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Phages are the most abundant biological entities on Earth and play major ecological

roles, yet the current sequenced phage genomes do not adequately represent their

diversity, and little is known about the abundance and distribution of these sequenced

genomes in nature. Although the study of phage ecology has benefited tremendously

from the emergence of metagenomic sequencing, a systematic survey of phage

genes and genomes in various ecosystems is still lacking, and fundamental questions

about phage biology, lifestyle, and ecology remain unanswered. To address these

questions and improve comparative analysis of phages in different metagenomes, we

screened a core set of publicly available metagenomic samples for sequences related to

completely sequenced phages using the web tool, Phage Eco-Locator. We then adopted

and deployed an array of mathematical and statistical metrics for a multidimensional

estimation of the abundance and distribution of phage genes and genomes in various

ecosystems. Experiments using those metrics individually showed their usefulness in

emphasizing the pervasive, yet uneven, distribution of known phage sequences in

environmental metagenomes. Using these metrics in combination allowed us to resolve

phage genomes into clusters that correlated with their genotypes and taxonomic

classes as well as their ecological properties. We propose adding this set of metrics to

current metaviromic analysis pipelines, where they can provide insight regarding phage

mosaicism, habitat specificity, and evolution.
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Introduction

Viruses are the most abundant and diverse nucleic acid-based entities on Earth (Weinbauer, 2004;
Edwards and Rohwer, 2005; Thurber, 2009). Their population densities are estimated to be 109

per gram of soil (Williamson et al., 2005), 107 per ml of seawater (Bergh et al., 1989; Wommack
and Colwell, 2000), and 1031 planet-wide (Whitman et al., 1998). There are approximately 10
times as many viruses as the combined number of all cellular organisms, and most viruses are
bacteriophages (phages), viruses that infect bacteria (Edwards and Rohwer, 2005).
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Although phages play critical biological and ecological roles
(Weinbauer, 2004; Abedon, 2009; Breitbart, 2012) and are
the cornerstone of major molecular biology discoveries, the
current number of completely sequenced phage genomes lags
behind those of cellular organisms, and information about the
abundance and distribution of these sequenced phage genomes
in various ecosystems remains limited. A striking example of
how little we know about phage abundance and distribution is
that two prevalent phages with near-universal distribution in
the oceans (Zhao et al., 2013) and human feces (Dutilh et al.,
2014) were part of the unknown biological dark matter until only
recently.

Traditional experimental strategies tend to underestimate
phage diversity, mostly because culture-based methods miss
the majority of phages. Furthermore, the actual abundance
of phage nucleic acids in the environment is greater than
that calculated from phage particle enumeration, since phage
nucleic acids can be either packaged in free phage particles, or
concealed as prophages within bacterial and archaeal genomes
(Edwards and Rohwer, 2005; Angly et al., 2006). On the
other hand, sequence-based strategies, notably the metagenomics
technologies developed in the past decade (Breitbart et al., 2002;
Breitbart and Rohwer, 2005), have revolutionized phage ecology
(e.g., Breitbart et al., 2003; Angly et al., 2006; Thurber et al., 2009;
Belcaid et al., 2010; Rodriguez-Brito et al., 2010; Swanson et al.,
2011;Mizuno et al., 2013;MartinezMartinez et al., 2014). Despite
those major advances, systematic surveys of phage genes and
genomes in available metagenomes remain scarce partly because
of the lack of well-established mathematical methods or metrics
that define various aspects of phage distribution, abundance, and
gene coverage.

Here we set out to define and deploy a set of metrics
to better describe multiple dimensions of phage ecological
properties. To this end, we implemented a scaffolding approach
through the Phage Eco-Locator web-tool [URL: http://www.
phantome.org/eco-locator (Aziz et al., 2011)], combined with
a multidimensional set of metrics to enable a systematic
analysis of phages in nature. To demonstrate these metrics
and explore their significance, relevance, and applicability, this
manuscript describes the abundance, ubiquity, diversity, and
habitat-specificity of 588 completely sequenced viruses in 296
metagenomes from various ecosystems (Figure S1). The metrics
described here can be used, individually or in combination, for
the analysis of any set of metagenomes vs. any set of phages,
regardless of the analysis platform, as long as the number of phage
hits per metagenomic sample is available.

Methods

Input Sequence Data (Figure S1)
(1) Viral genomic data. Viral genome sequences (582 phages,

four of which contain three-segment genomes, i.e., three
contigs each, as well as six archaeal viruses) were directly
downloaded from the PhAnToMe database (URL: http://
www.phantome.org/Downloads).

(2) Metagenomic data. The 296 metagenomic data sets
used for testing the methods consist of unassembled

metagenomic sequences that had been originally annotated
or re-annotated in the Metagenomics RAST server–version
3 (Meyer et al., 2008), then were cleaned up (Schmieder
et al., 2010; Schmieder and Edwards, 2011a) or dereplicated
(Schmieder and Edwards, 2011b) and deposited inMyMgDB
(URL: http://edwards.sdsu.edu/cgi-bin/mymgdb/show.cgi).
The sources of these metagenomic data sets and other
metadata used in the analysis are provided in supporting
online material (Table S1). Bacterial community structure in
the same metagenomic data sets was analyzed by FOCUS
(Silva et al., 2014).

Phage Eco-Locator
Phage Eco-Locator (URL: http://www.phantome.org/eco-
locator) is a Web interface, written in a combination of
PERL, GnuPlot, and CGI scripts, that stores and visualizes
precomputed tBLASTX (Altschul et al., 1997) results using
dereplicated metagenomic DNA sequence reads as BLAST
queries against a database of complete phage genomes (Aziz
et al., 2011). For this study, a tBLASTX match to a phage
sequence was considered significant if it had an E-value ≤ 10−5.
The web tool allows examining matches with E-value threshold
of 0.01 as well.

Metrics Describing Phage Abundance and
Distribution in Ecosystems
As indicated in the Introduction section, this work was launched
with the goal of defining and testing metrics that describe
different aspects of phage ecological properties, through the
interpretation of phage metagenomic recruitment plots, to
compare the abundance and distribution of sequences from
different phages in various metagenomes, and also compare
different metagenomic samples based on their phage content and
abundance.

Those metrics fall into two major groups:

(i) Metagenome-level metrics: Metrics comparing different
metagenomic data sets based on phage abundance and
distribution (Table 1).

(ii) Phage genome-level metrics:

(a) Metrics that describe a specific phage’s abundance and
distribution (on the genome level) (Table 2, Figure 1).

(b) Metrics that describe the pattern of abundance,
distribution, and coverage of different genes or segments
within a specific phage genome in metagenomic data
sets (Table 3, Figure 2).

(i) Metagenome-level metrics (Table 1). The following metrics
are defined to provide a comparison between different
metagenomes based on the abundance and distribution of
sequences similar to characterized phages that they contain.

First, all metagenomic sequence reads with significant tBLASTX
hits to phage sequences were collected from Eco-Locator
recruitment plots and stored for further calculations. Those
values were counted and defined as nHits. Default significance
thresholds were set at BLAST E-values of 10−5.
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TABLE 1 | Metrics used to describe and compare different metagenomes based on their phage content (metagenome-level metrics).

Parameter Definition/Calculation Range Significance/Interpretation/Limitations

IN A GIVEN METAGENOME Y

Abundance index (AI) of phage X nHits of phage X/size of metagenome Y

(Mbp)

0–1.244 This value describes the fraction of a metagenome library that

matches a given phage genome. Dividing the number of sequence

hits by the metagenome size (in millions of basepairs) permits

comparison of different metagenomic samples.

Total AI 6 nHits of a set of phages/size of

metagenome Y (Mbp)

4.067–28.859 This value reflects the abundance of all sequences with similarity

to phages in a metagenomic library. Limitations: sensitive to outlier

AI values (contaminants, sequencing artifacts, unusually large

number of hits), i.e., false positive hits of a single phage can

artificially inflate this value.

Median AI (AI50) AI of the 50th percentile phage genome 0–3.061 This value gives an indication of the abundance of sequences with

similarity to phages within a metagenomic library and is less

sensitive to outliers than Total AI; however, it may underestimate

real differences between samples (e.g., if more than half of the

phage genomes have no sequence similarities to a metagenomic

library, AI50 will be zero regardless of whether the total abundance

of the remaining phage genomes is high or low).

nPhages (richness) Number of phage genomes which match

at least one sequence read in

metagenome Y

8–487 This value is a proxy for richness of phage types within the

metagenomic sample. While this value may overestimate the

number of phage types within the tested sample, it can be used to

compare sequence diversity between the tested metagenomic

samples.

Shannon Diversity Index H = -6 pi ln pi
where pi is the proportion of sequence hits

to the ith phage genome relative to all

phage genome hits within the

metagenome

2.061–5.813 This value (Shannon, 1948) is an indication of the diversity of

phage sequences within a metagenomic sample, but is not an

accurate estimation of phage species diversity [which is beyond

the focus of this paper and is to be calculated by other tools, e.g.,

PHACCS (Angly et al., 2005) or Shotgun UNIFRAC (Caporaso

et al., 2011)].

Shannon E (evenness) E = H/ln nPhages 0.008–0.258 This value describes the evenness of distribution of phage

genomes. When Shannon E-value = 1, all genomes are equally

represented; a Shannon E-value that is closer to zero reflects that

an uneven distribution where some genomes are much more

represented than others.

Next, an abundance index (AI) was calculated for each
metagenome. For a given metagenome, the AI was defined as
the number of hits to phage genomes (nHits) normalized to the
metagenome size in millions of base pairs.

AI = nHits/metagenome size, Mbp

Subsequently, a total abundance index was defined for each
metagenome to express the overall abundance of sequences with
similarities to characterized phage genomes in that metagenome.

Total abundance index (of all phage genomes) per metagenome

= 6(nHits/metagenome size, Mbp)

Because of the high variability of phage types in different
ecosystems, the total AI defined above is highly sensitive to
outliers, and thus the median AI of sequences with similarities
to characterized phage genomes per metagenome was calculated
as another useful value to compare metagenomes and reflect their
phage content.

In addition to AI and median AI, which reflect phage-like
metagenomic fragment counts, we also used some commonly
used ecological biodiversity parameters such as richness,
diversity, and evenness, described elsewhere (Shannon, 1948
disambiguated in Spellerberg and Fedor, 2003).

A full list of metagenome-level metrics, and the significance of
each, is provided in Table 1.

(ii) Phage genome-level metrics.

(a) Inter-phage properties (Table 2). For comparison of
phage genomes, a phage abundance index (PAI) was
defined for each phage and calculated as the number
of metagenomic sequence fragments assignable to that
phage genome normalized to the genome size

PAI = 6 AI/Phage genome length (Kbp)

Because PAI depends on summing up all available metagenomic
sequences that are similar to a particular phage, this value reflects
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TABLE 2 | Metrics used to describe phage ecological features at the genome level.

Parameter Definition/Calculation Range Significance/Interpretation/Limitations

PHAGE DISTRIBUTION METRICS (GENOME-LEVEL METRICS): FOR A GIVEN PHAGE X

Phage abundance index (PAI) 6 AI of phage X (hits per Mbp)/length

of phage X (in Kbp)

0–194.84 This value describes the abundance of a phage in a set of

environments. Normalizing the AI of each phage genome to the

genome length allows the comparison of different phages. This

normalization is useful for most phages; however, it might

artificially inflate PAI value if the phage genome is significantly

smaller than the median genome size, which is ∼41 Kbp (e.g.,

microviruses, with 4 Kbp genomes)

nMG Number of metagenomes with hits to

phage X

0–293 This value reflects the ubiquity of a particular phage genome. A

high nMG suggests that a phage genome (or part of it) is

universally distributed or cosmopolitan; a low nMG suggests that

the phage is localized or ecologically limited (i.e., specific to one or

a few habitats).

PAI50 Median AI of phage X in all tested

metagenomes/length of phage X

0–0.13 This value is another indication of the abundance of a phage

genome in different metagenomic samples and is less sensitive to

outliers. It is also dependent on the ubiquity of a phage genome

since PAI50 of phage genomes present in fewer than half samples,

for example, will be zero, even if these genomes have a high PAI.

Abund. CV (Coefficient of variation) StDev/Mean AI of phage X 0.86–17.20 This value reflects the spread or variation of AIs of a given phage

among metagenomes. A large CV suggests that a phage genome

has extreme AIs while a small CV suggests uniform AI values (but

doesn’t give information on their magnitude).

Representative examples of each value are given in Figure 1.

a phage’s overall abundance in a set of ecosystems, but provides
little information about the pattern of its distribution, since a very
high PAI may be contributed by an overabundance in a small
number of metagenomes (nMGs).

Instead, an estimation of the distribution of a certain phage
in a given set of ecosystems may be expressed as a simple count
of the nMGs with significant BLAST hits (E-value < 10−5)
to a given phage genome. With a large nMGs from distinct
ecosystems, nMG can be reliably used as a proxy for phage
ubiquity in nature. In addition to counting metagenomes with
hits to a given phage, we calculate the median PAI (PAI50), an
estimator of both the abundance and ubiquity of that phage in
nature (Table 2).

Combining PAI, PAI50, and nMG in comparisons between
different phages provides a good multidimensional picture of
phage distribution in nature, balancing abundance and ubiquity,
as those two values do not necessarily correlate (Figure 3A).
Those values, however, do not tell much about the uniformity of
a phage’s distribution among ecosystems. A phage with high PAI
and low nMG is expected to have a highly variable distribution
pattern in nature. This variability can be expressed as the
abundance coefficient of variation (Abundance CV), representing
the data spread of a phage genome’s AI across metagenomic data
sets, where CV is the standard deviation divided by the mean.

Abundance CV = σ AI/mean AI

(b) Intra-phage properties (Table 3). Fragment recruitment
plots and genome coverage maps are quite popular in

analyzing metagenomic data; yet, a wealth of information
encoded within those plots remains unexplored. Phage Eco-
Locator, like other common metavirome analysis tools, e.g.,
MG-RAST (Meyer et al., 2008) and MetaVir (Roux et al.,
2011), displays fragment recruitment plots, in which each
metagenomic fragment is aligned to the corresponding
genomic segment, as well as genome coverage density plots,
in which eachmetagenomic sequence is cumulatively plotted
against a phage genome scaffold, at a nucleotide resolution.

Coverage density plots provide a quick visual estimate of phage
sequence conservation and distribution in a given metagenome.
However, these plots are often biased by the presence of short
sequences that are highly abundant (e.g., short repeats indicative
of transposons or insertion sequences). Several mathematical
values are suggested here to estimate different features of
sequence coverage along a phage scaffold (Table 3). For example,
coverage density may be measured as the area under the curve
(AUC) normalized to the genome length (in nucleotides). For
a certain phage, the total (or cumulative) coverage density in a
large set of metagenomesmay be further normalized to the nMGs
with hits to that phage. As with other metrics, coverage density or
cumulative coverage density is sensitive to outliers. Thus,median
coverage density can be used to reflect the homogeneity of phage
genome coverage in metagenomic samples.

In addition to coverage density, recruitment can be described

by the uniformity, regularity, or continuity of sequence coverage
over the entire genome length. Uniformity may be measured in
various ways. One way is to simply estimate the percentage of
a phage genome that recruits metagenomic reads (with possible
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FIGURE 1 | Phage distribution metrics. Inter-phage metrics and statistics

quantifying different aspects of phage abundance and distribution in 296

metagenomic samples. Graphical examples show the phage genomes at the

high and low ends of each parameter. X-axes represent the metagenomes

(MG) listed in the same order as in Table S1 (i.e., grouped by environment).

Y-axes are in logarithmic scales.

optimization of significance and alignment length thresholds).
This value does not reflect the regularity or uniformity of the
distribution, but indicates coverage gaps [sometimes referred
to as metagenomic islands (Pasic et al., 2009; Mizuno et al.,
2014)]. Other estimators of uniformity implemented in this study
include the spread of a coverage plot (expressed as the coefficient
of variation of coverage), kurtosis (a statistical value of a plot’s
uniformity), and an adapted Shannon Evenness Index applied
to phage genes (explained in detail in Table 3). Examples of
phage distribution and phage recruitment plots are provided in
Figures 1, 2, and all raw data are provided in Table S2.

Statistical Analysis
For statistical analysis, DataDesk (Data Description Inc.,
Ithaca, NY; URL: http://www.datadesk.com) and the R software
environment (URL: http://www.r-project.org) were used.

Results

Input Data
Eco-Locator plots were generated for a core data set of 588
viral genomes and 296 metagenomes. Fragment-recruitment
and coverage-density plots for each unassembled metagenome
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TABLE 3 | Metrics used to describe phage ecological features at the nucleotide level.

Parameter Definition/Calculation Range Significance/Interpretation/Limitations

PHAGE COVERAGE METRICS (INTRA-PHAGE OR NUCLEOTIDE-LEVEL METRICS): FOR A GIVEN RECRUITMENT PLOT OF A PHAGE X

Coverage density (AUC/nNuc) Area of a genome coverage plot

(area-under-the curve) normalized to the total

number of nucleotides in the phage genome.

0–2.920 This value is similar to the total abundance of a phage in all

metagenomes; however, it also considers each nucleotide

covered in the phage genome and not just the number of

sequence reads that match that genome.

Density per metagenome (cumulative

AUC/nMG)

Average overall phage density divided by the

number of metagenomes.

126–1.71× 106 This value normalizes the coverage density to the number

of metagenomes in which the phage genome is found. It

differentiates between the densities of ubiquitous phages

(high nMG) and that of habitat-specific phages (low nMG).

%genome covered Fraction of the phage genome that matches at

least one metagenomic sequence.

0–100% This value reflects the homogeneity of overall phage

coverage in metagenomes as well as the gaps in coverage.

It marks areas within a phage genome that have not been

matched in any metagenomic sample, but is

magnitude-independent—thus does not show which areas

of the genome are overrepresented. A %genome coverage

of 40% means that combined uncovered gaps are 60%.

Gene coverage evenness Adapted Shannon Evenness Index (Shannon E)

of the coverage of phage genes.

E = −6 pi ln pi /nGenes

where pi is the proportion of hits to the ith gene

to the sum of hits to all genes of phage X

0–0.92 This value reflects whether protein-encoding genes within a

phage genome are equally represented relative to each

other. A gene evenness of one means that all phage genes

are equally represented (regardless of the magnitude of their

coverage), while low evenness values suggest possible

non-specific or cross-matching genes (i.e., parts or all of

the phage genome is absent).

Coverage coefficient of variation (CV) Standard deviation of coverage density/Mean

coverage density (Coverage density =

AUC/nNuc)

0.76–12.58 This value reflects the variation or spread of coverage along

a phage genome. Typically a phage genome coverage plot

with high CV has higher coverage values for certain parts of

the genome and zero values for other parts.

Median coverage density Median number of hits per nucleotide per

phage

0–686 Less sensitive to extreme values, the median coverage

density provides another indicator of the homogeneity of

phage genome coverage in metagenomic samples.

Coverage kurtosis Kurtosis equation:

∑
(X−µ)4

Nσ4
− 3

where X is the value of each data point, µ is the

sample mean, σ is the standard deviation, and

N is the number of data points

0.02–423.12 Kurtosis is a statistical measure of uniformity or lack thereof

within a frequency distribution curve. It is often used as a

measure of skewness, bimodality, or “peakiness” of a

distribution plot. It has been adopted here to reflect the

irregularity of a phage coverage density plot. If a phage

genome coverage plot has high kurtosis, this means that

some areas of this genome have sharp coverage peaks

while others have low or no coverage values. Negative

kurtosis values reflect flatter coverage plots but do not

provide information about the coverage magnitude.

Representative examples of each value are given in Figure 2.

were generated and are publicly available (URL: http://www.
phantome.org/eco-locator).

Implementation and Testing of
Metagenome-Level Metrics
Abundance values (expressed as total AIs) of sequences related
to known phages showed an immense variation among different
metagenomes, spanning several orders of magnitude (range
= 4–28,859 hits /Mbp; mean = 1462.8 hits /Mbp; median
= 1125 hits /Mbp). At the lower end, samples from human
lungs, classically thought to be free of resident microbiota,
had the smallest fraction of sequences similar to known

phages and the lowest sequence diversity and richness as
previously reported (Willner et al., 2009, 2012) (Table 4
and Table S1). Hypersaline samples also had low abundance
indices, possibly resulting from the low number of completely
sequenced viral sequences from these habitats (Table S1). At
the other extreme, aquatic samples (both virus-enriched and
microbial) contained the largest fraction of sequences similar
to known phages. The microbial metagenome with highest
phage AI was from the open ocean (Hydrostation S, Sargasso
Sea, Bermuda), while the viral metagenome with highest
phage AI was an estuary sample (Station 834, Chesapeake
Bay Virioplankton) (Table 4 and Table S1). The sample with
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FIGURE 2 | Phage coverage metrics, including (A) density and (B)

uniformity estimates. Graphical examples show high and low ends of each

parameter used. X-axes represent the genome coordinates while Y-axes

represent number of hits to each nucleotide. Graphs are scaled differently. The

coverage plots are for the following phages: (A) Staphylococcus phage

44AHJD compared to Cyanophage P-SSM2; Salterprovirus His2 virus

compared to Mycobacteriophage TM4; Lactococcus phage asccphi28

compared to Cyanophage P-SSM2. (B) Mycoplasma virus P1 compared to

Bacteriophage VWB; Mycobacterophage Cooper compared to Burkholderia

cenocepacia phage BcepB1A; Chlamydia phage phiCPAR39 compared to

Enterobacteria phage P1.

highest number of phage types (richness) was from a marine-
derived lake in Antarctica, and those with highest phage
sequence diversity (Shannon diversity) were human gut samples
(Table 4).

FIGURE 3 | Scatter plots showing correlation between (A) abundance

and ubiquity or (B) gene evenness and % genome coverage of 588

viruses in 296 metagenomes. Data points are labeled according to phage

family (different colors), and nucleic acid content (circles: dsDNA phages;

crosses: other phages, i.e., ssRNA, dsRNA, and ssDNA phages). Correlation

coefficients (r) are shown for all phages and for dsDNA phages alone.

An in-depth ecological analysis comparing all metagenomes
or examining phage habitat-association is beyond the scope of
this Methods Article; however, a glimpse at extreme values of
each metric (Table 4) provides confidence in the methodology
used because of its agreement with previous analyses performed
on subsets of those data (Angly et al., 2006; Dinsdale et al., 2008;
Willner et al., 2009) and because of some biologically relevant
measurements (such as the low phage richness in lungs or the
high phage diversity in stool samples).

Implementation and Testing of Phage-Level
Metrics
The most common statistics used in viral metagenomic studies
rely on two key parameters: the relative abundance of phage-like
sequences [defined here as PAI and referred to as depth in
some other studies (Dutilh et al., 2014; Martinez Martinez et al.,
2014)] and the nMGs in which a particular phage is represented
(ubiquity or nMG) (e.g., Mizuno et al., 2013; Dutilh et al., 2014).
These two statistics are undoubtedly useful, but are limited by the
following: (i) we observed that plotting abundance and ubiquity
successfully resolves classes of RNA or single-stranded DNA
(ssDNA) viruses, yet these two metrics are partly interdependent
among double-stranded DNA viruses (correlation index= 0.785,
Figure 3A); (ii) abundance and ubiquity metrics quantitatively
describe phage prevalence but do not describe the pattern
of this prevalence (e.g., phage-ecosystem correlations or
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TABLE 4 | Examples of the lowest and highest scoring metagenomes or phages according to different metrics.

Parameter Low High

METAGENOME-LEVEL METRICS:

Total AI Lung samples (Table S1) (Values: 4.07–8.22) Hydrostation S, Sargasso Sea, Bermuda (open ocean)

(Value = 28.859)

Median AI (AI50) Lung samples (Table S1) (Value = 0) Chesapeake Bay, MD (estuary): Chesapeake Bay

Virioplankton–Station 834 (Value = 3.061)

nPhages Viral data from the human lung (Sample 109) Value = 8 phages AntarcticaAquatic_5–Marine-derived lake (Value = 487

phages)

Shannon Diversity Index Viral data from the human lung (Sample 109) Value = 2.061 Stool metagenome (sample 179) Value = 5.813

Shannon evenness E GS051 Shotgun–Coral Reef Atoll–Polynesia Archipelagos–Rangirora

Atoll–Fr. Polynesia (Value = 0.008)

Viral data from the human lung (sample 109) Value = 0.258

PHAGE DISTRIBUTION METRICS:

Phage abundance index (PAI) Eleven out of 17 RNA phages have zero values Chlamydia phage 4 (ssDNA) Value = 194.84; Cyanophage

P-SSM4 (dsDNA) Value = 109.856

PAI50 Aeromonas phage PM2 (Value = 0) T4-like cyanophage P-SSM2 (Value = 0.13)

nMG Eleven RNA viruses have zero values; Pseudomonas phi-6 (dsRNA,

Value = 1); dsDNA: Lactococcus phage asccphi28 (Value = 20)

T4-like cyanophage P-SSM2 (Value = 293)

Abund. CV Myoviridae Bacillus phage 0305phi8-36 (Value = 0.86) Ralstonia phage P12 J (dsDNA, Value = 14.4), Pseudomonas

phage phi-6 (dsRNA, Value = 17.2) and microviruses (ssDNA,

Values > 16)

WITHIN PHAGE COVERAGE/DENSITY METRICS (INTRAPHAGE PROPERTIES):

Coverage density Levivirus Enterobacteria phage MS2 (ssRNA, Value = 0.04);

Staphylococcus phage 44AHJD (dsDNA, Value = 1.03)

Coliphage phiX174 (ssDNA, Value = 2.920); T4-like

cyanophage P-SSM2 (1.989)

Density per metagenome Enterobacteria phage MS2 (ssDNA, Value = 126); Lactococcus

phage asccphi28 (dsDNA, Value = 540.45)

T4-like cyanophage P-SSM2 (1.71× 106)

%genome covered Salterprovirus His 2 (Value = 10%; lowest non-zero value for a

dsDNA virus)

Mycobacteriophages Rosebush and Cooper (Value = 100%)

Gene coverage evenness Mycoplasma virus P1 (lowest non-zero value = 0.003) Bacteriophage VWB (Value = 0.918) and Streptomyces

Mu1/6 (Value = 0.886)

Spread (CV) Actinoplanes phage phiAsp (Value = 0.757) Burkholderia phage BcepB1A (Value = 12.581)

Coverage kurtosis Chlamydia phage phiCPAR39 (ssDNA, Value = 0.02); unclassified

Picovirinae Actinomyces phage Av-1 (dsDNA, Value = 3.03)

Enterobacteria phage P1 (Value = 423.12)

Median density Lactococcus phage Asccphi28 (among 254 phages with zero value) T4-like cyanophage P-SSM2 (Value = 686)

If the high end is not a dsDNA phage, the next highest/lowest dsDNA phage is also shown.

habitat-specificity); (iii) these values are sensitive to biases (for
example, they may be strongly affected by the dominance of
aquatic samples or human-associated samples in a data set).
Accordingly, we implemented additional metrics to better assess
the multidimensional nature of abundance and distribution of
phage sequences as well as the intra-phage coverage density and
evenness (detailed in Methods and Tables 2, 3). For example,
we estimated the cross-habitat variation among AIs using the
coefficient of variation (Abundance CV; Tables 2 and Table S2),
which provides information on the homogeneity of distribution
of phage sequences across metagenomes, and can differentiate
between cosmopolitan and habitat-confined phages (Thurber,
2009).

Eleven RNA phages in our database were practically
undetected. The absence of these RNA viruses is expected since
the metagenomes analyzed consisted only of DNA and were not
supposed to contain RNA contamination, and since there is little
shared sequence similarity between RNA and DNA phage genes,
as seen in the Phage Proteomic Tree (Rohwer and Edwards,

2002) and the Phage Population Network (Lima-Mendez et al.,
2008).

Another important set of metrics implemented in this
study describe the uniformity of sequence coverage within
a phage genome, and thus help indicate whether phage
abundance values represent presence of an entire related
phage or result from the overabundance of specific conserved
genes or tiny fractions of phage genomes. Of those values,
the % sequence coverage in all metagenomes, for example,
gives a good indication of the global distribution of phage
modules, while the gene evenness parameter is an indicator
of the covariation of different genes between different
habitats (Figures 2A, 3B). Overall, more than a dozen
metrics were used to describe the ecological and coverage
properties of each phage genome (Table S2), 11 of which
were selected (Tables 1, 2) and combined to separate all
phage genomes based on two principal components that
summarize the 11 dimensions and explain ∼65% of the variance
(Figure 4).
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FIGURE 4 | Principal component analysis of phage genomes

according to their ecological properties. All phages were

compared based on 11 metrics, then the 11 dimensions were

reduced into two principal components that explain most of the

variance. Circles represent dsDNA phages and x signs represent

other types of phage genomes; colors represent different phage

classes. Examples of phages and groups of phage discussed in the

text are labeled.

Combining the Multidimensional Metrics
Separates Phage Genomes Based on Ecological
Parameters
Taken together, this combination of metrics allowed the
separation of phages into distinct groups (Figure 4) according
to their environmental abundance, distribution, and sequence
coverage parameters. The most prominent groups are:

- Phages with high abundance, broad distribution, and low
inter-sample variation (e.g., T4-like cyanophages, Bordetella
phages, and Streptomyces Phage Mu1/6). This pattern indicates
ubiquitous or near cosmopolitan phages, or—alternatively—
phages highly similar to cosmopolitan phages.

- Phages with high abundance, broad distribution, but low gene
evenness (e.g., Cooper-like mycobacteriophages).

- Phages with high abundance and narrow distribution (high
coefficients of variation between metagenomes). This pattern
means very high abundance in only a few metagenomes, but
partial genome representation. This group mostly consists
of the ssDNA Microviridae and is further divided into
the gokushoviruses (such as the Chlamydia phages, which
had relatively high percent sequence coverage) and the
true microviruses (such as phiX174, which had low percent
sequence coverage) (Labonte and Suttle, 2013).

- Phages with low abundance but wide distribution (e.g., some
Pseudomonas phages (phiKZ, phage 201phi 2-1, and phage
EL). This pattern suggests a wide distribution of some highly
conserved genes or modules within those phages (Group L in
Figure 4).

- Phages with low abundance but high percent sequence
coverage (e.g., Pseudomonas phage MP38, Pseudomonas phage
MP29, Pseudomonas phage MP22, and Bacteriophage D13
112). These are referred to as GroupM in Figure 4.

- Rare phages (e.g., some Vibrio phages of the ssDNA phage class
Inoviridae such as: phages VEJphi, VGJphi, VSK, KSF-1phi,
and O139 fs1).

In summary, the metrics were particularly useful in determining
outliers or extreme phage groups (e.g., microviruses,
cyanoviruses, tectiviruses, etc. . . ). The analysis highlighted
the scarcity of sequences shared with RNA phages, the massive
yet uneven observed abundance of microviral sequences,
and the dominance of T4-like cyanophages and Cooper-like
mycobacteriophages in currently sequenced metagenomes.

Discussion

Estimating phage diversity in nature has generally been
more difficult than estimating the diversity of cellular
microorganisms—whether by culture-based or molecular
methods. This difficulty is, in part, caused by the lack of a
set of universal genes common to all phages that can be used
for phylogenetic profiling, as opposed to ribosomal DNA and
tRNA synthetase genes in cellular life forms (i.e., domains:
Archaea, Eubacteria, and Eukartyota). Thus, the emergence of
metagenomics has been particularly useful for phage biologists by
providing a method for surveying complete phage communities
(Breitbart et al., 2002; Angly et al., 2005, 2009; Edwards and
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Rohwer, 2005). One particularly interesting aspect of these
analyses has been the realization that the majority of viral
metagenomic sequences do not have any similarities to the
databases, highlighting the large amount of “viral dark matter”
in the universe. However, the distribution of sequences similar
to completely sequenced phage genomes provides important
information about the distribution of these representative,
well-characterized phages in natural systems. Whereas, early
metagenomic studies were highly descriptive in nature, the
phenomenal accumulation of metagenomic data now enables
researchers to advance from cataloging phage species and
functional categories to addressing fundamental questions
about phage ecology, evolution, and phage-host co-occurrence
and co-evolution. Such questions require the establishment of
methods and metrics beyond simply counting metagenomic
sequence reads recruited to a phage or taxonomic binning.

In this study, we expand the available analyses for examining
phage distributions in unassembled metagenomes by adapting
metrics to quantify not only fragment and gene counts, but also
(i) coverage density, depth, uniformity, and breadth of phage
sequence distribution in metagenomic data sets; and (ii) extent
of variability of sequence recruitment to a given phage genomic
scaffold. These metrics allowed us to separate phages into groups
that more accurately reflect their ecology, which will allow the
examination of phage-habitat and phage-host associations in
future studies as a wider range of metagenomes are sequenced.

The present work did not aim at developing novel statistical
functions or mathematical equations, but rather adapted well-
established functions and, sometimes, repurposed metrics used
in other fields or applications (such as evenness and kurtosis).
The following attributes distinguish the set of metrics that were
implemented:

• Multiple-level normalization: Counting sequence similarity
hits is probably the most straightforward and most popular
indicator of the abundance of genes and genomes in an
ecosystem. With the availability of multiple data sets with
different sequence depths and variable read lengths, it has
become common practice to normalize the number of hits to
the metagenome size (expressed as the number of reads or
preferably in as the number of base pairs). Moreover, since
a metagenomic data set is just a sample of all the DNA in
an environment, any gene (or genome) is more likely to be
represented in that sample if it is: (i) more abundant or (ii)
larger in size (number of base pairs). Thus, we also normalized
hit counts to the length of the gene or genome to which they
recruited. The concept of length-normalization is often used
in RNA-Seq analysis (Lee et al., 2011) and was introduced by
Angly and coworkers in the GAAS suite for estimating relative
abundances of full-length phages (Angly et al., 2009). Here,
we adopted and expanded length normalization for every
analyzed entity (whether it’s a protein-encoding gene, genome,
or a genomic fragment).

• Estimation of coverage density and uniformity:Because phage
genomes are known for their highmosaicism and because they
often contain protein-encoding genes with a wide range of
conservation and so-called metagenomic islands (Pasic et al.,

2009; Mizuno et al., 2014), we deployed metrics to assess the
uniformity vs. variability patterns of coverage plots. For this
we describe three different parameters: (i) density or depth,
(ii) uniformity or evenness, and (iii) regularity or peakiness.
To measure density, we adopted the commonly used measure
of number of hits per nucleotide, or the normalized area
under the curve (AUC/nNuc) of a coverage plot. To describe
coverage uniformity, we used both the coefficient of variation
(CV) as an estimator of the spread of a coverage plot and the
Shannon Evenness metric (E) as an estimator of gene coverage
evenness in a given genome. Finally, we adopted the kurtosis
metric that is used to describe distribution curves or line
graphs as an estimator of the regularity/irregularity of peaks
in a coverage plot.

• Multidimensional analysis. Each of the developed metrics
utilized has different strengths and weaknesses. Under specific
conditions, some metrics may be more informative than
others; some of them may partly correlate; and some could
be redundant in certain conditions (e.g., highly abundant and
uniformly covered phage genomes will have similar median
coverage density and evenness). To take advantage of all
the information provided by the different metrics without
being misled by one or two of them, we used PCA analysis,
which effectively split phages into groups reflecting both their
sequence similarity and their ecological distribution.

Potential Limitations and Suggested Solutions
For some specific phage groups, such as T4-like phages and
microviruses, assigning a phage genome was quite difficult.
For example, the apparent prevalence of non-marine T4-like
phages in most samples may be a result of the overabundance
of their closely related cyanophage T4-like genes. In support
of this interpretation is the observation that the distribution
pattern of phage T4 genome was overshadowed by that of the
T4-like cyanophage, P-SSM2 (Ignacio-Espinoza and Sullivan,
2012), especially in ecosystems in which T4-like cyanophages
were abundant. In such cases, coverage metrics are crucial in
determining whether an entire phage is present in a particular
ecosystem, or if the distribution more likely results from
conserved genes.

A more striking example is ssDNA phages. Microviruses
are ssDNA phages that have previously been shown to be
quite abundant in certain metagenomes, especially those created
using rolling circle amplification with the phi29 polymerase
(e.g., Desnues et al., 2008; Lopez-Bueno et al., 2009; Tucker
et al., 2011). Currently sequenced Microviridae include the
gokushoviruses, which infect obligate intracellular parasites such
as Chlamydia, Spiroplasma, and Bdellovibrio, and the true
microviruses (such as phiX174) that infect enteric bacteria
(Labonte and Suttle, 2013). However, examining the coverage
patterns reveals that most metagenomic sequence reads that
match the true microviruses are similar to a tiny fraction of
the genome, while the gokushoviruses are frequently covered
at nearly 70% (Figure 2B). This pattern of coverage suggests
that ssDNA viruses similar to the gokushoviruses are present
in the environments examined, while the true microviruses
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are likely not present. This is an important distinction since
simple measurements of abundances would likely miss that
distinction, suggesting an abundance of both groups. Another
important revelation of this analysis is the confirmation that
microviruses were only identified in a limited nMGs, which
were amplified using phi29 polymerase, which is known to
disproportionately amplify small, circular, ssDNA genomes
(Kim and Bae, 2011). However, since the methods used for
constructing and sequencing the other metagenomes may have
excluded ssDNA viruses, the actual presence or abundance of
gokushoviruses in other environments remains unknown. In
either case, the relative abundance of these genomes, in particular,
is not thought to reflect their natural occurrence.

Finally, in the data sets described here (Table S2), most phages
had less than 75% overall sequence coverage per genome (68%
of dsDNA phages and 85% of non dsDNA phages were <75%
covered). While sequencing depth is a major factor controlling
coverage—especially in the case of rare phages, another reason
behind this low coverage is that sampled phage genomes may be
only partly similar to those in databases while they have other
unique, yet-to-be-sequenced modules. This is a limitation that
can be addressed through assembling metagenomes, and will
likely be reduced as more phages are sequenced and publicly
deposited.

Portability and Reproducibility of the Methods
The metrics described above are intended to be
platform-independent, i.e., they can be applied to any
metagenomic analysis pipeline that generates recruitment plots
or that map metagenomic hits to a sequence contig/scaffold. The
metagenome-level metrics (Table 1) and inter-phage metrics
(Table 2) can be applied to any metagenome vs. phage data
matrix, where the number of metagenomic reads per phage is
calculated at a given E-value threshold. The coverage metrics
(intra-phage properties, Table 3) can be generated from any
recruitment plot where metagenomic sequences are mapped to
a phage scaffold or contig. Although we used tBlastX output for
mapping, we believe that any other similarity search or mapping
tool can be used as well.

Of course, the key to reproducibility in any such analysis is
to use the same database/reference set for all comparisons, i.e.,
the same set of phage genomes has to be used for analyzing
all metagenomic data sets, if the results are to be compared
to one another. If more phage genomes are added to the Blast
database, for example, then any older analyses have to be repeated
against the updated database. This is true for any (meta)genomic
annotation or analysis pipeline.

Conclusion

In conclusion, we expanded the existing repertoire of viral

metagenomic analysis tools by implementing an array of metrics
to describe different aspects of the ecological distribution
of archaeal viruses, phages and phage-like sequences in
metagenomic data sets. Some of these metrics have been

well-developed and efficiently used in phage metagenomic

bioinformatics, while others have been used for the first time in
this study or adopted from other mathematical and statistical
applications and repurposed toward phage analysis. Together,
this suite of metrics is useful in expressing different dimensions
of phage abundance, extent and breadth of distribution, as well
as phage sequence coverage depth and uniformity in diverse
ecosystems. The combination of these metrics successfully
separates phages in ecologically meaningful ways, which will
enable researchers to generate and test biological hypotheses
regarding phage ecology and evolution.
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