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Urban waterways represent a natural reservoir of antibiotic resistance which may
provide a source of transferable genetic elements to human commensal bacteria
and pathogens. The objective of this study was to evaluate antibiotic resistance of
Escherichia coli isolated from the urban waterways of Milwaukee, WI compared to those
from Milwaukee sewage and a clinical setting in Milwaukee. Antibiotics covering 10
different families were utilized to determine the phenotypic antibiotic resistance for all
259 E. coli isolates. All obtained isolates were determined to be multi-drug resistant.
The E. coli isolates were also screened for the presence of the genetic determinants
of resistance including ermB (macrolide resistance), tet(M) (tetracycline resistance), and
β-lactamases (blaOXA, blaSHV, and blaPSE). E. coli from urban waterways showed a
greater incidence of antibiotic resistance to 8 of 17 antibiotics tested compared to
human derived sources. These E. coli isolates also demonstrated a greater incidence of
resistance to higher numbers of antibiotics compared to the human derived isolates. The
urban waterways demonstrated a greater abundance of isolates with co-occurrence
of antibiotic resistance than human derived sources. When screened for five different
antibiotic resistance genes conferring macrolide, tetracycline, and β-lactam resistance,
clinical E. coli isolates were more likely to harbor ermB and blaOXA than isolates from
urban waterway. These results indicate that Milwaukee’s urban waterways may select or
allow for a greater incidence of multiple antibiotic resistance organisms and likely harbor
a different antibiotic resistance gene pool than clinical sources. The implications of this
study are significant to understanding the presence of resistance in urban freshwater
environments by supporting the idea that sediment from urban waterways serves as a
reservoir of antibiotic resistance.
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Introduction

The increasing number of multiple-antibiotic resistant pathogens has become a serious threat
to human health (Centers for Disease Control and Prevention [CDC], 2013; Review on
Antimicrobial Resistance [RAR], 2014; World Health Organization [WHO], 2014). Over the past
two decades researchers have expanded their focus from the clinical settings to also include
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the natural environment as a reservoir of antibiotic resistance
(Kümmerer, 2004; Baquero et al., 2008; Martinez et al., 2009;
Allen et al., 2010; Galán et al., 2013; Michael et al., 2013;
Wellington et al., 2013). The resistome of fecal bacteria from
human and animal sources released into the environment impart
antibiotic resistances genes to the non-resistant indigenous
microorganisms (Aminov, 2011; Tacão et al., 2014). The subse-
quent transfer of antibiotic resistance genes from the indigenous
microorganisms to human-associated bacteria may take place
(Devirgiliis et al., 2011; Figueira et al., 2011). Simultaneously,
positive selective pressure for antibiotic resistance genes in the
environment may be stimulated by the presence of antibiotics or
other contaminants (Silveira et al., 2014; Varela et al., 2014; Gao
et al., 2015). These facts highlight the need to identify the poten-
tial sources of antibiotic resistant bacteria in environments used
by human populations (Rosewarne et al., 2010; Gomez-Alvarez
et al., 2012).

Escherichia coli are currently used by the Environmental
Protection Agency (EPA, USA) as an indicator organism for
fecal contamination and bacterial impairment for watersheds. E.
coli is a natural member of intestinal microbiome of humans
and other animals (reviewed in Harwood et al., 2014). The
major sources of fecal contamination in various watersheds
include human (Bernhard and Field, 2000), agricultural ani-
mals (Shanks et al., 2008), pets (Ervin et al., 2014), and
wild animals (Somarelli et al., 2007; Guber et al., 2015),
such as gulls (Alves et al., 2014; Araújo et al., 2014). The
major source of fecal contamination of urban waterways of
Milwaukee, WI was determined to be human (Newton et al.,
2011, 2013).

Multi-drug resistant (MDR) E. coli and other Entero-
bacteriaceae isolates are characterized by non-susceptibility (or
non-sensitivity) to at least one agent in three or more antibiotic
categories (Magiorakos et al., 2012). Antibiotic resistance surveil-
lance data show that E. coli has high resistance for older gen-
eration human and veterinary antibiotics including ampicillin,
streptomycin, and tetracycline and the increasing resistance to
newer antibiotics such as fluoroquinolones and cephalosporins
(Tadesse et al., 2012).

E. coli had been recognized as a contributor to the dissem-
ination of antibiotic resistance genes in natural environments
(Henriques et al., 2006; Zhao and Dang, 2012; Alm et al., 2014;
Alves et al., 2014). The gene encoding resistance to tetracycline
class antibiotics, tet(M), which is predominately found on trans-
posons within enterococci have also been found on plasmids
within E. coli (Jurado-Rabadán et al., 2014), and possibly in E. coli
from a natural river basin (Hu et al., 2008). The ermB gene encod-
ing resistance to macrolides, lincosamides, and streptogramin
have been identified on transposons and plasmids within or
transferable to E. coli (Poyart et al., 1995; Poirel et al., 2011). The
genes blaOXA, blaSHV, and blaPSE are grouped in the most com-
mon types of β-lactamases belonging to Enterobacteriaceae (Bush
and Jacoby, 2010).

Freshwater environments are recognized as reactors for the
evolution and dissemination of antibiotic resistance (Alm et al.,
2014; Czekalski et al., 2014; Marti et al., 2014; Vaz-Moreira
et al., 2014), however, processes occurring in urban freshwater

environments are less understood. In addition, the presence of
antibiotic resistance E. coli in urban waterways represents a health
issue in areas that are used for recreation activities.

The Milwaukee Harbor, an urbanized estuary, has a docu-
mented history of contamination from human activities. Located
within the harbor is a wastewater treatment plant discharging
the treated effluent within the outer harbor into the Lake. High
incidence of antibiotic resistance in E. coli, an indication of
sewage contamination also was detected in storm water from the
Menomonee River, which flows through the city of Milwaukee
and into the LakeMichigan harbor (Salmore et al., 2006). Human
fecal pollution is constant within the contributing rivers and the
Milwaukee Harbor and increased contamination during heavy
rain events has been reported (Newton et al., 2013). There is
also evidence of high levels of personal care products and phar-
maceuticals, including antibiotics present within the Milwaukee
Harbor (Blair et al., 2013a). A study by LaPara et al. (2011)
found that the presence of tetracycline resistance determinants
tet(A), tet(X), and tet(W) in Lake Superior surface waters receiv-
ing Waste Water Treatment Plant (WWTP) effluent near urban
environments were correlated with the presence of fecal bacteria.

The objective of this study was to evaluate the abundance of
multiple-antibiotic resistant bacteria present in the Milwaukee’s
urban waterways compared to the human derived bacterial com-
munity from Milwaukee, WI. Since the urban waterways of
Milwaukee have the potential for positive selection of antibi-
otic resistance due to history of antibiotics present (Blair et al.,
2013a), we hypothesize that the E. coli isolated from urban water-
ways in Milwaukee maintain a similar or greater incidence of
antibiotic resistance compared to the human derived E. coli
isolates. The relationship of the resistances identified in the
microbial community of the urban waterways and the human
derived microbial community were explored in order to test
this hypothesis. E. coli were isolated from sediment within the
inner and outer Milwaukee harbor, human derived sewage, and
from a clinical laboratory servicing Milwaukee. A broad range
of antibiotics covering different families (β-lactams, aminoglyco-
sides, tetracyclines, quinolones/fluoroquinolones, sulfonamides,
dihydrofolate reductase inhibitors, UDP-N-acetylglucosamine
enolpyruvyl transferase inhibitor, rifampicin, and chlorampheni-
col) were used to determine the resistance of the E. coli isolates.
The presence of genetic determinates of resistance for ermB
(macrolide resistance), tet(M), and β-lactamases (blaOXA, blaSHV,
and blaPSE), were screened in the same E. coli isolates.

Materials and Methods

Study Site and Sample Collection
OnMarch 22, 2012, four sediment grab samples at different loca-
tions were collected with a box corer from the Milwaukee Harbor
Estuary. (A sampling map is shown in Supplementary Figure S1.)
The Milwaukee Harbor Estuary is defined as the confluence of
the Milwaukee, the Kinnickinnic, and the Menomonee Rivers
into the Milwaukee Harbor. A subsample from each grab sam-
ple was collected in two sterile 50 mL conical centrifuge tubes
and held at 4◦C until filtering and plating. Strains isolated from
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the Kinnickinnic River and the junction of the Kinnickinnic
River with the Milwaukee and Menomonee Rivers in the inner
Milwaukee Harbor are referred to as the inner harbor isolates
(n = 36). The strains referred to as the outer harbor isolates
(n = 58) are further downstream of the junction of the rivers and
were from sediment collected near the effluent pipe of the Jones
Island WWTP in the outer Milwaukee Harbor. Human derived
sewage (n = 66) from the influent of the Jones IslandWWTP was
used for assessing microbial resistance of the human population.
The influent WWTP water was placed in a pre-chilled 1 L bot-
tle and kept at 4◦C until filtering and plating. Disassociation of
bacteria from sediment particles in the grab samples were per-
formed as by Boehm et al. (2009). Briefly, grab samples (3 g)
were diluted 1:10 in sterile buffered (pH 7.0) water and shook
vigorously by hand for 2 min. The undiluted and serial diluted
eluents from the sediment samples and the water samples from
the influent of the WWTP were subjected to filtration through a
0.45 μm filter and the filter was placed on a modified membrane-
thermotolerant E. coli Agar (modified mTEC) plate as in EPA
Method 1603 (Environmental Protection Agency [EPA], 2002).
As the EPA Method indicates the plates were initially incubated
for 2 h at 35◦C for recovery of injured cells followed by incuba-
tion at 44.5◦C for 22 h. The colonies identified as E. coli based on
pigmentation on the modified mTEC were recovered on Tryptic
Soy Agar (TSA) media and incubated at 37◦C for 18 h. E. coli
strains of clinical consequence (n = 99) were obtained from
Dynacare Laboratories (Milwaukee, WI, USA) on TSA slants.
The clinical E. coli isolates were collected from various patient
populations including outpatients and hospitalized patients from
throughout the Milwaukee area and identity was confirmed by
MALDI-TOF (Anderson et al., 2012; Buchan et al., 2012). All
E. coli isolates were then grown in Tryptic Soy Broth (TSB) at
37◦C for 18 h and stored at −20◦C after the addition of glycerol
to a final concentration of 10%. An additional 1 mL of culture
was pelleted by centrifugation and stored at −20◦C for DNA
extraction.

Antibiotic Susceptibility Testing
The E. coli isolates were tested for susceptibility to 17 antibi-
otics by a 96-well broth dilution method in Muller–Hinton broth
utilizing three antibiotic concentrations based on the Clinical
and Laboratory Standards Institute (Clinical and Laboratory
Standards Institute [CLSI], 2011) guidelines. Four wells were
used for each E. coli isolate consisting of three wells contain-
ing a serial half concentration dilution of the antibiotic and
one well with no antibiotic as a positive control for growth.
The 96-well plates containing 200 μL per well were incubated
at 35◦C for 18 h. The following antibiotics were used: ampi-
cillin (AMP; Sigma, A0166; 8–32 μg mL−1), gentamicin (GEN;
Sigma, G1264; 4–16 μg mL−1), streptomycin (STR; Sigma,
S9137; 8–32 μg mL−1), neomycin (NEO; Sigma, N6386; 16–
64 μg mL−1), tetracycline (TET; Sigma, T7660; 4–16 μg mL−1),
ciprofloxacin (CPR; Sigma, 17850; 1–4 μg mL−1), chloram-
phenicol (CHL; Sigma, C1919; 8–32 μg mL−1), trimethoprim
(TRM; Sigma, 92131; 8–32 μg mL−1), sulfamethoxazole (SFM;
Sigma, S7507; 256–1024 μg mL−1), fosfomycin (FOS; Sigma,
P5396; 64–256 μg mL−1), erythromycin (ERY; Sigma, E5389;

2–8 μg mL−1), aztreonam (AZT; Sigma, A6848; 4–16 μg mL−1),
cefuroxime (CFX; Sigma, C4417; 8–32 μg mL−1), meropenem
(MER; Sigma, M2574; 1–4 μg mL−1), moxifloxacin (MOX;
Selleckchem, S1465; 1–4 μg mL−1), rifampicin (RIF; Sigma,
R7382; 1–4 μg mL−1), and cefepime (CFP; US Pharmacopeial,
1097636; 8–32 μg mL−1). Isolates were classified as sensitive
when growth was sequestered to the well without antibiotic
and resistant when growth was observed in all four wells.
Intermediate level of resistance was concluded when growth was
observed in wells containing antibiotic concentrations diluted
from the maximum.Where appropriate the classification of non-
sensitive was used to denote any strain with any level of resis-
tance to an antibiotic which includes Resistant or Intermediate
levels determined by the Clinical and Laboratory Standards
Institute (Clinical and Laboratory Standards Institute [CLSI],
2011).

Antibiotic Resistance Gene Detection
Escherichia coli strains regardless of resistances were screened
by real-time PCR to detect genes conferring resistance com-
prized of tet(M), ermB, blaOXA, blaSHV, and blaPSE. Extractions
of the total DNA of the isolates were performed with the Wizard
Genomic DNA Purification Kit (Promega, A1120) on 1 mL of
culture in TSB incubated at 37◦C for 18 h. The PCR reactions
were performed in a MyiQ or CFX Connect Real-Time PCR
Detection Systems (Bio-rad, USA). Primers used are presented
in Supplementary Table S1. The reaction mixture of 20 μL con-
sisted of Standard Taq Buffer (10 mM Tris-HCl, 50 mM KCl,
1.5 mM MgCl2, pH 8.3; NEB, USA), 500 nM of each primer,
500 μM dNTPs, 0.5 U of Taq DNA Polymerase (NEB, USA),
0.1x SYBR Green I Nucleic Acid Gel Stain (Lonza, Cat#50513)
and 25 ng of genomic DNA. PCR thermocycling conditions con-
sisted of an initial denaturation step of 5 min at 95◦C followed
by 40 cycles of 95◦C for 30 s, the gene specific annealing tem-
perature (Supplementary Table S1) for 30 s, and 72◦C for 30 s
concluding with a melt curve analysis. Presence of the gene was
determined by the cycle threshold and melt curve analysis of
the real-time PCR results compared to a positive standard and
no template controls. Amplifiable DNA was determined utiliz-
ing the 1369F and 1492R Bacterial 16S Primers (Suzuki et al.,
2000).

Positive standards for PCR were generated by utilizing the
PCR reaction mixture and conditions as used for screening with-
out SYBR Green. DNA template for the PCR reactions to create
standards was pooled DNA from clinical strains, not used in
this study, with documented multiple resistances. PCR prod-
ucts at the expected product size determined by 2% agarose gel
electrophoresis were excised from the gel, purified utilizing a
QIAquick Gel Extraction Kit (Qiagen, USA), and cloned into the
plasmid pUC19 (Yanisch-Perron et al., 1985). For cloning into
pUC19, the plasmid was fully digested with SmaI endonuclease
enzyme (NEB, USA) and the enzyme heat inactivated at 65◦C for
30 min. The SmaI digested pUC19 was treated in a 50 μL reac-
tion with Standard Taq Buffer, 0.5 U of Taq DNA Polymerase
(NEB, USA), and 100 μM dTTP to generate 3′ T overhangs to
aid in cloning the PCR products with 3′ A overhangs. The PCR
products for the generation of standards were ligated into pUC19
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utilizing T4 Ligase by manufacture’s recommended conditions
(NEB, USA). Chemically competent TOP10 cells (Invitrogen,
USA) were transformed with the ligation reaction and plated
onto TSA augmented with 200 μg mL−1 ampicillin. Colony
PCR was utilized to screen for isolates containing pUC19 with
the insertions utilizing the M13 forward and reverse primers.
Isolates demonstrating successful insertion of the PCR product
into pUC19 were propagated and plasmids utilized for positive
standards were isolated by I-Blue Mini Plasmid Kit (IBI, USA)
and confirmed by Sanger sequencing.

Of the 295 positive amplification from the screening PCRs,
146 (49%) were purified utilizing the QIAquick PCR Purification
Kit (Qiagen, USA) and sequenced utilizing their respective
primers. All sequenced amplicons were confirmed to be the
targeted genes (Results summarized in Supplementary Table S2).

Statistical Analysis
Antibiotic resistance phenotypic profiles and gene presence was
converted into numerical code. For each antibiotic: 1 signified
susceptibility, 2 for intermediate resistance, and 3 represented
resistance. The presence of a gene was signified as 1 and absence
as 0. Principal component analysis (PCA) was performed using
the package FactoMineR (Lê et al., 2008) from the open source
statistical program R (R Core Team, 2012). Multivariate statis-
tical analyses were performed using routines in the R package
‘vegan’ (Oksanen et al., 2013). Bray–Curtis similarities were cal-
culated for antibiotic resistance levels and gene presence or
absence using vegdist function in vegan package as input for mul-
tivariate ANOVA (MANOVA) analyses using the permutational
alternative (Anderson, 2001) to standard parametric MANOVA
provided by vegan’s ‘adonis’ function. Multiple pairwise tests
were conducted using Tukey’s honestly significant differences

(HSD) at the 5% family wise level of significance. The ‘glm’
function with the Poisson distribution and Analysis of Deviance
for Generalized Liner Model utilizing the Chi-square test to
determine significant differences between the antibiotic variable
vectors and the source vectors.

Proportional Z test was utilized to identify significant differ-
ences between count data which is represented as percentages
such as antibiotic resistances and presence of genes by location.
Mann–Whitney U test was used for comparison of number of
antibiotic resistance in the isolates from the locations.

Results

Antibiotic Resistance Profiles
The antibiotic resistance patterns of the E. coli isolates to 17
antibiotics are shown in Figure 1. Duplicate isolates were deter-
mined and eliminated based on phenotypic and genotypic results;
however, no duplication was observed. Resistant-level phenotype,
growth at the highest concentrations of antibiotic within the phe-
notypic assay, was detected for all antibiotics tested. All isolates
(n = 259) showed a resistant-level phenotype for at least one
antibiotic and non-sensitive level phenotype, growth at any con-
centration of antibiotic tested within the phenotypic assay, for
at least six antibiotics tested (Figure 2; Supplementary Figure
S2). All E. coli isolates were non-sensitive to at least one agent
in three or more antibiotic categories as defined for multi-drug
resistant (MDR) bacteria in Magiorakos et al. (2012). Three iso-
lates, two from the inner harbor and one from the outer harbor
were non-sensitive (intermediate or resistant level of pheno-
typic antibiotic resistance) to all 17 antibiotics tested. These three
strains resistant to all antibiotics tested are potential extensively

FIGURE 1 | Percentage of Escherichia coli isolates from sewage (S,
n = 66), outer harbor (O, n = 58), inner harbor (I, n = 36), and clinical
setting (C, n = 99) indicating resistance (solid) or intermediate

resistance (transparent) to 17 different antibiotics. Table indicates
significant difference in antibiotic resistance (not including intermediate
resistance) between locations (p < 0.01) by proportional Z test.
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FIGURE 2 | Percentage of E. coli isolates from sewage (n = 66), outer harbor (n = 58), inner harbor (n = 36), and clinical setting (n = 99) showing
number of antibiotic resistances (Resistant-level).

drug-resistant (XDR) bacteria showing non-sensitivity to 11 of
the required 15 out of 17 antibiotic categories (Magiorakos et al.,
2012). Antibiotic resistance wasmost prevalent for erythromycin,
sulfamethoxazole, aztreonam, and ampicillin occurring in 72–
88% of all isolates. The least prevalent antibiotic resistance in all
isolates was for chloramphenicol, observed in less than 7%.

E. coli isolates collected in the inner or outer harbor of
Milwaukee demonstrated significantly greater frequencies of
resistances to eight antibiotics compared to the E. coli isolates
collected from human derived sewage and of clinical concern
(p < 0.01; Figure 1). These eight antibiotics included ampicillin,
neomycin, tetracycline, ciprofloxacin, fosfomycin, rifampicin,
cefuroxime, and cefepime. The isolates from the urban waterways
additionally showed significantly greater frequencies of resis-
tance to erythromycin compared to isolates from human derived
sewage (p < 0.01) and aztreonam compared to clinical isolates
(p < 0.01). Of the antibiotics tested, the isolates in the outer
harbor collected near the WWTP effluent showed significantly
greater frequencies of tetracycline, fosfomycin, and rifampicin
resistance compared to the inner harbor isolates (p < 0.01).

Since all E. coli isolates tested were determined to be MDR
bacteria, the distribution of the number of antibiotics the iso-
lates were resistant was used to explore the differences between
the urban waterway and human derived isolates. The number
of antibiotic resistances in the E. coli isolates was greater from
the inner harbor (median = 9, range: 6–16 antibiotics) and outer
harbor (median = 10, range: 4–14) of the urban waterways com-
pared to the clinical isolates (median = 6, range: 2–12) and
isolates from human derived sewage (median = 6.5, range: 1–
13; Figure 2, p < 0.001). (The number of antibiotic resistance
in the E. coli isolates demonstrating non-sensitive phenotypes
similar to determine MDR are in Supplementary Figure S2.)
There was no significant difference in the number of antibiotics
an isolate was resistant between inner and outer harbor iso-
lates (p = 0.52) nor human derived sewage and clinical isolates
(p = 0.17).

Principal component analysis of the combined genotype and
phenotypic resistance profiles for each isolate was used to explore
the difference in the environmental resistome from which the E.
coli isolates were derived (Figure 3). (Figure 3 contains genotype
and phenotype in separate PCA analysis as well.) PCA anal-
ysis demonstrated a gradient related to number of antibiotics
the E. coli isolates were resistant to (Figure 3, dotted arrow).
Permutational MANOVA analysis showed significant differences
between isolates from the different sources (p< 0.001) and follow
up pairwise comparison showed significant differences between
all sources (p < 0.01) with the exception of the human derived
sources (clinical and human derived sewage, p = 0.74).

Isolates collected from human derived sewage were positively
correlated with moxifloxacin resistance (p < 0.001). The gene
blaOXA encoding a β-lactamase showed significant (p < 0.001)
positive correlation with the clinical isolates. The vectors
related to the phenotypic antibiotic resistance for meropenem,
a mono-β-lactam (p < 0.001) were also significantly correlated
with the clinical isolates. The inner harbor isolates positively
correlated with antibiotic resistance for fosfomycin, UDP-N-
acetylglucosamine enolpyruvyl transferase inhibitor (p < 0.01),
cefuroxime, a second generation cephalosporin (p < 0.001), and
the presence of the tet(M) (p < 0.01) gene encoding tetracycline
resistance. The outer harbor isolates were positively correlated
with resistance to tetracycline (p< 0.001), fosfomycin (p< 0.001)
and cefuroxime (second generation cephalosporin; p < 0.01).

The PCA analysis suggested putative incidences of co-
occurrences of resistances across sources. The co-occurrences of
non-sensitive phenotypes (resistance and intermediate levels) for
combinations of antibiotics were recurrent. Table 1 shows the
co-occurrences of non-sensitive phenotypes to 3–5 antibiotics
demonstrated within 20% or more of the isolates from a location.
The majority of co-occurrences of resistances were identified
within the urban waterways. The presence of the co-occurrences
in the urban waterways is expected due to the high incidences of
resistance in the isolates (Figure 1) and the number of resistance
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FIGURE 3 | Principal Component Analysis (PCA) biplots of E. coli
isolates in terms of their phenotypic antibiotic resistance profiles
and/or their genotype based on the presence of antibiotic resistance
genes. Separate PCA were performed on data containing both the
phenotypic and genotypic profiles (Left) and the genotypic (Middle) and
phenotypic (Right) profiles separately. The green points represent the E. coli
isolates from the inner Milwaukee Harbor, black points from the outer harbor,
red points from human derived sewage, and blue from clinical isolates. Points
in the upper panels are individual isolates and the points in the bottom

panels represent the group center (average of individuals). Dotted line in the
upper panels shows the gradient of number of resistance (multiple antibiotic
resistances) in the isolates. The ellipses represent a 95% confidence interval
of the respective points in the same color. In the right panel: Black arrows
represent antibiotics (see Materials and Methods for abbreviations) utilized in
the phenotypic antibiotic resistance screening. Erythromycin (ERY),
Sulfamethoxazole (SFM), and Moxifloxacin (MOX) respective arrows may not
be perceptible due to little influence in the ordination. Red arrows represent
antibiotic resistance genes screened by PCR.

within the isolates (Figure 2). The co-occurrences of ampi-
cillin, fosfomycin, rifampicin, and cefuroxime resistance were
of the greatest abundance in urban waterway isolates compared
to human derived sewage and clinical E. coli isolates. The co-
occurrences of neomycin, sulfamethoxazole, erythromycin, and
meropenem resistance were not significantly different between
the urban waterways and clinical isolates indicating a potentially
common resistance mechanism between the environmental and
the clinical E. coli isolates.

In summary, a higher incidence of antibiotic resistance, preva-
lence of resistance to a greater number of antibiotics and a greater
incidence of co-occurrences of resistance was identified within
the urban waterway (inner and outer Milwaukee Harbor) E. coli
isolates compared to the human derived isolates (sewage and
clinical isolates) from Milwaukee.

Detection of Antibiotic Resistance Genes
The presences of five antibiotic resistance genes: ermB (macrolide
resistance), tet(M), and β-lactamases (blaOXA, blaSHV, and

blaPSE) were screened for in the E. coli isolates (Figure 4). More
than 65% of all the E. coli isolates (n = 259) harbored at least one
of the five resistance genes chosen for analysis. The presence of
ermB was the most prevalent represented in 38% of the isolates.
The β-lactamase encoding genes blaOXA and blaSHV were present
in 26 and 25% of all strains, respectively. The resistance gene
blaPSE and tet(M) were the least prevalent at 10 and 14%, respec-
tively. The clinical E. coli isolates showed significantly greater
frequencies of the blaOXA compared to the urban waterway iso-
lates of the inner and outer harbor and the human derived sewage
(Figure 4). The greater incidence of resistance to meropenem in
the clinical E. coli isolates can be partially (58.2%) explained by
the greater frequency of the blaOXA gene in the isolates compared
to less than 10% in the meropenem resistant E. coli isolates from
urban waterways and human derived sewage (Table 2). The pres-
ence of any β-lactamase genes could explain 73% of the ampicillin
resistant clinical E. coli isolates compared to only 21–40% of the
ampicillin resistant E. coli isolates from the urban waterways and
human derived sewage.
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TABLE 1 | The percentage of Escherichia coli isolates from the urban waterways of the inner and outer Milwaukee Harbor and of human derived sources
(sewage and clinical) with co-occurrence of antibiotic resistance.

Co-occurrence of antibiotic resistance1 Inner harbor (36)2 Outer harbor (58) Sewage (66) Clinical (99) Significance (p < 0.01)3

GEN, STR, TRM, AZT, MER 58.3 (21) 37.9 (22) 12.1 (8) 22.2 (22) O > S, I > S, I > C

AMP, FOS, RIF, CFX 75.0 (27) 82.8 (48) 25.8 (17) 2.0 (2) O > S, I > S, O > C, I > C

NEO, SFM, ERY, MER 66.7 (24) 55.0 (29) 18.2 (12) 69.7 (69) O > S, I > S, C > S, O > C

GEN, STR, CHL, MER 27.8 (10) 8.6 (5) 7.6 (5) 14.1 (14) I > S, I > O

GEN, TET, SFM 58.3 (21) 70.7 (41) 28.8 (19) 39.4 (39) O > S, I > S, O > C

TET, TRM, SFM 38.9 (14) 36.2 (21) 28.8 (19) 24.2 (24) NS

STR, ERY, RIF 72.2 (26) 75.9 (44) 30.3 (20) 54.5 (54) O > S, I > S, C > S, O > C

1Criteria for inclusion was non-sensitive resistance (resistance or intermediate resistance level) for three or more antibiotics and presence in greater than 20% in one or
more locations.
2Reported in percentage of isolates from location and number of isolates in parenthesis.
3Statistical significance was determined between locations by proportional Z test.

FIGURE 4 | Percentage of E. coli isolates from sewage (n = 66), outer harbor (n = 58), inner harbor (n = 36), and clinical setting (n = 99) harboring
antibiotic resistance genes. Table indicates significant difference in antibiotic resistance (not including intermediate resistance) between locations (p < 0.01) by
proportional Z test.

The E. coli isolates of the inner harbor demonstrated greater
frequencies of the tet(M) gene compared to the isolates of the
outer harbor and derived from human sources (clinical and
human derived sewage isolates). The presence of the tet(M) gene
explained greater than 38.9% of the tetracycline resistant isolates
detected in the inner harbor and less than 16.1% in the other
tetracycline isolates from other sources.

The ermB gene was present in significantly greater frequency
in clinical E. coli isolates than the E. coli isolates from the outer
harbor and human derived sewage. The presence of ermB may
explain 52% of the erythromycin resistance observed in the

clinical isolates, while less than 40% of erythromycin resistance
could be explained in the urban waterways and human derived
sewage isolates.

The few genetic determinants detected in this study had little
to no effect on the PCA analysis in the presence of the phenotypic
data (Figure 3). Utilizing only the genetic determinations in PCA
analysis and MANOVA did not show any significant difference
between sources of E. coli isolates.

While the genetic determinates were able to explain some of
the high incidences of resistance within the clinical E. coli isolates,
direct phenotypic determination of antibiotic resistance showed
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TABLE 2 | Percentage of antibiotic resistance in E. coli isolates from different locations explained by the presence of a gene able to confer the resistance.

Antibiotic Gene1 Inner harbor2 Outer harbor Sewage Clinical

Penicillins (AMP) SHV, PSE, OXA 36.1 (13/36) 20.7 (12/58) 39.6 (21/53) 73.0 (46/63)

Second generation Cephalosporin (CFX) SHV, PSE 34.3 (12/35) 23.5 (12/51) 33.3 (17/51) 34.6 (9/26)

Fourth generation Cephalosporin (CFP) SHV, PSE 53.9 (7/13) 12.5 (2/16) 14.3 (2/14) 60.0 (3/5)

Carbapenems (MER) OXA 3.03 (1/33) 2.9 (1/35) 9.7 (3/31) 58.2 (57/98)

Monobactam (AZT) SHV, PSE 34.4 (11/32) 19.6 (11/56) 32.8 (21/64) 35.4 (23/65)

Tetracycline (TET) tet(M) 39.1 (9/23) 0.0 (0/53) 16.1 (5/31) 8.1 (5/62)

Macrolide (ERY) ermB 38.9 (14/36) 31.0 (18/58) 29.2 (19/65) 51.6 (49/95)

1Genes encoding β-lactamases are abbreviated to their types (i.e., blaSHV as SHV).
2Percentages represent the number of strains from a location that have a non-sensitive resistance (resistance or intermediate resistance level) for an antibiotic and the
presence of at least one gene listed in the table. In parenthesis: (number of isolates with gene/total with non-sensitive resistance).

greater incidences of antibiotic resistance and greater number of
resistance within the E. coli isolates from urban waterways.

Discussion

The emergence and dispersion of antibiotic resistance has
reduced the susceptibility of pathogens to antibiotics in medical
treatment. A detailed examination of the origin and role of antibi-
otic resistance in natural environments is necessary to under-
stand the evolution and dissemination of antibiotic resistance
genes in pathogens (Allen et al., 2010). The urban rivers merging
into Milwaukee Harbor and ultimately Lake Michigan allowed
for a representative assessment of the distribution of antibiotic
resistance within these urban-influenced environments.

Prevalence of resistance to erythromycin, sulfamethoxazole,
aztreonam, and ampicillin was detected in all studied sources.
Occurrence of resistance and resistant determinates related to
β-lactams, sulfonamides, and macrolides are not uncommon in
urban settings (Hu et al., 2008; Munir et al., 2011; Rodríguez-
Mozaz et al., 2014; Yang et al., 2014). The detection of macrolides
and sulfonamides within the influent and effluent of a munici-
pal wastewater treatment plant servicing the greater Milwaukee,
WI area (Blair et al., 2013b) may indicate high historical usage of
these antibiotics which may have led to establishment of resistant
E. coli within the bacterial communities observed in this study.
Similar levels of antibiotic resistance in the sediment of the urban
waterways of Milwaukee compared to raw sewage have been
detected previously (Salmore et al., 2006). The low prevalence of
chloramphenicol resistance in this study is consistent with pub-
lished data within the U. S. (Johnson et al., 2013) and supports
the idea that this old-generation antibiotic has the potential to
address the current need for new antibiotics despite the potential
of negative side-effects (Falagas et al., 2008).

The high rate of MDR classification within the isolates used
in this study may be due to choice of older individual antibi-
otics within the antibiotic classes as representatives to distinguish
individual isolates based on phenotypic resistance. Previous stud-
ies have indicated lower percentages of MDR compared to this
study (Baquero et al., 2008; Figueira et al., 2011; Ham et al.,
2012). However, these studies used more recently deployed or
fewer antibiotics compared to this study making it less likely to
establish MDR.

The E. coli isolates from urban waterways demonstrated
greater incidence of resistance to single antibiotics and multiple
antibiotic resistance within a single isolate compared to human
derived sources (sewage and clinical isolates). The observation
of greater incidence of antibiotic resistance in E. coli from natu-
ral waters compared to a possible sources of fecal contamination
is consistent with the observations of Alves et al. (2014), which
showed a higher incidence of multi-resistant E. coli in coastal
waters of an uninhabited island than the source of fecal con-
tamination by seagull feces and human sewage from tourist. The
higher level of resistance within the urban waterway E. coli iso-
lates may be explained by the historically high abundance of
antibiotics, in particular of macrolides, fluoroquinolones, and
sulfonamides, quantified within the water and sediments of the
Milwaukee Harbor (Blair et al., 2013a). These antibiotics may
have synergistic selective effect on mechanisms of antibiotic
resistance leading to increased selective pressure for antibiotic
resistance within the microbial population (Davies et al., 2006;
Andersson and Hughes, 2014). In other urban waterway envi-
ronments receiving treated wastewaters a higher incidence and
chronic presence of antibiotics and antibiotic resistance genes
were detected downstream of released effluent (LaPara et al.,
2011; Munir et al., 2011; Korzeniewska et al., 2013; Alves et al.,
2014; Czekalski et al., 2014; Rodríguez-Mozaz et al., 2014).

The greater prevalence of the antibiotic resistance co-
occurrences in urban waterways may point to a mobile resistome
within the microbial population of urban waterway sediment.
Previous studies tend to use a strict criteria for multiple resistance
shared between isolates when exploring phenotypic similarities
between locations and sources (Hu et al., 2008; Alves et al.,
2014). For example, isolates showing resistance to four antibi-
otics would be grouped, while an isolate resistant to the same
four antibiotics with additional resistances would be excluded
from the grouping. This restriction may led to misinterpreta-
tion in the prevalence of specific multiple resistances shared
between isolates. The prevalence of resistance to specific antibi-
otics or antibiotic classes within a microbial population may be
explained by the presence of mobile genetic elements within the
population encoding that antibiotic resistance (Thavasi et al.,
2007). The existence of plasmids bearing extended spectrum
β-lactamase (ESBL) and fosfomycin resistance determinants that
can spread effectively in Enterobacteriaceae have been discovered
and are of great clinical concern (Zhao et al., 2015). A high
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prevalence of co-occurrence of resistance to fosfomycin, ampi-
cillin, cefuroxime, and rifampicin and other patterns within the
urban waterways of Milwaukee may be explained by the exis-
tence of mobile genetic elements encoding the resistances for
these antibiotics within the microbial community. The detection
of the antibiotic resistance genes ermB, tet(M), blaOXA, blaSHV,
and blaPSE (Figure 1) which are associated with natural plas-
mids (Brisson-Noel et al., 1988; Carattoli, 2013) and transposons
(Bryan et al., 2004) within the E. coli isolates of the urban water-
ways supports the possible presence of these type of mobile
genetic elements.

The greater incidence of resistance observed in the urban
waterways (Figure 1) was not fully explained by the presence of
the resistance genes tested (Table 2). The genes ermB and blaOXA
were present in a greater percentage of isolates in the clinical
E. coli isolates. While the transfer of the resistance gene ermB
from Gram-positive cocci to E. coli (Brisson-Noel et al., 1988)
was previously detected, very few studies attempt to identify and
quantify this gene in non-Gram-positives despite the ability to
confer resistance (Goetting-Minesky and Fenno, 2010). The ermB
gene has also been identified in Bacteroides (Shoemaker et al.,
2001) and Campylobacter coli (Qin et al., 2013). To our knowl-
edge, this study is the first to attempt to quantify the presence
of ermB in E. coli from environmental waters. The emergence
of blaOXA carbapenemase producing Enterobacteriaceae is diffi-
cult to detect because of their relative low MICs (Seiffert et al.,
2014). The detection of blaOXA is consistent with expectations
in the environment (Ojer-Usoz et al., 2014) and clinical iso-
lates (Kaftandzieva et al., 2014). One possible explanation for
the lower presence of the genes tested in E. coli from the urban
waterways to that of the human derived sources may be related
to survival in non-human environments. The selective pressure
on the E. coli in the sediment of the urban waterways from
various physical conditions including nutrient availability, tem-
perature, and predation (Beversdorf et al., 2007) and chemicals
including antibiotics, personal care products, and metals may
select for phenotypes that have co-selection for mechanisms of
antibiotic resistance other than the ones encoded by the studied
genes (Graham et al., 2010). Co-selection can also be related to
cross-resistance, such as multi-drug resistance pumps where the
primary roles is thought to provide tolerance to toxic compounds
in the environment (Poole, 2005; Martinez et al., 2009; Allen
et al., 2010). An additional explanation of the higher incidence
of antibiotic resistance within the urban waterways is the selec-
tion of antibiotic resistance within the bacteria prior to entering
the environment. The sources of the antibiotic resistant E. coli in
this study can include the WWTP (Korzeniewska et al., 2013) as
the major contaminating source was previously determined to be
human in the study area (Newton et al., 2013). Determining the
resistances from the contaminating bacterial sources may yield

information to determine if the resistances observed in this study
are due to depositing of resistance or selection of resistance.

Conclusion

This study demonstrates urban waterway sediment as a rele-
vant reservoir of E. coli strains containing multiple resistances
to antibiotics and antibiotic resistance genes. The presence of
known antibiotic resistance genes harbored on mobile genetic
elements and a greater level of resistance compared to the local
human derived E. coli suggests that sediment of the urban water-
ways may harbor an extensive mobile resistome. Further work
is needed to explore the presence of a putative mobile resis-
tome, its contribution to the reservoir of antibiotic resistance,
and the potential of transfer to human commensal bacteria and
pathogens.
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