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bacteria and which seem to play an important role in mediating competition within
bacterial communities. In this study, we have identified and established the structural
classification of putative bacteriocins encoded by 317 microbial genomes in the human
intestine. On the basis of homologies to available bacteriocin sequences, mainly from
lactic acid bacteria, we report the widespread occurrence of bacteriocins across the
gut microbiota: 175 bacteriocins were found to be encoded in Firmicutes, 79 in
Proteobacteria, 34 in Bacteroidetes, and 25 in Actinobacteria. Bacteriocins from gut
bacteria displayed wide differences among phyla with regard to class distribution,
net positive charge, hydrophobicity and secondary structure, but the a-helix was the
most abundant structure. The peptide structures and physiochemical properties of
bacteriocins produced by the most abundant bacteria in the gut, the Firmicutes and
the Bacteroidetes, seem to ensure low antibiotic activity and participate in permanent
intestinal host defense against the proliferation of harmful bacteria. Meanwhile, the
potentially harmful bacteria, including the Proteobacteria, displayed highly effective
bacteriocins, probably supporting the virulent character of diseases. These findings
highlight the eventual role played by bacteriocins in gut microbial competition and their
potential place in antibiotic therapy.

Keywords: bacteriocin, antimicrobial peptides, microbiota, gastrointestinal tract, BUR database

Introduction

Bacteriocins are natural antimicrobial peptides that are ribosomally synthesized by many bacteria
and some Archaea (Cotter et al., 2005; Zacharof and Lovitt, 2012; Yang et al., 2014). Bacteriocins
have been shown to successfully inhibit pathogenic bacteria such as Enterobacter, Salmonella,
Klebsiella, Escherichia, Listeria, Enterococcus, and Clostridium (Hechard and Sahl, 2002; Snelling,
2005; Kirkup, 2006; Gillor et al., 2008). Therefore, bacteriocins have become increasingly of
interest as viable alternative antibiotics to bacteriocins (Cotter et al., 2013). When they were

Abbreviations: BLAST, Basic Local Alignment Search Tool; BUR, bacteriocins of the URMITE; NCBI, National Center for
Biotechnology Information; URMITE, Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes.
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discovered (Gratia, 1925), bacteriocins were thought to be
secreted by certain bacteria for the purpose of eliminating com-
petition in the medium. Currently, probiotics are used to enhance
the ratio of beneficial to undesirable bacteria in human gastroin-
testinal microbiota (Fooks and Gibson, 2002) probably via the
production of bacteriocins. Probiotics have been proposed to
ensure in situ production of bacteriocins in order to fight against
intestinal infections (Dobson et al., 2012; O’Shea et al., 2012;
Schuijt et al., 2013). Altogether, bacteriocins may play a crucial
role in determining the composition of gut microbiota (Corr
et al., 2007; Angelakis et al., 2013; Million et al., 2013). They are
presumed to actively participate in gastrointestinal host defense
mechanisms by inhibiting one ecosystem, encouraging another,
and offering a competitive advantage to bacteria in the intestinal
tract.

A number of web-based software programs including the
UniProtKB/Swiss-Prot, BAGEL (de Jong et al., 2006; van Heel
et al., 2013) and BACTIBASE (Hammami et al., 2007, 2010)
allow the detection and characterization of bacteriocins. Some
300 different bacteriocins have been identified and are avail-
able in public databases. They can be classified into three main
categories on the basis of common characteristics such as molec-
ular weight, heat stability and primary peptide structure. Class
I, lanthionine-containing lantibiotics, are heat-stable polycyclic
peptides (<5 kDa). Class II, non-lanthionine-containing bacte-
riocins are small heat-stable bacteriocins (<10 kDa), are sub-
divided into subclass IlIa (pediocin-like bacteriocins), IIb (two-
peptide bacteriocins), Ilc (circular bacteriocins), and IId (bacteri-
ocins that do not match the other three categories). Class III are
large, heat-labile bacteriocins (>30 kDa) including bacteriolysins
(murein hydrolases), colicins and linocins (Klaenhammer, 1993;
van Belkum and Stiles, 2000; Kemperman et al., 2003; Cotter et al.,
2005, 2013). Considering the potential ecological relevance of
bacteriocins in microbial communities, the number of recognized
bacteriocins seems to be relatively low. Further studies are needed
to assess the production of bacteriocin in microbial communi-
ties. Since function prediction is essentially based on homology,
the large sequence variability and very small length of certain
bacteriocins (less than 30 amino acids) make computational iden-
tification of bacteriocins very hard (Whisstock and Lesk, 2003).
Thus, bacteriocin databases are most likely incomplete and sev-
eral genes encoding for bacteriocins are probably annotated as
hypothetical proteins.

Here, we focused our analysis on the human gut microbiota.
We constructed the most exhaustive database for bacteriocins
(‘BUR’ standing for Bacteriocins of the URMITE database) by
collecting all currently available sequences from the databases
and from NCBI. Protein sequences from this database allowed
putative bacteriocins from human gut microbiota to be identified
using BLASTp methodology.

Materials and Methods

Bacteriocin Database
Bacteriocin peptide sequences were collected from the BAGEL
(482 sequences) and BACTIBASE (228 sequences) bacteriocin

databases (de Jong et al., 2006; Hammami et al., 2007) as well as
from the NCBI database (834 bacteriocins). A thesaurus-search
of the NCBI Entrez Gene database using bacteriocin, sakacin,
microcin, colicin, and plantaricin and other keywords related
to bacteriocins, followed by manual examination of the linked
Pubmed article information allowed all the sequences of bacteri-
ocins reported in the literature to be retrieved. The multi-FASTA
text file containing protein sequences was manually curated to
remove all redundant sequences. Similar bacteriocin sequences
from different strains were conserved.

Strain Sequences Collected

From NCBI and our sequencing platform, we retrieved a total
of 641 available genomes for organisms from the gastrointesti-
nal tract (307 whole genomes and 334 draft genomes) belonging
to 199 different bacterial genera, including Lactobacillus (65
strains), Streptococcus (32 strains), Clostridium (32 strains), and
Bacillus (30 strains). Among these genomes, 398 were Gram-
positive bacteria, and 243 were Gram-negative bacteria.

Bacteriocins Prediction

A bidirectional protein BLAST (BLASTp) was performed to iden-
tify bacteriocins in the gut genomes. Protein sequences encoding
for bacteriocins were used as search strings in a BLASTp series
[27] against gut genomes. All primary BLAST hits returning with
identity over 50% and coverage over 70% were then subjected to
BLASTp against the BUR database using same thresholds.

Web Interface

The BUR database runs on a Windows NT platform (Microsoft
Windows 2000) with an Apache web server (version 2.0.55).
The web server and all parts of the database are hosted at the
URMITE in France. The web interface is accessible from the
‘THU Méditerranée Infection’ page in the database section http://
www.mediterranee-infection.com/article.php?larub=143&titre=
base-de-donnees (Figure 1A). The web interface consists of
two main web pages: one homepage with general information
about bacteriocins and another page allowing users to search the
database using a BLAST algorithm (protein-protein BLAST),
version 2.2.13. Sequences that are homologous to the submitted
sequences are shown as multiple alignments.

Information Related to Bacteriocins and
Statistical Analysis

General data, such as peptide name, class and microbial data
(producer organism, phylum, and Gram staining), were col-
lected for each peptide. Additional physicochemical data includ-
ing length, mass, amino acid composition, charged residues,
hydrophobic (alanine, phenylalanine, glycine, isoleucine, leucine,
methionine, proline, valine, and tryptophan) and hydrophilic
(cysteine, asparagine, glutamine, serine, threonine, and tyrosine)
residues were provided using CLC Genomics v7 software (CLC
bio, Aarhus, Denmark). The prediction of bacteriocin potency
and spectrum of activity was obtained using Phyre 2 software'
(Kelley and Sternberg, 2009). Principal component analysis was

'http://www.sbg.bio.ic.ac.uk/phyre2
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FIGURE 1 | (A) Home page access and (B) phylum distribution of BUR bacteriocin sequences (numbers in brackets correspond to the number of bacteriocins
found in gut bacteria and in other bacteria).
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performed within the R statistical package? to infer relationships
between physiochemical properties and secondary structures
within the different bacteriocins classes. SYSTAT 13 software’
allowed us to perform statistical analysis using a Chi-squared test.
A p-value of <0.05 was considered significant.

Results

The generated database holds 1,359 bacteriocin sequences
including 1,050 bacteriocins from Gram-positive bacteria and
309 from Gram-negative bacteria. Of these, 962 are produced
by Firmicutes (mainly Streptococcus and Lactobacillus), 292 by
Proteobacteria, 87 by Actinobacteria, eight by Thermotogae, four
by Euryarchaeota, three by Aquificae, two by Spirochaetes, and
one by Bacteroidetes. The bacteriocin sequences differ greatly in
size and composition, with sequences ranging from 10 amino
acids (bacteriocins produced by Lactobacillus curvatus) to 2,064
amino acids (a bacteriocin produced by Xylella fastidiosa strain
9a5c¢), with average length and weight of 160 amino acids and
18 kDa, respectively. These bacteriocin sequences can be clas-
sified into the three classes as follows: 243 in the Class I, 492
in the Class II and 624 in the Class III. Alanine constitutes the
most abundant amino acid in the bacteriocin sequences. All these
bacteriocins contain an average of 17 glycine residues but no
leucine or asparagine residues. Bacteriocin sequences showed a
low similarity score of 15% within classes, probably in accordance
with the heterogeneity of modes of action and antimicrobial
spectra.

When using the available 1,359 sequences of non-redundant
protein sequences, we found 367 genes encoding different types
of bacteriocins in 317 studied genomes of bacteria from the gas-
trointestinal tract (Supplementary File 1). Most of these genes
were previously annotated as hypothetical proteins in the NCBI
database. The 367 bacteriocin sequences identified were added
to the BUR database, giving a final database composed of
1,726 peptide sequences (Figure 1A). The majority of bacteri-
ocins in the BUR database were produced by Firmicutes (71%),
Proteobacteria (21%), Actinobacteria (6%), and Bacteroidetes
(0.5%; a total of 1,705 bacteriocins; Figure 1B). We observed
that 40% of Firmicutes bacteria encode more than three bac-
teriocins, whereas bacteria from other phyla did not contain
more than three bacteriocins. Lactobacillus, Enterococcus, and
Streptococcus spp. encoded one to 24, one to 12 and one to 10
bacteriocins, respectively. Lactobacillus plantarum WCFS1, with
24 genes, encoded the largest number of bacteriocins, followed
by L. plantarum Z]J316 with 23 genes and L. plantarum 16 with 21
bacteriocins.

Bacteriocins produced by bacteria found in the gut are very
different from those produced by other bacteria with regards to
amino acid composition and length. Thus, bacteriocins produced
by gut bacteria had significantly smaller percentages of aspartic
acid, leucine, arginine, or glutamic acid but higher percentages
of lysine and methionine than other bacteriocins (Table 1) and

2http://www.r-project.org/
Shittp://www.systat.com/

TABLE 1 | Amino acid occurrence in the BUR database.

Amino acid In gut Not in gut
Number of Percentage  Number Percentage
residues of total of of total

residues residues residues

Alanine* 21,850 9.8 6,055 9.7

Glycine* 20,884 9.3 5,744 9.2

Leucine* 17,214 7.7 5,586 8.9

Serine 16,349 7.3 4,343 6.9

Valine* 15,430 6.9 4,530 7.2

Lysine 15,025 6.7 2,689 4.3

Isoleucine* 13,424 6.0 3,714 5.9

Threonine 12,578 5.6 3,727 6.0

Glutamic Acid 11,830 5.3 3,796 6.1

Aspartic Acid 11,791 5.3 4,291 6.9

Asparagine 11,029 4.9 2,755 4.4

Arginine 8,718 3.9 3,156 5.0

Proline* 8,500 3.8 2,433 3.9

Glutamine 7,957 3.6 2,195 3.5

Tyrosine 7,843 3.5 1,990 3.2

Phenylalanine* 7,615 3.4 1,953 3.1

Methionine* 5,109 2.3 981 1.6

Tryptophan* 4,298 1.9 871 1.4

Histidine 4,069 1.8 1,197 1.9

Cysteine 2,031 0.9 516 0.8

*Hydrophobic amino acids.

they were shorter in length (155 amino acid vs. 298 amino acid,
p=0.00). Overall, gut bacteria possessed more class I bacteriocins
(44%) than class II (38.6%) or class III (17.3%), whereas other
bacteria possessed more class III bacteriocins (59.2%) than class II
(27.7%) or class I (13%; p = 0.00). Moreover, average hydropho-
bic residue content and net positive charge of the different classes
of bacteriocins from the BUR database were similar (52.5% and
+4, respectively).

Analysis of bacteriocins only from gut bacteria revealed signif-
icant differences in the structure and physiochemical properties
of bacteriocins among the different phyla. Bacteriocins from
Firmicutes were distributed fairly evenly across the different
classes with 20% in class I, 45% in class II, and 35% in class III.
Bacteriocins from Actinobacteria and Proteobacteria belonged
primarily to class III (58 and 94%, respectively), and bacteriocins
from Bacteroides were exclusively in class III. Proteobacteria
had the highest net positive charge (4-6), whereas Bacteroidetes
had the lowest net positive charge (43; p = 0.01; Figure 2A).
Although the distribution of the percentage of hydrophobic
residues varied widely within the different phyla (Figure 2B), bac-
teriocins from Firmicutes, Proteobacteria, and Actinobacteria all
had an average of 53% hydrophobic residues, while Bacteroidetes
contained 60% hydrophobic residues. Using homology models,
we determined the 2D structure and activity domain for 731
bacteriocins from gut bacteria. Bacteriocins from Firmicutes dis-
played 31% a-helix, 31% B-strand, and 31% disordered structures,
whereas Actinobacteria and Bacteroidetes contained a majority of
p-strand structures (32 and 31%, respectively). Bacteriocins from
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FIGURE 2 | Comparative analysis of the structures of bacteriocins from gut bacteria produced by the main phyla. (A) Net positive charge.
(B) Composition of hydrophobic residues. (C) Structural statistics (representation of the mean data).

Proteobacteria displayed a significantly higher proportion of
a-helix (49%) and disordered structures (35%; p = 0.00). Overall,
the most abundant peptides were those forming a-helices, with
33% on average (p = 0.00; Figure 2C). Finally, the principal com-
ponent analysis revealed that bacteriocin classes were not homo-
geneous (Figure 3). Indeed, even within a class, we observed that
bacteriocins displayed different features, except for the length
criterion, which was the lowest for class I and the highest for
class III.

Discussion

The present study led to the creation of the largest col-
lection of bacteriocin sequences to date and revealed the
abundance of bacteriocins in gastrointestinal tract genomes.
These findings help to shed light on the underlying fac-
tors that shape the microbial composition of the gut.
Indeed, in the highly competitive microbial ecosystem,
bacteria seem to foray over each other, producing many
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FIGURE 3 | Relationships between bacteriocins from the different classes. Data from 1,434 bacteriocins are projected on the first two principal component

signals and substances including bacteriocins (Lahti et al.,
2014).

When comparing bacteriocins produced by bacteria found
in the gut with other bacteriocins, we showed that they have
different amino acid composition (higher levels of lysine and
methionine) and also have smaller length, significantly less
positive charge, and significantly less hydrophobic residues.
However, the a-helical structure was consistent across all bac-
teriocins. The a-helical peptides are known to be essential for
antimicrobial activity (Giangaspero et al., 2001) and have been
found to have the broadest spectrum of activity (Dathe and
Wieprecht, 1999). Physico-chemical parameters, including size,
residue arrangement, charge and hydrophobicity can influence
bacteriocin potency and spectrum of activity of a-helical peptides
(Giangaspero et al., 2001; Zelezetsky and Tossi, 2006). It has been
shown that increasing the charge or hydrophobicity arrangement
of a peptide results in potent, broad-range antimicrobial activity
(Giangaspero et al., 2001; Zelezetsky and Tossi, 2006).

We found that the Firmicutes and Bacteroidetes, which are
some of the most predominant bacterial phyla in the human gut
(Eckburg et al., 2005), produce the largest number of bacteriocins.
Bacteriocins seem to offer the bacteria within the intestinal tract
a competitive advantage (Schuijt et al.,, 2013). However, these

bacteriocins seem to have low antibiotic activity, which may
result in moderate control, allowing for a substantial quantity
of other bacteria to develop and maintain a fairly balanced
diversity within the gut. In contrast, bacteriocins produced by
Proteobacteria seem to have higher potential antibacterial activity
thanks to cationic charges and a-helices. The relative abundance
of disordered structures in Proteobacteria enhances their capac-
ity for interaction depending on the medium and thus ensures
potent antibiotic activity in different environments (Zelezetsky
and Tossi, 2006). Overall, bacteria from the gut seem to produce a
large number of bacteriocins with low activity and small amounts
of highly effective bacteriocins. Bacteriocins participate in the
establishment of an equilibrium of strength between the pre-
dominant commensal bacteria of the microflora and potentially
pathogenic opportunistic bacteria.

The majority of gut bacteria were found to produce class I
bacteriocins, whereas bacteria not found in the gut were more
likely to produce class II bacteriocins. However, we found that
bacteriocins displayed different features, even within a class.
Considering the relationship between the structure and antimi-
crobial activity, this finding likely reflects the fact that bacteriocin
activity patterns differ considerably within classes. It has been
claimed that there is no universal consensus on a method for
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subdividing the classes of bacteriocins (Ennahar et al., 2000;
Reddy et al., 2004). Our findings confirm that classifying bacteri-
ocins into existing classes seems to be uninformative. Indeed, the
primary structure of bacteriocins, when there is an appropriate
balance between hydrophobicity and net positive charge renders
the bacteriocins active toward bacteria. However, selective activ-
ity also depends on other parameters; hence, the secondary and
tertiary structures of bacteriocins appear to be important for the
insertion of peptides through the outer layer of the bacteria and
into the phospholipid membrane, due to their contribution to
the oligomeric state and volume of the antimicrobial peptides.
Overall, the secondary and tertiary criteria may be useful for clas-
sifying bacteriocins, for characterizing novel bacteriocins, or for
designing novel peptides with high potency against pathogens or
with broad antimicrobial spectra.

Conclusion

Our genome-mining approach allowed the description of the
overall production of bacteriocins in the gut microbiota among
which Firmicutes that account for a high proportion of the
overall population, represent a major group of bacteriocin
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