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Science has a close but very complex relationship with technology (Latour, 1987). A simple
phenomenon is that technology enables science by offering tools that provide new data or new kinds
of data. In other cases, aspects or views of the empirical worldmay remain invisible until technology
builds something that unveils them to the eyes of the scientific community. On a deeper level,
building something may be a form of understanding. For example “complex networks” became
prominent in all sectors of science in the late 1990s, at the time that the Internet became a common
tool for research and for society at large. Before then, networks had been restricted for decades to
smaller niches. This change was accompanied by a thrust of high throughput technologies to collect
new data, but arguably many of the “network” data had already been available for many years.

On a smaller scale, we want to suggest here that so called “smart polymers” (Galaev and
Mattiasson, 1999; Kumar et al., 2007) could be a promising technological metaphor for the behavior
of the bacterial nucleoid. We want to explore the analogy with the similarly “intelligent” behavior
shaped into bacterial nucleoids by natural selection.

But first, what is a smart polymer, and what does it do? In soft-matter physics, “smart,” or
“stimulus-responsive,” polymers are technological polymer systems designed to effect a variety of
responsive behaviors to external stimuli (Figure 1). Smart polymers respond to the environment
they are in. They are engineered to be sensitive to a number of factors, such as solvency,
temperature, humidity, pH, light, electrical and magnetic field, and to effect mechanical and
chemical changes (Galaev and Mattiasson, 1999; Kumar et al., 2007; Chen and Chang, 2014).
They can be realized as linear free chains in solution, or as surface-grafted brushes or gels. Usually,
response to stimuli is achieved through the addition of specific reactive functional groups and side
chains, or by the use of graft-and-block copolymers (two different polymers grafted together) with
different chemical properties (e.g., hydrophyly). Effective smart polymers typically undergo large
changes (e.g., conformational transitions) in response to just small changes in the environment
(e.g., pH, temperature, ionic strength). One way to achieve this behavior is through the introduction
of “pre-programmed” phase transitions. For example, the polymer undergoes a reversible collapse
after an external stimulus is applied. The reversibility of this change may also be an important
property, allowing to detect changes in both directions. To fix the ideas, a prevalent use for smart
polymers is targeted drug delivery. A smart-polymer system may control the release of drugs until
the desired target is reached, and it is sensed by either a chemical or physical response triggering
the release of the drug by “uncaging” it. For example, a polymer site-specific conjugation to specific
amino acid sites may induce a trigger in the concentration of a targeted protein (Hoffman et al.,
2000). It is then evident that the bacterial nucleoid can be seen as a smart polymer (Dillon and
Dorman, 2010; Muskhelishvili et al., 2010; Benza et al., 2012; Kleckner et al., 2014). Its degree of
compaction and conformation are modulated by the cell’s growth conditions and in response to
specific external cues (Figure 1). It is a complex system made of a long DNA polymer associated
with RNA and proteins that may play at least two roles: adapt the shape of the nucleoid through
both specific and non-specific DNA binding, and change the physical properties of DNA through
dynamic changes in DNA topology.
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FIGURE 1 | “Smart-polymer” functionality of the nucleoid.

First, the abundant nucleoid associated proteins (“NAPs,” e.g.,
focusing on E. coli, Dps, Fis, H-NS, IHF, HU, and the condensin
MukBEF), can act as “functional groups” (Luijsterburg et al.,
2006; Dillon andDorman, 2010; Ohniwa et al., 2011) to plastically
modify the genome conformation. Of particular interest are
NAP-mediated bridging interactions (Wiggins et al., 2009)
(e.g., from Fis, H-NS, and MukBEF in E. coli), which can
thus act as “functional groups” in the nucleoid. In particular,
H-NS is known respond to temperature, salt concentration and
pH (La Teana et al., 1991; Atlung and Ingmer, 1997; Amit
et al., 2003; Dorman, 2004; Ono et al., 2005; Stella et al.,
2006). and Fis has been implicated in adaptation to favorable
growth conditions and quorum sensing (Lenz and Bassler, 2007).
Additionally, some NAPs may operate both as monomers and
as oligomers, introducing the possibility of cooperativity in the
formation of higher order complexes (Luijsterburg et al., 2006;
Skoko et al., 2006; Lim et al., 2012). On theoretical grounds,
looped domain formation offers the opportunity of producing a
very rich phase behavior (Leibler, 1980; Borisov and Halperin,
1996, 1997; Kantor and Kardar, 1996; Camacho and Schanke,
1997), as exploited in recent models motivated by the study
of the organization of chromatin (Junier et al., 2010; Barbieri
et al., 2013; Brackley et al., 2013). Biologically, one can imagine
that the collapse and swelling of selected genomic regions
by bridging proteins may be tuned to be switch-like (Scolari
and Cosentino Lagomarsino, 2015) in order to be differentially
controlled by the cell. While the mechanisms has not yet been
studied in detail, domain formation is well-documented in
bacterial chromosomes (Espéli and Boccard, 2006; Espéli et al.,
2008; Dame et al., 2011). Such mechanism may account for the
observed correlation between the position of genetic loci along
the chromosome and their position in the cell (Mercier et al.,
2008; Wiggins et al., 2010), it may help the resolution of the

identity of segregating sister chromosomes (Lesterlin et al., 2012;
Junier et al., 2014), as well as play a role in explaining observed
“abrupt” transitions in chromosome arrangements (Joshi et al.,
2011; Fisher et al., 2013; Javer et al., 2014). Additionally, NAPs
that do not bridge specifically such as Dps may also trigger
switch-like collapse (Zimmerman, 2006), and NAPs that do not
bridge but exhibit cooperative clustering may also affect the
global nucleoid state by affecting key parameters such as effective
stiffness (Luijsterburg et al., 2006).

Second, the action of specific DNA enzymes such as
topoisomerases and gyrases changes the polymer’s mechanical
properties through changes in DNA topology. Nucleoids are
composed of topologically unlinked dynamic domain structures,
forming plectonemes and toroids (Trun and Marko, 1998).
Torsional constraints can be generated by active processes, such
as DNA replication and transcription (Le et al., 2013), and
stabilized by bridging NAPs, such as Fis and H-NS (Schneider
et al., 2001). Together, supercoiling and nucleoid organization
can affect gene expression (Breier and Cozzarelli, 2004; Postow
et al., 2004; Travers and Muskhelishvili, 2005; Blot et al.,
2006; Dillon and Dorman, 2010) and, in turn, expression
of specific regulators may affect the concentration or the
activity of the genes setting nucleoid conformation resulting
in feedback loops that can lead to more robust nucleoid
conformations. Also, NAPs and supercoiling regulation by
enzymes may interact in complex ways (Dorman, 2013a).
Clearly, such an object has higher computational power than
any current technological smart polymer, because it is also
able to control the elements leading to its self-organization,
which may inspire new technology. The coexistence of two
parallel mechanisms of regulation through polymer organization
(mainly supercoiling and growth) and through conventional
protein binding may be an important feature of the nucleoid. A

Frontiers in Microbiology | www.frontiersin.org 2 May 2015 | Volume 6 | Article 424

http://www.frontiersin.org/Microbiology
http://www.frontiersin.org
http://www.frontiersin.org/Microbiology/archive


Scolari et al. The nucleoid as a smart polymer

series of studies on E. coli investigated the interactions between
these mechanisms arguing the presence of two different codes
overlapped at different at levels on DNA, and possibly evolving
at different time-scales, carrying, respectively, a “digital” and
an “analog” information (Sobetzko et al., 2012; Dorman, 2013b;
Muskhelishvili and Travers, 2013; Sobetzko et al., 2013). Finally
this system is able to rapidly evolve in response to adaptation
to recurring changes (Crozat et al., 2010), possibly improving
the efficiency and the speed of the programmed conformational
changes.

We propose that this technological parallel could also be
useful in the reverse direction, to reframe the current biological
knowledge in a physical perspective. Indeed, the smart polymer
analogy does not by itself add new knowledge to the long
list of biological information already acquired on the nucleoid.
However, it may help us putting the same knowledge in a

different perspective, and treat the same information in more
precise and quantitative ways using the tools of soft-matter
physics. This may lead to defining new questions, and ultimately
to reaching new knowledge. For example, new biomimetic
“constructive” approaches using purified DNA and NAPs may be
defined to explore the resulting phase diagram in a controlled
fashion (Maurer et al., 2009; Pelletier et al., 2012; Thacker
et al., 2014), and to achieve a physical understanding of
how robustness and response to changes are encoded in such
structures.
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