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Genomic analysis of giant viruses, such as Mimivirus, has revealed that more than half
of the putative genes have no known functions (ORFans). We knocked down Mimivirus
genes using short interfering RNA as a proof of concept to determine the functions
of giant virus ORFans. As fibers are easy to observe, we targeted a gene encoding a
protein absent in a Mimivirus mutant devoid of fibers as well as three genes encoding
products identified in a protein concentrate of fibers, including one ORFan and one gene
of unknown function. We found that knocking down these four genes was associated
with depletion or modification of the fibers. Our strategy of silencing ORFan genes
in giant viruses opens a way to identify its complete gene repertoire and may clarify
the role of these genes, differentiating between junk DNA and truly used genes. Using
this strategy, we were able to annotate four proteins in Mimivirus and 30 homologous
proteins in other giant viruses. In addition, we were able to annotate >500 proteins from
cellular organisms and 100 from metagenomic databases.

Keywords: Mimivirus, giant virus, Megavirales, fiber, short interfering RNA, RNA interference, nucleocytoplasmic
large DNA virus

Introduction

Acanthamoeba polyphaga mimivirus was the first member discovered of the viral family
Mimiviridae, which encompasses viruses that infect Acanthamoeba sp. (La Scola et al., 2003; Raoult
et al., 2004). Subsequently, dozens of Mimivirus relatives have been isolated from environmental
samples and, more recently, from humans (La Scola et al., 2008; Boyer et al., 2009; Fischer et al.,
2010; Arslan et al., 2011; Yoosuf et al., 2012; Saadi et al., 2013a,b). Other viruses that infect proto-
zoa were also subsequently discovered, including marseilleviruses (Boyer et al., 2009; Boughalmi
et al., 2013a,b; Aherfi et al., 2014), pandoraviruses (Philippe et al., 2013) and Pithovirus sibericum
(Legendre et al., 2014). Mimiviruses have been linked, along with the marseilleviruses, to the nucle-
ocytoplasmic large DNA viruses (NCLDVs), which were recently proposed to be unified into a new
viral order named the “Megavirales” (Colson et al., 2013). These giant viruses have raised consid-
erable interest in the field of evolutionary biology because of their unexpectedly large size, as well
as the fact that they contain genes encoding functions previously believed to be in the domain of
cellular organisms, such as aminoacyl-tRNA synthetases or translations factors. They have chal-
lenged the definition of a virus (Raoult et al., 2004; Moreira and Brochier-Armanet, 2008; Raoult
and Forterre, 2008; Forterre, 2010).
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The genomes of Megavirales members contain a large
number of predicted genes annotated either as hypothetical
proteins or ORFan genes, i.e., genes without homologs in
sequence databases (Raoult et al., 2004; Boyer et al., 2010).
For example, genes encoding hypothetical proteins occupy
more than 50% of the Mimivirus genome. The functions of
these genes are not known. To date, the functions of only
a few Mimivirus proteins have been studied experimentally,
including amino-acyl-tRNA synthetases (Abergel et al., 2005,
2007) and proteins involved in sugar biosynthesis (Piacente
et al., 2012). Thus, the large majority of Mimivirus genes
have no known function and make up a ‘functional dark
matter.’

The Mimivirus capsid, which is approximately 500 nm in
size, is covered by a dense layer of fibers. These viral fibers
are approximately 125–140 nm in length and approximately
1.4 nm in diameter and consist of a soft shaft and a globular
shaped head (Xiao et al., 2009; Klose et al., 2010; Kuznetsov
et al., 2010). Clusters of 3–4 fibers were found to be linked
via a disk shaped base. They are highly glycosylated, antigenic,
and resistant to protease and collagenase treatment (Xiao et al.,
2009; Boyer et al., 2011). A putative GMC-type oxidoreduc-
tase (R135), and two hypothetical proteins (L725, which is the
product of an ORFan, and L829) were identified in purified
fibers by gel electrophoresis coupled with matrix-assisted laser
desorption/ionization mass spectrometry (MALDI MS; Boyer

et al., 2011). Sub-culturing Mimivirus 150 times on germ-free
amoebae led to the emergence of a mutant “M4” strain lack-
ing fibers, and with a genome reduced by 16% and missing
150 genes (Boyer et al., 2011). Comparative proteomics of M4
and the original Mimivirus strain showed a deletion of the
R135 and L829 proteins, as well as of the R856 protein (Boyer
et al., 2011), which belongs to the group of tetratricopeptide
repeat (TPR) containing proteins previously involved in virus–
host interactions (Jeshtadi et al., 2010). In addition, nine pro-
teins have been proposed to be involved in sugar biosynthe-
sis and fiber formation (Piacente et al., 2012; Supplementary
Table S1).

Here, we aimed to apply RNA interference (RNAi) to the iden-
tification of the function of Mimivirus proteins. We targeted four
Mimivirus genes associated with fiber formation, as fibers can be
easily observed by electron microscopy (Figure 1).

Materials and Methods

Cell Culture, siRNA, and Identification of
Morphological Changes
Targeted Genes and siRNA
We targeted the Mimivirus genes R135, L725, L829, and R856
using short interfering RNA (siRNA). These genes were either
identified in purified fibers or deleted in the M4 strain (Boyer

FIGURE 1 | Flow chart of the strategy implemented to characterize Mimivirus gene function using siRNA.
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et al., 2011; Figure 1). Regarding the negative controls, we used
Mimivirus virions in absence of treatment with siRNAs, and also
targeted the L425 gene, which is known to be expressed and
encodes the major capsid protein that composes the Mimivirus
shell located just beneath the fiber layer. The aim of this control
was to ensure for the absence of possible non-specific, artefactual
effect of siRNAs or lipid carrier on fibers.

Cell Culture and RNAi
A culture of A. polyphaga in 10 ml of PYG medium (5e5
amoeba/mL) was seeded for 24–48 h. Then, 100 µl of
Lipofectamine RNAiMAX (Invitrogen, USA) and 0.25 µg of
duplex siRNA (designed and purchased from Invitrogen; for
sequences, see Supplementary Table S2) were used according to
the manufacturer’s instructions. To improve the siRNA speci-
ficity, we used duplex siRNA andwe checked for specific and non-
specific appariements by performing BLASTn searches against
Mimivirus genes and GenBank. One ml of Mimivirus prepa-
ration (≈1e6 viruses) was added to the culture, and incubated
for 11 h at 32◦C. A. polyphaga were harvested by centrifuga-
tion (500 g for 10 min) and analyzed by electron microscopy.
For protein analysis, four 10-ml flasks of Mimivirus culture
incubated for 24 h at 32◦C were used. Cells were completely
lysed. Then, the culture medium was centrifuged at 500 g for
10 min, and the supernatant was filtered through a 1.2-µm
filter to eliminate A. polyphaga cell debris. The Mimivirus pel-
let, obtained by centrifugation of the medium at 12,000 g for
15 min, was washed twice with phosphate buffer serum (PBS),
and the purified viruses were used in further investigations.
For the negative control gene, the same experimental proce-
dures were applied to the L425 gene encoding capsid pro-
tein.

Electron Microscopy
The preparation of samples for electron microscopy was previ-
ously described (Boyer et al., 2011). Briefly, samples were fixed
with glutaraldehyde (2.5%) and cacodylate buffer (0.1 M), cut
into 70-nm sections using an ultramicrotome (UC7; Leica), col-
lected on 400-mesh nickel grids with formvar carbon, and stained
for electron microscopy (FCF-400-Ni, Electron Microscopy
Sciences). The samples were then viewed with a Philips electron
microscope (Morgagni 268D) at 80 keV. Cross sections of all pic-
tures that were selected for the analysis were positioned at the
middle of the virions and characterized by a dense cluster (black
mass).

Analysis of Protein Content of Knocked
Down Viruses
Antibodies Preparation
Fibers were purified from the virus as previously described for
vaccinia virus (Jensen et al., 1996). Previous analysis of the fiber
by 2D-gel coupled with MALDI-TOF MS (Boyer et al., 2011)
revealed that three proteins (R135, L725, and L829) were asso-
ciated with Mimivirus fibers. For anti-L725 antibodies, L725 pro-
tein fused with thioredoxin was expressed in Escherichia coli and
purified using ÄKTA avant 25 (GE Healthcare, USA). Purified
Mimivirus virions, fibers, and L725 protein were injected into

mice to obtain anti-L725 polyclonal antibodies, as previously
described (Boyer et al., 2011).

Immunogold Labeling
Grids were immersed in NH4Cl (50 mM) diluted in PBS three
times for 5 min, washed in PBS for 5 min, and then immersed
twice in blocking buffer (1% normal goat serum (NGS), 1%
bovine serum albumin (BSA), and 0.2% Tween 20 diluted in
PBS; 2 × 10 min). The grids were incubated with anti-fiber
polyclonal antibody that was diluted 1:100 in blocking buffer
overnight at 4◦C. After four 10-min washes, the grids were incu-
bated for 90 min in biotin (Beckman Coulter, USA) that was
diluted 1:100 in blocking buffer. Then, the grids were washed
with 0.1% BSA-PBS (4 × 5 min) and then in 0.01% cold
water fish skin (CWFS) gelatin-PBS (3 × 10 min), and incu-
bated with streptavidin (labeled by 10-nm gold nano-particles;
Aurion, The Netherlands) that was diluted 1:100 in 0.01% CWFS
gelatin-PBS for 90 min and washed with PBS. After incubat-
ing with PBS-glutaraldehyde 2.5% for 15 min, the grids were
washed with PBS (2 × 10 min) and distilled water for 10 min.
Finally, the grids were contrasted by adding uranyl acetate for
20 min, immersed in water 60 times, and analyzed using electron
microscopy. The number of gold particles that were bound to
fibers in each image was counted. The experiments included sev-
eral steps that were performed on successive days. For each step,
we used Mimivirus treated without siRNA with the same exper-
imental conditions as the siRNA-treated Mimivirus as negative
control.

Proteomic Analysis
All proteomic analysis (sample preparation, 1D and 2D gel
electrophoresis, silver staining, and western blotting) was per-
formed as previously described (Azza et al., 2009). Briefly,
Mimivirus was solubilized in 40 mM Tris-HCl, pH 7.5, sup-
plemented with 2% (wt/vol) sodium dodecyl sulfate (SDS;
Sigma–Aldrich) and 60 mM dithiothreitol (DTT), followed
by 5 min of heating at 95◦C. The insoluble fraction was
removed by centrifugation (12,000x g, 4◦C, 10 min), and
soluble proteins were precipitated using a PlusOne 2-D
Clean-Up kit (GE Healthcare, USA) to remove SDS. The
final pellet was re-suspended in solubilization buffer [7 M
urea, 2 M thiourea, 4% (wt/vol) 3-[(3-cholamidopropyl)-
dimethylammonio]-1-propanesulfonate (CHAPS)] and stored at
−80◦C until use. The protein concentration was measured by
Bradford assay (Bio-Rad, USA). Immobiline DryStrips (13 cm,
pH 3–10; GEHealthcare) were rehydrated overnight using 250µl
rehydration buffer [8 M urea, 2% (w/v) CHAPS, 60 mM DTT,
0,5% (v/v) IPG buffer (GE Healthcare)] containing 20 µg of sol-
ubilized Mimivirus proteins and isoelectric focusing (IEF) was
carried out according to the manufacturer’s protocol (IPGphor
II, GE Healthcare). Before the second dimension electrophoresis
was performed, strips were equilibrated twice in 5 ml equilibra-
tion buffer [30% (v/v) glycerol, 3% (w/v) SDS, 6 M urea, 50 mM
Tris-HCl, bromophenol blue, pH 8.8] for 15 min. This buffer
was supplemented with 65 mM DTT for the first equilibration
and with 100 mM iodoacetamide for the second one. The strips
were then embedded in 0.5% agarose and the proteins resolved
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by 10% SDS-PAGE (Protean II XL, Bio-Rad). Gels were stained
either with silver or transferred onto nitrocellulose membranes
for western blot analysis using anti-Mimivirus, anti-L725 or anti-
fiber primary polyclonal antibodies. Then, the membrane was
washed three times with PBS-Tween and probed for 2 h with
horseradish peroxidase-conjugated goat anti-mouse secondary
antibodies.

Comparative Genomics and Phylogenetic
Tree Reconstruction
Protein sequences of mimiviruses were retrieved from the
NCBI GenBank non-redundant protein sequence database (nr)
(http://blast.ncbi.nlm.nih.gov/Blast.cgi). BLASTp searches were
performed with 0.01 as the e-value cutoff. The best hits were col-
lected and aligned using ClustalW (Larkin et al., 2007). The mul-
tiple sequence alignments were trimmed by Gblock (Castresana,
2000). Phylogenetic tree reconstructions were performed using
theMaximum likelihoodmethod of the FastTree tool with default
parameters (Price et al., 2010).

PCR Testing
The presence or absence of Mimivirus genes in the purified viral
solution was determined by qPCR. The most conserved sites
were identified, and universal primers and probes were designed
using the Gemi tool (Sobhy and Colson, 2012; Supplementary
Table S3). The 25 µl-real-time PCR mixture contained 5 µl of
extracted DNA, 12.5 µl qPCRMastermix (Eurogentec, Belgium),
0.5 µl of each primer (10 nmol/µl; Eurogentec), and 0.5 µl
probe (3 nmol/µl; Applied Biosystems UK). The PCR thermal
cycling conditions were: a hold at 50◦C for 2 min, a hold at
95◦C for 5 min, and then 45 cycles of 30 s at 95◦C then 1 min
at 60◦C.

Results

Consequences of Silencing Targeted
Mimivirus Genes on Fiber Formation
We knocked down theMimivirus genes encoding the R135, L725,
L829, R856, and L425 proteins using siRNA. We then compared
the fibers from the viruses produced under these conditions to
those from control viruses produced in the absence of siRNA

or treated with siRNA targeting non-fiber associated proteins
(L425), searching for any abnormal feature of the fibers, such as
short, prone (procumbent), or non-stretched and curved fibers
(Table 1; Figure 2; Supplementary Figures S1–S6). To measure
length ratio for silenced versus control viruses, we selected 4–8
viruses that harbored ≥30 fibers and measured the lengths of the
fibers in each condition (Table 2). To determine protein contri-
bution in fiber formation, we counted the number of gold particle
conjugated with anti-fiber antibodies, hence to Mimivirus fibers
(Table 3; Figure 3).

Control Mimivirus Fibers
The average length of control fibers was 131 nm (Table 2;
Figures 2A and 3A–C, Supplementary Figure S1). Silencing
the gene encoding the L425 protein did not affect fiber
length or topology (Figures 2B and 3D, Supplementary
Figure S2).

Fibers after R856 Gene Silencing
Approximately 60% of si-R856 viruses (meaning viruses treated
with an siRNA targeting the R856 gene) harbored abnormal
or short fibers (Table 1; Figure 2C, Supplementary Figure S3).
We observed that the average length of fibers from si-R856
viruses was 48 nm, which was 64% shorter than control viruses
(p < 1e-6; Table 2). The number of gold particles bound to
fibers was decreased by 81% after silencing R856 (Table 3;
Figure 3).

Fibers after L725 Gene Silencing
Si-L725 viruses harbored approximately 50% abnormal curved
fibers, which were 15% shorter than control fibers (Tables 1 and
2). The number of gold particles bound to fibers was decreased
by 86% after silencing the L725 gene (Table 3; Figures 2D and
3E; Supplementary Figure S4).

Fibers after L829 Gene Silencing
The fiber length of si-L829 viruses was 92 nm, which was 30%
shorter than the control virus fibers (Table 2). In addition, the
fiber layer was sparse in si-L829 viruses and the gold particle
count was decreased by 57% (Tables 1 and 3; Figures 2E and 3F;
Supplementary Figure S5).

TABLE 1 | Number of viruses with fibers with normal or abnormal features.

Silenced gene Total number of
viruses observed

Abnormality % Average
abnormality %

Number of viruses
with short fibers (%)

Number of viruses with
sparse/curved fibers (%)

Control 91 0 0 0 (0) 0 (0)

si-L425 (control) 90 0 0 0 (0) 0 (0)

si-R135 123 16–54 35 20 (16) 47 (38)

si-L725 52 21–71 46 11 (21) 26 (50)

si-L829 90 13–49 31 12 (13) 32 (36)

si-R856 101 58–63 61 59 (58) 5 (5)

Normal fibers are those with classical shape and >100 nm-long, dense and stretched fibers. Sparse/curved fibers are fibers that are not as thick or dense as the normal or
non-stretched fibers. Short fibers are those with a length <100 nm. The percentage of abnormality indicates the percentage of viruses with either short or non-stretched
and sparse fibers. si-, virus after silencing the target gene. See also Supplementary Figures S1–S6.
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FIGURE 2 | Electron micrographs of control Mimivirus and
Mimivirus after knocking down genes encoding fiber associated
proteins (FAPs). (A) Control, (B) Control si-L425 Mimivirus (meaning
Mimvirus treated with siRNA targeting the L425 gene); (C) si-R856

Mimivirus, (D) si-L725 Mimivirus, (E) si-L829 Mimivirus, and (F)
si-R135 Mimivirus. The pictures were taken for virions within
Acanthamoeba polyphaga host. See Supplementary Figures S1–S6 for
additional figures.

TABLE 2 | Length of the Mimivirus fibers according to each siRNA experimental condition.

Virus Number of
viruses observed

Number of fibers Mean length of
fibers ± standard deviation

Relative length of fibers compared to
control (%; silenced / control fiber ∗100)

p-value1

Control 8 30 131.4 ± 23.8 100.0 –

si-R135 6 34 115.0 ± 27.5 87.5 0.0138

si-L725 4 31 110.8 ± 26.0 84.4 0.0021

si-L829 7 33 91.8 ± 25.0 69.9 <1e-6

si-R856 8 29 47.8 ± 18.8 36.4 <1e-6

1P-values were calculated using the ANOVA test (http://www.openepi.com). si-, virus after silencing the target gene. See also Supplementary Figures S1–S6.

Fibers after R135 Gene Silencing
The fiber length of the si-R135 viruses was 12% shorter than the
control and 38% of these fibers were curved (Table 2; Figure 2F,
Supplementary Figure S6).

Additionally, Mimivirus is surrounded by fibers that are gly-
cosylated, and usually there is a space surrounding the virion that

separates the viral particle from the surrounding intracytoplas-
mic content of amoebas. This space can be observed clearly for all
control viruses but not for silenced viruses. These findings indi-
cate that (i) the presence of short or sparse fibers after siRNA
treatment was due to the siRNAs, and not to lipid carrier or
suboptimal experimental conditions, and that these siRNAs were
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TABLE 3 | Number of gold nanoparticles per virus in immunogold.

Type Number of
viruses observed

Total number of
gold particles

Mean number of gold
particles per virus ± SD

Decrease in particles per
virus (%)

Control 1 (no siRNA) 30 880 29 ± 7 0

si-L829 48 611 13 ± 6 57

si-R856 44 249 6 ± 3 81

si-L725 31 129 4 ± 3 86

Control 2 (no anti-fiber antibodies) 39 0 0 ± 0 100

The percentage of reduction measures the drop or reduction in gold particles after knocking down each gene. si-, virus after silencing the target gene.

FIGURE 3 | Electron microscopy with immunogold targeting of
Mimivirus fiber proteins using anti-fiber antibodies (1:100).
(A) Positive control, (B) Positive control (view from one of the capsid
vertices), (C). Negative control with only secondary, not primary,

antibodies, (D) si-L425 Mimivirus (meaning Mimvirus treated with siRNA
targeting the L425 gene), (E) si-L725 Mimivirus, (F) si-L829 Mimivirus,
and (G) si-R856 Mimivirus. The pictures were taken for virions outside
A. polyphaga host.

specific to their targeted genes as we observed different character-
istics of the Mimivirus fibers and their reactivity with antibodies
depending on which gene was targeted by siRNAs; (ii) the R135,
L725, L829, and R856 proteins are either principal elements of
Mimivirus fibers or play a key role during fiber biosynthesis and
can be functionally annotated as fiber associated proteins (FAPs);
and (iii) the L725 and R856 proteins are major contributors to
fiber formation.

Consequences of Silencing Targeted Genes
on Protein Content
Western blot analyses were performed to validate these results
and revealed that the reactivity of antibodies to FAPs was reduced
against viruses whose genes were silenced compared to con-
trol viruses (Figures 4A,B). Thus, intensity for three bands that
might correspond to R135, L725, and L829 molecular masses
were reduced in silenced viruses. To confirm these results,
nitrocellulose membranes were incubated with anti-Mimivirus
(Figures 4C,D) and anti-L725 antibodies (Figures 4E,F), which
showed reduced reactivities against silenced viruses, although
some differences in reactivities were minor. These results suggest
that the R135, L725, L829, and R856 proteins might be associ-
ated with Mimivirus fiber formation and changes observed in the
Mimivirus fiber layer might be due to depletion of these proteins

(i.e., post-transcriptional events). 2D-gel electrophoresis west-
ern blots performed for both si-L829 and si-R856 viruses also
revealed a reduction in anti-fiber antibodies bound to the targeted
FAPs compared to control viruses (Figure 5). Thus, knocking
down the genes encoding R135, L725, L829, and R856 protein led
to some decreases in the binding of anti-fiber antibodies to these
proteins, which indicate that they may play a role in fiber forma-
tion. Taken together, TEM results, immunogold and proteomic
analyses showed that R135, L725, L829, and R856 proteins can be
functionally annotated as FAPs.

Comparative Genomics and Protein
Re-Annotation
We propose here that the R135, L725, L829, and R856 proteins
can be annotated as Mimivirus FAPs, and their names can be
abbreviated as FAP1, FAP2, FAP3, and FAP4, respectively.

Searching for sequence homology of the FAPs with proteins
from giant virusMegaviralesmembers and other organisms from
public sequence databases revealed that these proteins are con-
served in most of the giant viruses, but do not share sequence
homology with any fiber or spike protein encoded by any
virus, including adenoviruses (Tables 4 and 5; Supplementary
Table S1; Figure S7). FAP2 (L725) is an ORFan only present
in mimiviruses. FAP4 (R856) contains seven TPR domains and
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FIGURE 4 | Western blot analyses of fibers from silenced
Mimivirus and control Mimivirus. (A) Reduction in anti-Mimivirus
fiber antibodies (1:1000) binding to fiber proteins of si-R135
Mimivirus and (B) Reduction in anti-fiber antibodies (1:1000) binding
to fiber proteins of si-L725, si-L829, si-R856, and si-L425 Mimivirus,
(C) Reduction in anti-Mimivirus antibodies (1:5000) binding to si-R135
Mimivirus, and (D) Reduction in anti-Mimivirus antibodies (1:5000)
binding to si-L725, si-L829, si-R856, and si-L425 Mimivirus,

(E) Reduction in anti-L725 antibodies (1:1000) binding to si-R135
Mimivirus, and (F) Reduction in anti-L725 antibodies (1:1000) binding
to si-L725, si-L829, si-R856, and si-L425 Mimivirus. Figures
correspond to different experiments. Ctrl indicates control Mimivirus;
si- indicates the virus after silencing a target gene; molecular
masses are indicated on the left; molecular masses for FAPs are
as follows: L725: 27 kDa; R856: 40 kDa; L829: 50 kDa; and
R135: 77 kDa.
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FIGURE 5 | Mimivirus protein profiles as shown by 2D-gel
electrophoresis and western blot with anti-fiber antibodies
(1:5000). (A) Silver stained and western blotted gel electrophoresis of
Mimivirus in the absence of siRNA. (B) Silver stained and western
blotted gel electrophoresis of si-L829 Mimivirus. (C) Silver stained and

western blotted gel electrophoresis of si-R856 Mimivirus. The decrease
in spot intensity indicates the depletion of fiber proteins.
Immunoreactive protein spots are shown using arrows and the locus
names; the spots were previously identified in (Renesto et al., 2006;
Boyer et al., 2011).

shares sequence similarity with hypothetical proteins encoded by
archaea, bacteria, choanoflagellida, ciliophora, metazoa (includ-
ing rotifera, cnidaria, and hydra), and from metagenomes,
but not with any protein encoded by any virus (Table 5,
Supplementary Table S1; Supplementary Figures S8–S10). FAP1
(R135) shares homology with oxidoreductases and hypothet-
ical proteins encoded by Acanthamoeba, metazoa, fungi, and
bacteria, including proteobacteria, as well as P. sibericum, and
metagenomes. Finally, FAP3 (L829) is encoded by mimiviruses,
marseilleviruses, Pandoravirus sp., and shares similarity with
hypothetical proteins encoded by bacteria, and eukaryotes,
including amoebozoa and fungi. Phylogenetic analyses indicate
that FAP4 is widely distributed among environmental and aquatic
species (Supplementary Figure S10). In addition, tree topologies
suggest that FAP1 and FAP4 may have been subject to horizontal
gene exchange with cellular organisms.

Taken together, these data indicate that Mimivirus FAPs are
divergent from proteins that are encoded by other viruses, includ-
ing Megavirales members other than giant viruses of amoeba,
and might share a common ancestor or have been exchanged
through horizontal gene transfer with proteins from cellular
organisms. Moreover, with our siRNA-based strategy, we are
able to functionally annotate 30 proteins from mimiviruses, as

well as re-annotate 108 proteins from metagenomic (dark mat-
ter) databases and approximately 1,000 hypothetical proteins
archived in public sequence databases and encoded by archaea,
bacteria, and eukaryotes (Table 5).

Discussion

We demonstrated, using siRNA, that four proteins are involved
in Mimivirus fiber formation. A disturbance in the expression of
one of these proteins significantly altered the size or shape of these
fibers, which indicates that these proteins are either elements of
the fiber or involved in fiber formation. To our knowledge, this is
the first study that described a modification of Mimivirus virions,
and that used siRNA to determine the function of a Mimivirus
gene.

In this article, we identified, using RNAi, the function of
four proteins, including the L725 and L829 proteins with
previously unknown function, a putative oxidoreductase (R135)
and a TPR-containing protein (R856; Supplementary Figure S10).
Comparative genomic analyses indicated that the L725 encoding
gene is an ORFan, while R135, L829, and R856 are unique
amongst viruses to mimiviruses, but have homologs in amoeba,
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TABLE 4 | The distribution of fibers and homologs to fiber associated proteins (FAPs) among viruses that infect Acanthamoeba sp. and were isolated in
our laboratory or by other teams.

Virus Fibers R135 (FAP1) L725 (FAP2) L829 (FAP3) R856 (FAP4)

APMV§ Yes + ∗ + ∗ + ∗ + ∗

APMV-M4§ No # + ∗ # #

ACMaV§ Yes + ∗ + ∗ + ∗ + ∗

APLenV§ Short + + + +
APMoV§ Yes + + +
Monv§ No + + +
Goul§ No + + + +
Crdo11§ Yes + + +
Crdo7§ Yes + + +
MegCV Yes + + +
MarsV§ No I

LauV No I

PsV Yes I

PdV Yes I

Pvs I

Sputnik§ Yes

(+) means detected as a hit in the NCBI BLASTp search, with an e-value <0.01 and identity >40%. (I) identity is 20–30%; (II) identity is 30–40%; ∗Reliable qPCR threshold
cycle (Ct) values; #deleted gene; §the virus was isolated in our laboratory (see also Supplementary Figure S7).
APMV, Acanthamoeba polyphaga mimivirus; APMV-M4, Acanthamoeba polyphaga mimivirus isolate M4; ACMaV, Acanthamoeba castellanii mamavirus; APMoV,
Acanthamoeba polyphaga moumouvirus; CroV, Cafeteria roenbergensis virus BV-PW1; APLenV, Acanthamoeba polyphaga lentillevirus; LauV, Lausannevirus; MarsV,
Marseillevirus; MegCV, Megavirus chiliensis; Crdo11, Courdo11 virus; Crdo7, Ccourdo7 virus; Goul, Moumouvirus goulette; and Monv, Moumouvirus monve; PsV,
Pandoravirus salinus; PdV, Pandoravirus dulcis; Pvs, Pithovirus sibericum (La Scola et al., 2008; Boyer et al., 2009, 2011; Fischer et al., 2010; Arslan et al., 2011; Colson
et al., 2011; Yoosuf et al., 2012; Philippe et al., 2013).

TABLE 5 | Number of BLASTp hits corresponding to each Mimivirus fiber-associated protein.

Mimiviridae1 Viruses Archaea Bacteria Eukaryota Metagenome2

R135 (FAP1) 12 0 0 415 71 88

L725 (FAP2) 5 0 0 0 0 0

L829 (FAP3) 14 0 0 18 4 0

R856 (FAP4) 2 0 7 174 304 20

The numbers represent the number of hits per group of organisms using BLASTp against the NCBI or UniProt Archive (UniParc)2 sequence databases. For details, see
Supplementary Table S1. L725 gene is an ORFan and conserved only in mimiviruses. FAP means fiber associated protein.
1 Includes hits in mimiviruses and closely related viruses, including pandoraviruses and Pithovirus sibericum; 2Retrieved from BLASTp search against UniProt Archive
(UniParc) database, which includes UniProt Metagenomic and Environmental Sequences (UniMES) database.

bacteria, fungi, and metazoa, and might have been exchanged
by horizontal gene transfer. It is noteworthy that Mimivirus
protein R856 belongs to the TPR superfamily of proteins that
were reported to be involved in protein–protein interactions
(Das et al., 1998; Blatch and Lassle, 1999; D’Andrea and Regan,
2003; Cortajarena and Regan, 2006), virus–host interactions
(Callahan et al., 1998; Jeshtadi et al., 2010), and regulation of
virus replication (Lin et al., 2012; Tani et al., 2013). We provide
evidence for a new function of this protein in the formation of
Mimivirus fibers.

ORFan and un-annotated genes occupy more than 50% of the
gene repertoire of Mimivirus. Here, in addition to providing evi-
dence that four proteins are FAPs by siRNA, our new strategy
allowed us to re-annotate 30 proteins in mimiviruses and closely
related giant viruses that share sequences homology with FAPs. In
addition, this strategy opens a way to re-annotate proteins from
sequence databases and genomic dark matter, as was the case here
for >500 bacterial proteins and approximately 100 proteins from
metagenomes, (Table 5).

In this work, we targeted genes of Mimivirus fibers that are
easy to observe and study by electron microscopy, immuno-
gold, and proteomics. However, our strategy of silencing
ORFan genes in giant viruses opens the way to identify
the function of their complete gene repertoires. In particu-
lar, the proteins of giant viruses of amoeba, like those from
other intracellular species, are poorly expressed and diffi-
cult to crystallize, making their functional analysis difficult.
This proposed approach will lead to the annotation of hun-
dreds of proteins without known function found in public
databases and differentiate between junk DNA and truly used
genes.
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