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Drug efflux protein complexes confer multidrug resistance on bacteria by transporting a
wide spectrum of structurally diverse antibiotics. Moreover, organisms can only acquire
resistance in the presence of an active efflux pump. The substrate range of drug
efflux pumps is not limited to antibiotics, but it also includes toxins, dyes, detergents,
lipids, and molecules involved in quorum sensing; hence efflux pumps are also
associated with virulence and biofilm formation. Inhibitors of efflux pumps are therefore
attractive compounds to reverse multidrug resistance and to prevent the development of
resistance in clinically relevant bacterial pathogens. Recent successes on the structure
determination and functional analysis of the AcrB and MexB components of the
AcrAB-TolC and MexAB-OprM drug efflux systems as well as the structure of the fully
assembled, functional triparted AcrAB-TolC complex significantly contributed to our
understanding of the mechanism of substrate transport and the options for inhibition
of efflux. These data, combined with the well-developed methodologies for measuring
efflux pump inhibition, could allow the rational design, and subsequent experimental
verification of potential efflux pump inhibitors (EPIs). In this review we will explore how the
available biochemical and structural information can be translated into the discovery and
development of new compounds that could reverse drug resistance in Gram-negative
pathogens. The current literature on EPIs will also be analyzed and the reasons why no
compounds have yet progressed into clinical use will be explored.

Keywords: multidrug resistance, drug efflux, efflux pump inhibitor, Gram-negative, pathogen, antimicrobial
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Introduction

Over the last two decades there has been a dramatic surge in the number of multidrug resistant
bacteria, yet paradoxically the number of pharmaceutical companies developing new antimicro-
bial agents has dwindled during this same period. As a result, antibiotic resistance is now one of
the world’s most pressing health problems (WHO, 2014). Therefore, new treatments to combat
drug resistant bacteria are urgently needed if we do not want to return to the high mortality rates
associated with infections during the pre-antibiotic era (Bush et al., 2011; WHO, 2014).

Hospital acquired pathogens such as Staphylococcus aureus,Klebsiella pneumonia,Acinetobacter
baumannii, and Pseudomonas aeruginosa which can cause life-threatening infections display high
levels of antibiotic resistance (Poole, 2011; Bassetti et al., 2013). Resistance of K. pneumonia
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to carbapenems, the last resort treatment for severe infections, of
up to 54% of cases were reported (WHO, 2014).

Recently a few new antibiotics have been approved for the
use against Gram-positive organisms (Butler and Cooper, 2011).
However, infections caused by Gram-negative pathogens proved
much harder to treat due to the very high intrinsic drug resis-
tance displayed by Gram-negative organisms. This intrinsic drug
resistance is due to presence of an outer membrane which acts
as a permeability barrier and by the expression of drug efflux
pumps.

Drug efflux pumps are protein complexes which reside in
the membrane and remove antimicrobials and toxins, thereby
lowering their concentration inside the cell to sub-toxic levels
(Poole, 2004, 2005; Piddock, 2006a; Nikaido and Pages, 2012).
These proteins recognize and expel a wide range of struc-
turally diverse antibiotics with different mechanisms and sites
of action. The clinical implication of this substrate promis-
cuity is the development of multidrug resistance where a
pathogen displays resistance against multiple classes of antimi-
crobials.

Apart from antibiotics drug efflux proteins can also trans-
port antiseptics and disinfectants (Chuanchuen et al., 2003;
Sanchez et al., 2005; Mima et al., 2007; Pumbwe et al., 2007),
detergents (including naturally occurring bile salts; Rosenberg
et al., 2003; Lin et al., 2005), fatty acids (Lee and Shafer, 1999;
Lennen et al., 2013), heavy metals (Silver and Phung, 1996;
Walmsley and Rosen, 2009), solvents (White et al., 1997; Ramos
et al., 2002; Segura et al., 2012), and virulence factors (Piddock,
2006b). Therefore, drug efflux pumps are also important con-
stituents of bacterial pathogenesis, virulence, and biofilm forma-
tion (Hirakata et al., 2002, 2009; Piddock, 2006b; Ikonomidis
et al., 2008; Martinez et al., 2009; Baugh et al., 2012, 2014; Amaral
et al., 2014). In addition, micro-organisms can only acquire resis-
tance in the presence of drug efflux pumps (Lomovskaya and
Bostian, 2006; Ricci et al., 2006; Zhang et al., 2011; Piddock,
2014) as these non-specific pumps remove most compounds until
the organism has had time to acquire resistance to an antibiotic
through more specific adaptive mechanisms.

Despite their crucial role in bacterial pathogenesis and mul-
tidrug resistance there are currently no inhibitors for drug efflux
pumps in clinical use. Therefore drug efflux pumps are attractive
targets for inhibition. Efflux pump inhibitors (EPIs) will (a) syn-
ergise with currently used antibiotics, (b) restore the efficacy of
antibiotics to which resistance has arisen, (c) reduce the incidence
of emergence of drug-resistant pathogens, (d) reduce the ability
of pathogens to infect the host as the inhibition of efflux atten-
uates the bacterium, and (e) prevent the development of highly
drug resistant biofilms

Drug Efflux Pumps in Gram-Negative
Bacteria

Gram-negative pathogens rely on tripartite protein assemblies
that span their double membrane to pump antibiotics from
the cell. The tripartite complex consists of an inner membrane
protein (IMP) of the resistance nodulation cell division (RND)

family, an outer-membrane protein (OMP), and a periplas-
mic membrane fusion protein (MFP) which connect the other
two proteins (Figure 1). The inner-membrane protein cataly-
ses drug/H+ antiport and is the part of the complex responsi-
ble for drug selectivity. The best studied tripartite drug efflux
complexes are the AcrA-AcrB-TolC and MexA-MexB-OprM
transporters from Escherichia coli and P. aeruginosa, respec-
tively, (Du et al., 2013). The IMPs AcrB and MexB share
86% similarity and MexB can functionally substitute for AcrB
(Krishnamoorthy et al., 2008; Welch et al., 2010). The asym-
metric structure of the AcrB homotrimer and subsequent bio-
chemical analysis revealed a functional rotating mechanism
where the monomers cycle through the different states loose
(L), tight (T), and open (O; Murakami et al., 2006; Seeger
et al., 2006, 2008b). IMPs such as AcrB consist of a trans-
membrane domain and periplasmic domain. The drug efflux
pathway from the periplasm/outer membrane leaflet through the
periplasmic domain of AcrB has been the focus of many stud-
ies and are now relatively well-understood (Murakami, 2008;
Seeger et al., 2008a; Eicher et al., 2009; Misra and Bavro,
2009; Nikaido and Takatsuka, 2009; Pos, 2009; Nikaido, 2011;
Nikaido and Pages, 2012; Ruggerone et al., 2013a,b). Recently,
it was also found that mutations at the cytoplasmic face of
MexB affected transport of drugs with targets inside the cell
(Ohene-Agyei et al., 2012). This raises the possibility that sim-
ilar to the cytoplasmic pathway for Cu(II) in CusA (Delmar
et al., 2014), MexB might also have the ability to remove
antibiotics from the inner membrane leaflet/cytoplasm (Ohene-
Agyei et al., 2012). Targeted geometric simulations showed that
such a cytoplasmic pathway could be possible even though it
would not necessarily out-compete the periplasmic channel for

FIGURE 1 | Schematic representation of a tripartite drug efflux
complex. (A) The complex consists of three proteins which span the
inner-membrane (CM), the outer membrane (OM), and the periplasmic space.
The inner-membrane protein (IMP), e.g., AcrB or MexB is responsible for
substrate specificity and catalyzes �pH dependent drug transport. Examples
of the outer membrane protein (OMP) are TolC or OprM. The periplasmic
membrane fusion protein (MFP), e.g., AcrA or MexA connects the IMP and the
OMP. (B) Structures of the individual components of the efflux pump. The
MexA (pdb: 2V4D), MexB (pdb: 2V50), and OprM (pdb: 1WP1) proteins from
Pseudomonas aeruginosa are given as examples.
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drug binding and transport (Phillips and Gnanakaran, 2015).
Biochemical and structural analysis revealed that the perplas-
mic binding site in AcrB contains a shallow (proximal) and
deep (distal) binding pocket separated by a switch loop (G-
loop) consisting of residues 614–621 (Nakashima et al., 2011;
Eicher et al., 2012; Cha et al., 2014). Conformational flexibil-
ity in this loop is necessary to move the substrate along the
extended binding site. Mutations that change the small glycine
residues in this loop to bulkier residues affects transport of
larger macrolide antibiotics such as erythromycin while the activ-
ity toward smaller compounds such as novobiocin, ethidium,
and chloramphenicol remained unaffected (Bohnert et al., 2008;
Wehmeier et al., 2009; Nakashima et al., 2011, 2013; Eicher
et al., 2012). Therefore, EPIs would most effectively inhibit the
efflux of different antibiotics by interaction with the switch
loop.

Due to the complexity of these macromolecular structures
progress on elucidating their assembly and structure was slow.
Only very recently Du et al. (2014) used a creative approach of
genetic fusion proteins to solve the first structure of a partially
active, fully assembled, tripartite pump in the presence of a mod-
ulatory partner. This structure of AcrA–AcrB–AcrZ–TolC shed
light on long disputed subunit stoichiometries and revealed that
the complex assembles in a 3 : 6 : 3 ratio of AcrB : AcrA : TolC
with one monomer of AcrZ bound to each subunit of AcrB. The
role of the small protein AcrZ is not clear, however, as it alters
the substrate specificity of AcrB (Hobbs et al., 2012) it most likely
plays a modulatory role.

The structural similarity between transporters from different
Gram-negative organisms means that EPIs developed against,
e.g., the AcrA–AcrB–TolC efflux pump from E. coli would most
likely be effective against other pathogens also. Our current
understanding of the structure and function of RNDefflux pumps
from Gram-negative bacteria could therefore provide the basis
for the informed and efficient design of inhibitors against these
protein complexes.

Approaches to Inhibit Drug Efflux

The expression, function and assembly of drug efflux pumps of
the RND class can be targeted in several ways (Figure 2).

Targeting the Regulatory Network that
Controls the Expression of Efflux Pumps as
Levels of Pump Expression are Controlled
by Activators and Repressors
Some progress has already been made in understanding the
regulation of efflux pump expression, e.g., expression of AcrB
from Salmonella enterica (Blair et al., 2014) and the regulation
of efflux pump expression in P. aeruginosa (Wilke et al., 2008;
Starr et al., 2012; Hay et al., 2013; Purssell and Poole, 2013;
Lau et al., 2014). The expression levels of efflux pumps could
be measured by real time PCR or with green fluorescent pro-
tein reporter fusions (Bumann and Valdivia, 2007; Ricci et al.,
2012). Both these methods are amenable to high-throughput
processing.

FIGURE 2 | Inhibition strategies. Schematic representation of a tripartite
drug efflux complex in complex with a small protein such as AcrZ. The
possible approaches of inhibiting drug efflux are depicted.

Changing the Molecular Design of Old
Antibiotics so that they are No Longer
Recognized and Transported by the Efflux
Pump
Given the wide range of compounds which could be recog-
nized by drug efflux transporters, the plasticity in the binding
sites, and the redundancy in aromatic residues in the bind-
ing pocket which could stabilize substrate binding (Du et al.,
2013), this approach might prove a daunting task. In addition,
altering the chemical structure of the antibiotic might render it
less efficient against its intended cellular target. However, some
progress has been made in this regard for a different class of
drug efflux protein, the ATP binding cassette transporter, human
P-glycoprotein where the substrate taxol was chemically modi-
fied so that P-glycoprotein no longer recognized it. This allowed
the drug to cross the blood brain barrier and access its target
receptor without being removed by P-glycoprotein (Rice et al.,
2005).

Preventing the Assembly of the Efflux Pump
Components into a Functional Tripartite
Pump by Targeting Protein–Protein
Interfaces
This is a very promising approach which is still under-developed
due to the lack of information of how tripartite pumps assemble.
However, Tikhonova et al. (2011) showed that designed ankyrin
repeat proteins (DARPins) could inhibit AcrAB-TolC function
by inhibiting the interaction between AcrA and AcrB. The recent
structure of a complete tripartite drug efflux pump and the infor-
mation gained from that also opens up exciting new possibilities
(Du et al., 2014). The interaction of purified protein components
of the pump with each other can be measured with surface plas-
mon resonance (SPR). The ability of efflux pumps to assemble
in vivo can be measured by cross-linking in whole cells with
subsequent co-purifying of the pump components (Welch et al.,
2010).
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Disrupting the Interaction Between AcrB
and AcrZ
The exact role of AcrZ in drug efflux is still ill-defined. However,
as AcrA–AcrB–TolC has a diminished ability to confer resis-
tance to some drugs in the absence of AcrZ (Hobbs et al., 2012),
this approach could be promising for restoring sensitivity to
some antibiotics. Homologs of AcrZ are found in most Gram-
negative bacteria, therefore the modulatory effect of RND class
of transporters by small proteins is probably a widely conserved
occurrence. The interaction between the IMP and a small protein
such as AcrZ could be measured with SPR or with cross-linking
in cells as mentioned above.

Directly Blocking the IMP with a High Affinity
Competing Substrate or Trapping the IMP in
an Inactive Conformation
The recent crystal structure of AcrB and MexB bound to an
inhibitor (Nakashima et al., 2013) and the advances in our under-
standing of how drugs are bound makes this option very attrac-
tive (see Efflux Pump Inhibitors Against Gram-Negative Bacteria
Identified So Far). The ability of compounds to inhibit antibi-
otic efflux can be measured using drug accumulation or drug
efflux assays (see Inhibition of Substrate Transport), while direct
interaction between the test compound and the IMP component
could be determined with isothermal calorimetry (ITC) or SPR
(Tikhonova et al., 2011).

Blocking the Exit Duct (the OMP)
A set of indole derivatives was designed based on the structure of
TolC. These compounds were able to synergise with antibiotics
and were reported to act on TolC specifically, presuming by pre-
venting opening of the channel (Zeng et al., 2010). In addition,
TolC from E. coli contains an electronegative entrance formed
by an aspartate ring which is widely conserved throughout the
TolC family and which could be a target for blocking by large
cations (Andersen et al., 2002). The biggest challenge with this
approach is achieving selectivity to the bacterial pores. Blocking
of the OMP could be detected by inhibition of antibiotic efflux
through the tripartite pump or by disruption of TolC-mediated
conductance.

Depleting the IMP From the Energy Needed
to Drive the Drug/H+ Antiport Reaction
The proton motive force (pmf) can easily be disrupted by the use
of ionophores or compounds that disrupt the membrane integrity
in one way or another. However, these effects are mostly not spe-
cific for bacterial membranes and hence compounds that act in
this way would be cytotoxic to the host cells too. The magnitude
of the pmf and the effect of test compounds on these could be
determined by the use of fluorescent probes specific for the ��
or �pH components of the pmf (Venter et al., 2003).

How Could EPIs be Identified?

Significant effort went into the biochemical and structural char-
acterization of drug efflux proteins from Gram-negative bacteria.

Recent successes such as the structural determination of an
intact pump and of IMPs bound to an inhibitor (Nakashima
et al., 2013; Du et al., 2014) offer a solid platform for the
rational design of EPIs using quantitative structure-activity rela-
tionship data (Ruggerone et al., 2013a; Wong et al., 2014;
Figure 3).

Recently we used in silico screening to identify com-
pounds which would bind to AcrB with reasonable affin-
ity. Of the roughly fifty compounds docked, six compounds
were selected for further study. The docking allowed us to
provide an order of efficiency of the compounds as poten-
tial EPIs. The biochemical data compared well with the pre-
dictions from the docking showing that in silico screen-
ing could be used as an effective screening tool to limit
the amount of experiments needed or save on precious and
hard earned purified natural products (Ohene-Agyei et al.,
2014).

Another approach with good scope for success is investi-
gating compounds purified from plants (Tegos et al., 2002).
Traditional peoples have used plants to treat infections for 100s
if not 1000s of years. In western medicine, plants are thus
far an under-utilized source of chemical components in the
treatment of infectious disease. Resistance to medicinal plant
extracts have not been described yet and extracts of herbal
medicines have been shown to potentiate antibiotic action in
resistant pathogens (Garvey et al., 2011; Ohene-Agyei et al.,
2014). Therefore, it is likely that as well as antibacterial chemicals,
plants may also produce compounds that circumvent efflux-
mediated resistance. Hence, activity guided fractionation can be
used to identify the bio-active phytochemicals in plant extracts
with EPI activity against Gram-negative organisms (Garvey et al.,
2011).

Tools for Studying Efflux Pump
Inhibitors

The most significant problem in current screening campaigns
for EPIs is that in many cases the synergism observed could
be attributed to non-specific damage to the bacterial mem-
brane. This would be a strong indicator the compound would
have similar activity against mammalian cells and hence would
be cytotoxic. This was clearly the case for the EPI Phe-
Arg-β-naphthylamide (PAβN; Marquez, 2005; Lomovskaya and
Zgurskaya, 2011).

Therefore, there need to be a thorough investigation in order
to verify true EPI action (Figure 3). Compounds that perme-
abilise the membrane of Gram-negative organisms will always
show synergism with antibiotics. For example, the modulatory
effect of α-tocopherol in multidrug resistant Gram-negative bac-
teria such as P. aeruginosa and E. coli could most probably
be attributed to the effects of α-tocopherol on the membrane
(Andrade et al., 2014). It is therefore important that potential
inhibitors are not only identified on their synergism with antibi-
otics, but that a subsequent biochemical assays are performed to
determine that the compounds are truly acting by inhibiting drug
efflux.
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FIGURE 3 | The tools for EPI discovery.

In order to qualify as an EPI a compound must be able to
satisfy the following criteria as stipulated by Lomovskaya et al.
(2001).

(a) It must potentiate the activity of antibiotics to which a strain
has developed resistance as a result of the expression of a drug
efflux pump.

(b) It should not have an effect on sensitive strains which lack the
drug efflux pump.

(c) It must not reduce the MIC of antibiotics which are not
effluxed.

(d) It must increase the level of accumulation and decrease the
level of extrusion of compounds which are substrates of the
efflux pump.

(e) It must not permeabilise the outer membrane.
(f) It must not affect the proton gradient across the inner mem-

brane.

All the above criteria can be addressed with well-
developed techniques as outlined below and in Figure 3,
which would be amenable to scale-down for high throughput
analysis.

Measuring Synergism
The first thing to do is to determine the MIC of the test com-
pound using standard broth dilution assays (Lomovskaya et al.,

2001; Welch et al., 2010; Ohene-Agyei et al., 2012, 2014). Ideally
the compound should not be toxic to bacterial cells or only toxic
at high concentrations. This would prevent resistance against the
test compound from developing very quickly. The compound
would then be used at concentrations below its MIC (usually
4× lower than the MIC) to test for synergism with antibiotics
to which the organism has developed resistance. Synergism is
best studied using checkerboard assays. These assays could be
performed in a 96-well plate format with the antibiotic serially
diluted along the ordinate and the test compound serially diluted
along the abscissa (Lomovskaya et al., 2001; Orhan et al., 2005;
Ohene-Agyei et al., 2014). The MIC of the antibiotic is deter-
mined in the presence of a range of different concentrations of the
compound. Antibiotic-EPI interactions are subsequently classi-
fied on the basis of fractional inhibitory concentration (FIC). The
FIC index is the sum of the FIC of each of the antibiotics, which in
turn is defined as the MIC of the antibiotic when used in combi-
nation divided by the MIC of the antibiotic when used alone. The
combination is considered synergistic when the �FIC is ≤0.5,
indifferent when the �FIC is >0.5 to <2, and antagonistic when
the �FIC is ≥2.

Ensuring the Compound has no Effect on
Strains Which Lack the Drug Efflux Pump
An effective way of testing the effect of a compound on efflux
pump mediated resistance is to use a wild-type antimicrobial
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resistant strain and a sensitive strain with a genomic deletion of
the IMP. Checkerboard assays can be performed on the wild type
strain to determine if MIC drop toward that of sensitive strain.
Conversely the compound should not have an effect on the MIC
of the sensitive strain.

However, it is important not to use a strain with a TolC dele-
tion. TolC is a multi-functional protein that operates with the
majority of MFP-dependent transporters encoded in the genome
of E. coli (Zgurskaya et al., 2011). Results from TolC minus cells
would therefore be complicated by effects which are not related
to active drug efflux (Ohene-Agyei et al., 2014).

Inhibition of Substrate Transport
The ability of a potential EPI to inhibit substrate transport
in a drug efflux pump can be measured by performing sub-
strate accumulation assays or by measuring substrate efflux
in the absence/presence of the putative EPI. Many fluorescent
compounds are also substrates for drug efflux pumps. If these
compounds undergo a change in fluorescence when bound to
DNA/membrane lipids they can be used to measure the efflux
activity of drug transporters. Many fluorescent compounds fulfill
this role and are frequently used to measure drug efflux; exam-
ples are Hoechst 33342, berberine, ethidium bromide, TMA-DPH
[1-(4-trimethylammoniumphenyl)-6-phenyl-1,3,5-hexatriene p-
toluenesulfonate], N-phenylnaphthylamine and Nile Red which
display enhanced fluorescence intensity when accumulated inside
the cell or doxorubicin and rhodamine 6G for which accu-
mulation inside cells results in quenching of the fluorescence
signal (Lee et al., 2001; Lomovskaya et al., 2001; Seeger et al.,
2008a,b; Ohene-Agyei et al., 2012, 2014; Cha et al., 2014). In
drug accumulation assays the difference in rate of accumu-
lation of the fluorescent compound between cells with and
without an active efflux pump are used as an indication of
efflux, since efflux will result in lower accumulation of com-
pound. In drug efflux assays, the de-energized cells are pre-
loaded with the fluorescent compound and then energized by
the addition of glucose to catalyze drug efflux (observed as a
drop in fluorescence). Drug influx assays are more straight-
forward and much quicker to perform than drug-efflux assays
as de-energization and pre-loading can be time consuming.
In addition, all the samples must be pre-loaded to the same
level of fluorescence to avoid differences in efflux rate as
a result of differences in the concentration of drug inside
the cell. The main drawback of using fluorescent compounds
to measure the effect of an EPI on drug efflux is that the
potential EPI could be highly colored or fluorescent itself
and thus interfere with the measurement. Recently, Bohnert
et al. (2010) developed a method using Nile Red for efflux
which are compatible with highly colored or fluorescent com-
pounds.

Testing of Outer Membrane Permeabilization
The most effective method to measure outer membrane perme-
abilization is the nitrocefin hydrolysis method. Nitrocefin is a
chromogenic β-lactam which changes from yellow (∼380 nm)
to red (∼490 nm) when it is hydrolyzed by the periplasmic
β-lactamase, hence nitrocefin hydrolysis can be followed by

measuring the absorbance at 490 nm. If the test compound
permeabilises the outer membrane, nitrocefin will diffuse more
quickly over the membrane and hence the rate of nitrocefin
hydrolysis will increase as a result (Lomovskaya et al., 2001;
Ohene-Agyei et al., 2014). It is important to perform these essays
in the presence of the ionophore CCCP to de-energize cells and
prevent nictrocefin efflux.

Testing of Inner Membrane Permeabilization
Several methods exist to measure permeabilization of the inner-
membrane. ADNA stain which does not penetrate themembrane
of intact bacterial cells and which will undergo an increase
in fluorescence quantum yield when bound to DNA such as
propdium iodide or SYTOX Green could be used (Roth et al.,
1997; Nakashima et al., 2011). SYTOX Green would be preferred
for its sensitivity as it undergoes a >500-fold enhancement in
fluorescence emission when bound to DNA.

Other methods to measure the intactness of the bacterial
inner membrane involve the use or measurement of the pmf
in E. coli. Opperman et al. (2014), employed an assay based on
the uptake of [methyl-3H]β-D-thiogalactopyranoside ([3H]TMG)
by the LacY permease. The activity of the lactose permease
is dependent on the pmf as it catalysis substrate/H+ symport.
Lomovskaya et al. (2001) probed the intracellular pH of E. coli
cells by measuring the nuclear magnetic resonance (NMR) of
the 31P in the inner-membrane. Although both these two meth-
ods are effective they are quite time consuming and require
access to specialist equipment. The magnitude of the individ-
ual components of the pmf can be measured directly by a
simple fluorescence assay utilizing the fluorescent membrane
potential probe 3,3′-diethyloxacarbocyanine iodide (DIOC2(3);
Venter et al., 2003). Moreover, the DIOC2(3) assay can eas-
ily be adapted to 96-well format for the quick analysis of
test compounds on the inner membrane in high-throughput
screening.

Use of a Non-Substrate
Another way of ruling out false positives and establishing that
compounds do not act non-specifically is to measure the effect of
the test compound on an antibiotic which is not an efflux pump
substrate. For example our group used rifampicin, which is not
transported by the AcrAB-TolC drug efflux pump from E. coli
(Ohene-Agyei et al., 2014). The test compounds should not lower
the MIC of rifampicin. Any reduction in the MIC of rifampicin
would indicate that the compound does not potentiate antibiotic
action by inhibition of efflux, but acts by indirect means such as
permeabilization of the membrane.

EPIs Against Gram-Negative Bacteria
Identified so Far

The first EPI to be identified against RND pumps in Gram-
negative bacteria was the peptidomimetic PAβN, originally
referred to as MC-2077110. PAβN was identified in a screen
for levofloxacin potentiators against resistant P. aeruginosa.
Unfortunately, in addition to efflux pump inhibition it also

Frontiers in Microbiology | www.frontiersin.org 6 April 2015 | Volume 6 | Article 377

http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/
http://www.frontiersin.org/Microbiology/archive


Venter et al. Inhibition of drug efflux pumps

TABLE 1 | Efflux pump inhibitors (EPIs) against Gram-negative pathogens.

Compound Source Protein/
Organism

Actions1 Essays performed Reference

Synthetic Compounds

Phe-Arg-
β-naphthylamide (PAβN;
MC-207,110)

Synthetic MexAB-OprM,
MexCD-OprJ,
MexEF-OprN
(Pseudomonas
aeruginosa)

Synergise with
fluoroquinolones

Antibacterial
Synergism
Substrate accumulation
Inhibition of efflux
Effect on
outer-membrane

Lomovskaya et al.
(2001)

7-nitro-8-methyl-4-[2′-
(piperidino)ethyl]
aminoquinoline

Alkylamino-quinolines AcrAB-TolC
(Enterobacter
aerogenes)

Reduced MIC of Cam, Nor,
and Tet
Increased Cam uptake

Antibacterial
Synergism
Substrate accumulation

Mallea et al. (2003)

2,8-dimethyl-4-(2′-
pyrrolidinoethyl)-
oxyquinoline

Alkoxy-quinoline
derivative

E. aerogenes
Klebsiella
pneumonia

Reduced MIC of Nor, Tet,
Cam

Substrate accumulation
Effect on membrane

Chevalier et al. (2004)

1-(1-Naphthylmethyl)-
piperazine
(NMP)

Synthetic AcrAB, AcrEF
(Escherichia coli)

Reduction in MICs of Lev,
Oxa, Rif, Cam, Clr
Increased accumulation of
ethidium

Antibacterial
Substrate accumulation

Kern et al. (2006)

New chloroquinoline
derivatives

Fluoroquinolones AcrAB-TolC
(E. aerogenes)

Reduced MIC of Cam Antibacterial
Substrate accumulation

Ghisalberti et al. (2006)

3-amino-6-carboxyl-
indole,
3-nitro-6-amino-indole

Designed and
synthesized based on
TolC structure

AcrAB-TolC
(E. coli)

Reduced MIC of cam, tet,
ery, and cip

Antibacterial
Synergism

Zeng et al. (2010)

4-(3-
morpholinopropylamino)-
quinazoline

4-alkylaminoquinazoline
derivatives

AcrAB-TolC
MexAB-OprM
(E. coli
P. aeruginosa)

Reduced MIC of Cam, Nal,
Nor, and Spfx
Increased Cam uptake

Antibacterial
Synergism
Substrate accumulation

Mahamoud et al. (2011)

MBX2319 Synthetic
pyranopyridine

AcrB (E. coli) Decreased MIC of Cip, Lev,
and Prl

Docking
Time kill assay
Substrate accumulation
Effect on
outer-membrane
Effect on
inner-membrane

Vargiu et al. (2014),
Opperman et al. (2014)

2-substituted
benzothiazoles

Synthetic AdeABC
(Acinetobacter
baumannii)

Reduced MIC of cip Pharmacophore
hypothesis

Yilmaz et al. (2014)

Natural Compounds

EA-371α and EA-371δ Streptomyces
MF-EA-371-NS1

MexAB-OprM
(P. aeruginosa)

Reduce MIC of Lev Synergism
Substrate accumulation

Lee et al. (2001)

Geraniol Helichrysum italicum E. coli
P. aeruginosa
A. baumanii

Reduced MIC of β-lactams,
quinolones, and Cam

Antibacterial
Synergism

Lorenzi et al. (2009)

Plumbagin Plumbago indica AcrB (E. coli) Reduced MIC of Ery, Cam,
TPP, SDS, tet
Inhibition of Nile Red efflux

In silico screening
Antibacterial
Synergism
Non-substrate control
Inhibition of efflux
Effect on
outer-membrane

Ohene-Agyei et al.
(2014)

Nordihydroguaretic acid
(NDGA)

Creosote bush AcrB (E. coli) Reduced MIC of Ery, Cam,
Nov, Tet, and TPP

Shikonin Lithospermum
erythrorhizon

AcrB (E. coli) Reduced MIC of TPP

(−)-epigallocatechin
gallate EGCG

Green tea Campylobacter
spp.

Reduced MIC to Ery and
Cip

Antibacterial
Synergism

Kurincic et al. (2012)

Curcumin Curcuma longa
(Zingiberaceae)

P. aeruginosa Reduced MIC Mem, Carb,
Caz, Gen, and Cip

Antibacterial
Synergism

Negi et al. (2014)

(Continued)
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TABLE 1 | Continued

Compound Source Protein/
Organism

Actions1 Essays performed Reference

Lanatoside C and
diadzein

Phytochemical AcrB, MexB
(E. coli,
P. aeruginosa)

Reduced MIC of Lev and
Carb
Increased accumulation of
EtBr

High-throughput virtual
screening
Synergism
Substrate accumulation

Aparna et al. (2014)

4-hydroxy-α-tetralone Ammannia sp E. coli Reduced MIC of Tet RT-PCR study
In silico docking

Dwivedi et al. (2014)

Non-antibacterial drugs

Trimethoprim and
Epinephrine

Small heterocyclic or
nitrogen-containing
drugs

S. typhimurium
E. cloacae
S. marcescens
P. aeruginosa
K. pneumoniae
E. coli

Reduced MIC of Cip Antibacterial
Synergism
Substrate accumulation
Growth kinetics

Piddock et al. (2010)

Chlorpromazine,
Amitryptiline,
Trans-chlorprothixene

Non-antibiotic drugs P. aeruginosa Reduced MIC of Pen, Cxm,
and Tob

Antibacterial
Synergism

Kristiansen et al. (2010)

Sertraline Selective Serotonin
Re-uptake Inhibitors

AcrAB, AcrEF, MdtEF,
and MexAB

Inhibition of Nile Red efflux Inhibition of efflux
RT-PCR

Bohnert et al. (2011)

Artesunate Anti-malarial drug AcrAB-TolC (E. coli) Reduced MIC ofβ-lactam
antibiotic
Increased Dau uptake
Reduce mRNA expression

Antibacterial
Synergism
Substrate accumulation
RT-PCR

Li et al. (2011)

Pimozide Neuroleptic drug AcrAB-TolC (E. coli) Reduced MICs of Oxa and
EtBr
Inhibition of Nile rRed efflux

Synergism
Substrate efflux

Bohnert et al. (2013)

1Abbreviations used: Cam, Chloramphenicol; Carb , Carbanecillin; Caz , Ceftazidime; Cip , Ciprofloxacin; Clr , Clarithromycin; Cxm , Cefuroxime; Dau , Daunomycin;
Ery , Erythromycin; EtBr , Ethidium Bromide; Gen , Gentamicin; Lev , Levofloxacin; Mem , Meropenem; Nal , Nalidixic acid; Nor , Norfloxacin; Oxa , Oxacillin; Pen , Penicillin;
Prl , Piperacillin; Rif , Rifampicin; Spfx , Sparfloxacin; Tet , Tetracycline; Tob , Tobramycin; TPP , Triphenylphosphonium.

permeabilized the outer membrane (Lomovskaya et al., 2001).
Derivatives of PAβN with reduced toxicity, enhanced stability,
and better solubility were developed and advanced to the pre-
clinical stage, however, failed due to toxicity issues (Marquez,
2005; Lomovskaya et al., 2006; Lomovskaya and Zgurskaya, 2011;
Bhardwaj and Mohanty, 2012).

The structural basis for the inhibition of the RND trans-
porters has been recently described with the publication of
the crystal structures of AcrB from E. coli and MexB from
P. aeruginosa bound to a pyridopyrimidine derivative D13–
D900 (Nakashima et al., 2013). The inhibitor binding almost
overlapped with the binding of the substrates minocycline and
doxorubicin, while part of the inhibitor inserted into a nar-
row phenylalanine rich region in the deep binding pocket,
termed the hydrophobic trap by the authors. The authors
suggested that the inhibitor competitively inhibit substrate
binding and hinders the functional rotation of the efflux
pumps.

As there is only one structure of a RND protein bound to
an inhibitor published to date, docking, and molecular sim-
ulation studies were used to investigate the putative binding
modes of other inhibitors such as PAβN and NMP (Vargiu
et al., 2014) while in silico screening also provided informa-
tion on the binding of putative EPIs (Ohene-Agyei et al., 2014).
Both PAβN an NMP were predicted to interact with the switch

loop while D13–D9001and MBX2319 have more interactions
with the hydrophobic trap first identified by Nakashima et al.
(2013).

Table 1 summarizes the compounds reported to act as EPIs
against Gram-negative organisms so far. The term EPI is used
loosely here as some of the included compounds were identi-
fied based on their synergism with one or more antibiotic while
no further analysis was performed to study the mechanism of
inhibition or rule out non-specific effects such as membrane
permeabilization.

Conclusion

There are various papers reporting the ability of crude extracts
from plants or other organisms to reduce antibiotic resistance
that were not dealt with in this review. As can be seen from
Table 1, there is also a sizable amount of pure compounds
which were able to synergise with antibiotics against drug resis-
tant Gram-negative bacteria. However, the translation of these
promising compounds into EPIs for clinical application is still
lacking. The most probable reason for the discrepancies in lead
compounds and final outcome is the deficiency of follow through
from first identification of a compound with synergistic effects
to identification of true EPI activity and providing a thorough
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investigation into mechanism of action. With this review we
aimed to summarize the current knowledge of how drug efflux
can be inhibited.

The tools necessary to identify, test and characterize the mech-
anism of action of a putative EPI were also provided in order to
aid the discovery and development of EPIs with which we would
be able to stem the tide of multidrug resistant Gram-negative
infections.
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