion mode-switching hypothesis. (C) AcrB trimers

switching between the symmetric resting stage (left) and the

asymmetric active stage (right).

electron microscopic images of the AcrAB-TolC complex. Du
et al. (2014) obtained in vitro images of the reconstituted AcrAB-
TolC complex through cryo-electron microscopy and Kim et al.
(2015) obtained images using transmission electron microscopy.
The images showed the vertical length of the complex was 317
Å, which is significantly longer than that of the TolC-AcrB direct
docking model (approximately 270 Å), indicating that the AcrA
tube comprising the α-helical and lipoyl domains and a por-
tion of the β-barrel domains is inserted between TolC and AcrB.
The images also suggested a TolC3-AcrA6-AcrB3 stoichiometry.
This indirect docking model is inconsistent with the CusBAC
model, on the basis of the crystal structure of the CusBA bi-
partite complex (Su et al., 2011). To obtain a tripartite complex,
Du et al., used two kinds of linker proteins together: AcrA-AcrZ
linker proteins and linker proteins in which AcrA is inserted
within AcrB. The resultant complexes showed low activity in vivo.
Kim et al., examined the AcrB-AcrA-AcrA linker protein. These
linker proteins may force AcrA into the complex at a AcrA:AcrB
stoichiometry being 2:1. Currently, there is no evidence indi-
cating that such an indirect docking form is the active form
in vivo. Using cryo-electron tomography, Trepout et al. (2010)
reported an image of reconstituted MexA-OprM fitting to a 1:1
stoichiometry and suggested a two-step tripartite complex for-
mation model. The indirect-docking complex may be an inter-
mediate step in the formation of an active complex. Regarding
the stoichiometry of AcrA in the complex, we recently observed
that the AcrB-AcrA one-to-one linker protein exhibits complete

activity in the AcrA/AcrB-deficient base (unpublished observa-
tion), suggesting that a 1:1 stoichiometry of AcrA to AcrB is suf-
ficient for drug export. Controversy regarding the stoichiometry
and the construction of the tripartite complex will continue until
a high-resolution crystal structure is determined.

RND-type multidrug exporters take up substrates from the
outer layer of the inner membrane and/or periplasm from dual
drug entry points (Sennhauser et al., 2007; Husain et al., 2011;
Nakashima et al., 2011). Considering the high efficiency of drug
export and the relatively low-level intrinsic expression of RND
transporters, each transporter should rapidly sweep the inner
membrane through lateral diffusion. However, the lateral move-
ment of the trans-periplasm complex such as AcrAB-TolC is
prevented by a peptidoglycan mesh. To both rapidly sweep for
substrates and efficiently export these into the TolC channel,
it may be necessary to switch between a horizontally-diffusing
drug-sweeping mode and the TolC-fixed drug-extrusion mode.
Because TolC is a multifunctional outer membrane protein that
interacts with a number of inner membrane transporters, com-
plex formation would need to be tentative for optimal function-
ing (Zgruskaya, 2009).

In the sweeping mode, the inner membrane transporter alone
or with adaptor proteins may move laterally via Brownian
motion in the lipid bilayer region (Figure 13B). In the absence
of substrates, inner membrane transporters are likely symmet-
ric comprising the three monomers being the same access-like
structure (Figure 13C). When adaptor proteins are attached to
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FIGURE 14 | Cut view of the distal pocket of the AcrB binding

monomer in complex with the inhibitor ABI-PP (yellow). The bound

minocycline (cyan) and doxorubicin (orange) are overlaid. (A) View toward the

exit. (B) View looking down the hydrophobic trap (90◦ rotated from (A)

around the vertical axis). (C) View toward the entrance (90◦ rotated from (B)

around the vertical axis). The red color indicates Eisenberg’s hydrophobicity

scale. The blue and yellow curves indicate the drug translocation channel

and the hydrophobic trap, respectively.

the moving transporters, the α-helical moiety is likely to be bent
downward. Although the bent conformation of AcrA has not
been previously described, this bent-downward structure may be
easily accommodated by AcrA because the AcrA structure shows
high flexibility between subdomains (Vaccaro et al., 2006). When
a substrate binds one of the monomers, the conformation of
the trimer changes to the asymmetric form. As a result, AcrA is
primed for the recruitment of TolC, followed by tentative tripar-
tite complex formation. Immediately after drug export, the tri-
partite complexes dissociate. When the substrate concentration
is high, the complex may continuously take up substrates with-
out dissociating. This sweeping and extrusion mode exchange
hypothesis seems to provide reasonable explanation for the high
efficiency of drug efflux through the trans-periplasm complex.
FDAP (fluorescence decay after photoconversion) analysis using
PA-GFP (photoactivatable-GFP)-labeled AcrB showed the lateral
movement of AcrB is more rapid when AcrB is expressed in the
acrB/tolC-deficient cells than in the acrB-deficient cells. AcrB
movement is slowed in the presence of proximal binding drugs
(unpublished observation). Thus, AcrB is an exciting future tar-
get for investigations into how and when tripartite complexes
form and what their physiological role(s) is.

Specific Recognition of Inhibitors

Although RND-type transporters display a broad substrate recog-
nition spectrum, these proteins show strict specificity for some
inhibitors. Pyridopyrimidine derivatives are good inhibitors of
AcrB and MexB without toxic effects: however, these compounds
do not inhibit MexY (Yoshida et al., 2007). The narrow spec-
trum of pyridopyrimidines limits the clinical usefulness of these
molecules. The structural basis of inhibitor specificity has been
revealed through an analysis of the inhibitor-bound crystal struc-
ture of AcrB and MexB (Nakashima et al., 2013). The pyridopy-
rimidine derivative ABI-PP binds to the distal pocket of AcrB and
MexB. The hydrophobic tail of ABI-PP is inserted into a nar-
row hydrophobic pit branching off the substrate translocation
path (Figure 14). The binding site of the relatively hydrophilic

moiety of ABI-PP overlaps with the minocycline and doxoru-
bicin binding sites. The branched pit is inconsistent with a
hydrophobic trap in the distal binding pocket (Vargiu et al.,
2011). The F610A mutation in this pit caused slip-in of sub-
strates into this pit, resulting in decreased export activity. Phe178
is located at the edge of this pit in AcrB and MexB, and the ben-
zene ring of this amino acid forms π-π interactions with the
pyridopyrimidine bicyclic ring, thereby stabilizing ABI-PP bind-
ing (Figures 15A,B). The inhibitory activity of ABI-PP is based
on strong binding to this pit, which terminates the functional-
rotation cycle because this pit has to become closed off for
transition to the extrusion stage.

However, in a homology model of MexY, the correspond-
ing position is occupied by tryptophan (Trp177), from which
the bulky indolyl side chain protrudes into the pit and sterically
hinders ABI-PP binding (Figure 15C). When Trp177 of MexY
was replaced with phenylalanine by site-directed mutagenesis
(Figure 15D), the resultant W177F mutant of MexY showed a
susceptibility to ABI-PP similar to that observed for AcrB with-
out the loss of drug export activity. In contrast, when Phe178 of
AcrB was replaced with tryptophan, the resultant AcrB F178W
mutant showed resistance to ABI-PP similar toMexY. The crystal
structure of the AcrB F178W mutant was solved and the indolyl
side chain of Trp178 protruded into the pit (Figure 15E).Thus,
ABI-PP specificity is determined by the bulkiness of the side
chain at position 178 or 177: however, the MexB F178W mutant
remains sensitive to ABI-PP. The crystal structure of the ABI-PP-
bound MexB F178W mutant showed that the bulky indolyl side
chain is accommodated in parallel to the wall of the pit without
projection, thereby contributing to stable binding through π-π
interactions with the pyridopyrimidine ring (Figure 15F).

An in silico simulation revealed that the parallel-to-wall
arrangement of the indolyl moiety of Trp178 in AcrB is impos-
sible due to steric hindrance from Val139. The pit in MexB
is slightly larger than that in AcrB: thus, the parallel arrange-
ment of the indolyl moiety of Trp178 is permitted in MexB
but not permitted in AcrB. Ile138 of MexY also sterically hin-
ders the parallel arrangement of the side chain of Trp177. To
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FIGURE 15 | Magnified view of the ABI-PP binding site depicted as a

surface model. ABI-PP is depicted in a stick model. F178 and W177 are

depicted using a white space-filling model. V139, I138, and mutated Ala are

depicted shown in magenta in the space-filling model. The symbols + and −

indicate inhibition or the lack of inhibition by ABI-PP, respectively. (A,B,E,F)

are crystal structures, and (C,D,G,H) are homology models. (A)

ABI-PP-binding AcrB, (B) ABI-PP-binding MexB, (C) MexY overlapping with

ABI-PP. (D) MexY W177F overlapping with ABI-PP, (E) AcrB F178W

overlapping with ABI-PP, (F) ABI-PP-binding MexAB F178W, (G) AcrB F178W

V139A overlapping with ABI-PP, (H) MexY I138A overlapping with ABI-PP.

confirm this prediction, the AcrB F178W V139A double mutant
and the MexY I138A mutant were constructed (Figures 15G,H).
These mutants showed an ABI-PP-sensitive phenotype similar
to wild-type AcrB. Thus, the specificity for pyridopyrimidine
derivatives is determined by the fit to the hydrophobic pit in the
distal binding pocket. The ABI-PP binding structures of AcrB
and MexB are the first examples of inhibitor-binding structures
of multidrug efflux transporters in physiologically active asym-
metric forms. These observations provide information for the
development of universal inhibitors that inhibit AcrB, MexB
and MexY, through virtual screening and structure-based drug
design.

Concluding Remarks and Future
Perspectives

The molecular mechanisms of multidrug recognition and export
by RND-type drug exporters have been revealed via crystal struc-
ture determinations over past decade. Multidrug recognition is
based on multisite drug-binding in voluminous binding pockets.

The presence of two voluminous drug-binding pockets, proximal
and distal, significantly expands the substrate specificity of
these exporters. Multiple-entrances allow the export of both
hydrophobic and hydrophilic compounds. Drug efflux is medi-
ated through functional-rotation mechanism in which three
monomers undergo a strictly coordinated sequential conforma-
tional change cycle of access, binding and extrusion. During the
functional-rotation cycle, no two monomers display the same
conformation. The substrates are transported from the entrance
to a proximal pocket and then to a distal pocket and finally
to a funnel-like exit through the peristaltic motion of the AcrB
porter domain. Drug export is driven by the proton motive force
via a remote-conformational coupling mechanism. The proton
relay cycle in the transmembrane region strictly couples with the
functional-rotation cycle in the porter region. Specific inhibitors
bind tightly to the deep hydrophobic pit of the multisite drug
binding pocket.

Future studies should address questions concerning why
it is difficult to identify most bound substrates in the
asymmetric structure and how the immobile trans-periplasmic
exporter efficiently ejects substrates before they enter the
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cytoplasm. The former question could be answered by the
multisite-drug-oscillation hypothesis, which is consistent with a
broad binding specificity and highly efficient export. The latter
question could be addressed by the sweep (moving) and export
(fixed) mode-switching hypothesis, which is consistent with the

need for tentative formation of a tripartite complex. However,
these hypotheses lack experimental evidence. Addressing these
questions is an exciting challenge, which will involve protein
dynamics studies and crystal structure determinations of the
tripartite complex.
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