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The paramyxovirus polymerase
complex as a target for
next-generation anti-paramyxovirus
therapeutics
Robert Cox and Richard K. Plemper*
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The paramyxovirus family includes major human and animal pathogens, including
measles virus, mumps virus, and human respiratory syncytial virus (RSV), as well as
the emerging zoonotic Hendra and Nipah viruses. In the U.S., RSV is the leading
cause of infant hospitalizations due to viral infectious disease. Despite their clinical
significance, effective drugs for the improved management of paramyxovirus disease are
lacking. The development of novel anti-paramyxovirus therapeutics is therefore urgently
needed. Paramyxoviruses contain RNA genomes of negative polarity, necessitating
a virus-encoded RNA-dependent RNA polymerase (RdRp) complex for replication
and transcription. Since an equivalent enzymatic activity is absent in host cells, the
RdRp complex represents an attractive druggable target, although structure-guided
drug development campaigns are hampered by the lack of high-resolution RdRp
crystal structures. Here, we review the current structural and functional insight into the
paramyxovirus polymerase complex in conjunction with an evaluation of the mechanism
of activity and developmental status of available experimental RdRp inhibitors. Our
assessment spotlights the importance of the RdRp complex as a premier target for
therapeutic intervention and examines how high-resolution insight into the organization
of the complex will pave the path toward the structure-guided design and optimization
of much-needed next-generation paramyxovirus RdRp blockers.

Keywords: Paramyxovirus, RNA-dependent RNA polymerase, antiviral therapy, nucleoside analogs, allosteric
inhibitor

Introduction

Paramyxoviruses are enveloped, non-segmented and single-stranded RNA viruses with negative
genome polarity (NNRV) in the order Mononegavirales, which also includes the Bornaviridae,
Filoviridae, and Rhabdoviridae families. The paramyxoviruses encompass major human and
animal pathogens such as respiratory syncytial virus (RSV), measles virus (MeV), mumps virus
(MuV), and Newcastle disease virus (NDV). The family is organized into two subfamilies, the
Pneumovirinae and the Paramyxovirinae. While RSV belongs to the former subfamily, MeV,MuV,
NDV, and the newly emerged Hendra and Nipah viruses are all part of the Paramyxovirinae.

All paramyxoviruses spread through the respiratory route and predominantly cause acute
disease, and several members of the family are extremely contagious. For example, MeV
is considered the most infectious viral pathogen identified to date (Kelly et al., 2002;
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Centers for Disease and Prevention, 2012a). Although vaccines
are available for some paramyxoviruses, much-needed effec-
tive antiviral therapeutics for post-exposure prophylaxis and
improved disease management are lacking. Moreover, vaccine
prophylaxis against several clinically highly significant members
of the family is still unavailable despite major past research efforts.

Respiratory syncytial virus, for instance, is the leading cause
of infant mortality from viral respiratory disease and responsi-
ble for over 120,000 infant hospitalizations per year in the U.S.
alone. Whereas clinical symptoms of paramyxovirus disease are
frequently based on immunopathogenicity rather than directly
virus induced (Hall et al., 1971; Auwaerter et al., 1999), in
the case of RSV infection higher viral loads serve as a predic-
tor of RSV lower respiratory tract infection in infected infants
(DeVincenzo et al., 2005). Among hospitalized RSV-infected
children less than 2 years of age, viral load on day three of hospi-
talization was also associated with a requirement for intensive
care and respiratory failure (El Saleeby et al., 2011). These find-
ings spotlight a window of opportunity for improved RSV disease
management through therapeutics, but post-exposure prophy-
laxis may be the only viable indication against other clinically
significant members of the family. For example, we propose that
a combined prophylactic and post-exposure therapeutic anti-
measles platform may be required to ultimately prevail in a
prolonged endgame of gaining global measles control (Plemper
and Snyder, 2009; Plemper and Hammond, 2014). Despite major
educational efforts, herd immunity remains too low to interrupt
endemic MeV transmission in large areas of Western Europe
due to parental concerns against vaccination (Larson et al.,
2011; Saint-Victor and Omer, 2013), and local pockets with
low vaccination coverage increasingly sustain transmission of
imported virus in the U.S. (Centers for Disease and Prevention,
2012b).

Executing essential and virus-specific enzymatic activities,
the viral RdRp complex represents an attractive, albeit under-
explored, target for therapeutics. This review will summarize
current insight into the spatial organization and function of
the paramyxovirus RdRp complex and assess candidate drug-
gable targets within the complex based on the available structural
information and experimental therapeutics.

Components of the RdRp Complex

The overall genome organization and fundamental principles
for genome replication and transcription are conserved between
different paramyxoviruses and, to some extend, all NNRV.
Throughout the virus replication cycle, the genome exists as
a unique ribonucleoprotein complex, the nucleocapsid (NC),
which is composed of the genomic RNA completely sequestered
by copies of the viral NC (N) protein. Only the NC can serve
as a template for RNA synthesis by the RdRp complex, which
consists of the viral large (L) and phospho-(P) proteins in addi-
tion to host co-factors. The L protein contains all enzymatic
activities exercised by the complex, while P acts as an essential
cofactor. The NC, P, and L core complex functions as both repli-
case and transcriptase. Although present in all paramyxoviruses,

in most cases only homotypic N, P, and L combinations, in which
each component is derived from the same paramyxovirus family
member, are bioactive (Smallwood and Moyer, 2004; Dochow
et al., 2012). Functional studies on N, P, and L have furthermore
confirmed that each of the RdRp components can individually
and differentially affect the processes of mRNA synthesis and
genome replication (Perlman and Huang, 1973; Chen et al., 1997;
Fearns et al., 1997; Hwang et al., 1999; Galloway andWertz, 2008,
2009; Harouaka and Wertz, 2009).

Transcriptase Activity

Upon entry into the host cell, virion uncoating separates genome
and viral envelope and releases the NC along with the attached
RdRp into the cytoplasm. Once in the cytoplasm, encapsidated
genomic RNA serves as the template for both transcription and
replication. Leader (Le) and trailer (Tr) sequences are located at
the 3′- and 5′-termini of the genome, respectively, and harbor
the genomic and antigenomic promoter elements, (Figure 1).
RSV contains a linear genomic promoter that spans the first
12 residues of the genome (Noton et al., 2014), while members
of the paramyxovirinae subfamily contain bipartite promoters
(Figure 2A; Pelet et al., 1996; Murphy et al., 1998; Tapparel
et al., 1998). Encapsidation is essential for the assembly of a
functional bipartite promoter, since distinct promoter elements
are juxtaposed only in the helical NC. Consensus sequences
that are involved in transcription initiation, polyadenylation, and
transcription termination of individual genes are located at the
beginning and end of each gene. In transcriptase mode, RdRp
initiates synthesis of the first functional mRNA at the first gene-
start consensus sequence. The nascent mRNA is capped and
methylated by L, and then the full mRNA transcript is gener-
ated (Moyer and Banerjee, 1975; Ogino et al., 2005; Ogino and
Banerjee, 2007). At the end of each open reading frame, RdRp
recognizes a signal for non-templated polyadenylation, followed
by release of the viral mRNA (Lamb and Parks, 2007). Next,
the complex proceeds over the intergenic sequence and reiniti-
ates transcription at the next downstream transcription start site.
However, reinitation is only partially efficient, which results in a
transcription gradient – the synthesis of progressively less of each
viral mRNA as the RdRp advances along the template – that is
characteristic for all members of the mononegavirales.

Replicase Activity

Although transcription and replication use the same viral
proteins, they are two distinct processes. While transcription by
some NNRV RdRps can occur in vitro in the presence of NC, the
correct salts, and ribonucleotides (Emerson and Wagner, 1972;
Davis and Wertz, 1982), genome replication requires ongoing
N protein synthesis, since the nascent genomic or antigenomic
RNA is encapsidated concomitantly. In order to switch from tran-
scription to replication, a sufficiently large amount of N protein
must be available in order to encapsidate the newly synthesized
genomes and antigenomes. In fact, in the case of the paramyx-
ovirinae at least, the intracellular N protein pool serves as a
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FIGURE 1 | Paramyxoviridae genome organization. Genomes of
different members of the Paramyxoviridae family. Members of the
Paramyxovirinae subfamily include measles virus (MeV), mumps virus
(MuV), and Sendai virus. Respiratory syncytial virus (RSV) is a

member of the pneumovirinae subfamily. Genome organization and
numbers of open reading frames differ between members of the
family, but all paramyxoviruses use a core RdRp composed of the
NC, P, and L.

major driver inducing the switch from initial transcription to
replication (Baker and Moyer, 1988; Horikami et al., 1992). For
the pneumovirinae, however, the available N protein pool alone
is not responsible for the shift to replicase functionality, since
increased levels of RSV N enhanced antigenome synthesis, but
had no effect on transcription levels in RSV minireplicon exper-
iments (Fearns et al., 1997). When in replicase mode, RdRps
derived from either subfamily ignore all cis-acting signals, such
as polyadenylation sites, to produce full-length genomic RNA
copies.

The array of distinct enzymatic activities of the RdRp complex
and the highly dynamic protein–protein and protein–RNA inter-
actions that are required for bioactivity provide rich opportunity
for therapeutic interference. As a basis for discussing individual
druggable targets, we will illuminate the role of the viral protein
components in RdRp complex assembly and function.

Nucleocapsid Protein

The paramyxovirus NC shows a characteristic herringbone struc-
ture in electron micrographs (Figure 2). Despite this defined
appearance, the NC remains flexible with variations in pitch
and helical symmetry parameter along its length, which may be
required to allow the polymerase complex to access the encap-
sidated RNA without disassembling the helix (Heggeness et al.,
1980; Egelman et al., 1989; Bhella et al., 2002, 2004).

N subunits in the NC are assembled side-by-side and parallel
along the length of the RNA to form a highly unique protein–
RNA complex, in which the viral RNA is entirely sequestered by
the N protein (Figure 2; Tawar et al., 2009). Each N protomer
is organized into an N-terminal (NTD) and C-terminal (CTD)
core domain, which are connected through a hinge region
(Figure 2). Both the NTD and CTD interact laterally with adja-
cent subunits. The RNA interaction site is positioned at the

NTD/CTD interface, forming a basic surface groove into which
the RNA threads belt-like along the outside of the NC (Figure 2).
A crystal structure of the RSV N domains was recently solved
and reveals parallel layers of RSV N:RNA rings (El Omari et al.,
2011). The NTD and CTD of each N subunit have N- and
C-terminal extensions, termed N-arm (residues 1–28) and C-arm
(residues 360–375), respectively, which attach to neighboring N
subunits (Tawar et al., 2009). Of these, the N-arm is considered
to provide the main stabilizing lateral N–N interaction. However,
weaker top–bottom interactions may likely exist between differ-
ent rungs of the helical NC. Between layers, the RSV N subunits
engage in weak contacts between the N-terminal domains of
one layer and the C-terminal domains of the adjacent lower
layer (El Omari et al., 2011). In the RSV N:RNA structure, the
C-arm lies above the CTD, occupying space between consecutive
turns of the helical NC. However, for other paramyxoviruses, the
extreme C-terminus of N, called N-tail, is displayed on the exte-
rior of the NC (Figure 3; Jensen et al., 2011; Communie et al.,
2013b). Removal of the N-tail causes the NC to rigidify, render-
ing it more compact and biologically inactive (Schoehn et al.,
2004).

Phosphoprotein

The P protein lacks inherent catalytic activity, but is an essential
co-factor of the RdRp complex. Although required for the repli-
cation of all NNRVs, paramyxovirus P proteins vary greatly in
length and sequence (Figure 4; Tarbouriech et al., 2000b; Karlin
et al., 2003; Ding et al., 2004, 2006; Mavrakis et al., 2004; Ivanov
et al., 2010). P performs a dynamic range of different functions
in the virus replication cycle. The protein is thought to properly
position the L protein for RNA synthesis (Kingston et al., 2004a,b,
2008), interact with the NC template (Habchi et al., 2011; Longhi,
2012; Communie et al., 2013b; Cox et al., 2014), and chaperone
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FIGURE 2 | Nucleocapsid (NC) architecture. (A) Illustration of the bipartite
promoter organization by example of the MuV NC (EMD-2630; Cox et al.,
2014). N protein protomers encapsidating promoter regions in genomic RNA
are highlighted in tan. (B) Typical ‘herring-bone’ structure of the
paramyxovirus NC. (C) The paramyxovirus N protein is composed of two core
domains (NCore), NTD (blue), and CTD (tan). A schematic of the N protein is
shown below the cartoon model. For paramyxoviruses, the extreme
C-terminus of N, NTail , extends out from the NC and interacts with P.
(D) Extensions from these domains, N-arm and C-arm interact with
neighboring N subunits in the helical NC. (D,E) N subunits assemble side by
side along the genomic RNA. (E) The structure of the RSV NC showing the
encapsidated RNA in red. PDB code 4BKK (Bakker et al., 2013). The insert
shows an enlargement of a single N protein protomer, color coded as in (C).

newly synthesized, RNA-free N protein (N0) to the nascent viral
RNA during replication (Mavrakis et al., 2006; Chen et al., 2007;
Yabukarski et al., 2014). Reflecting these diverse tasks, P shows a
modular organization of different functional domains separated
by flexible linker regions (Tarbouriech et al., 2000a; Karlin et al.,
2003; Blanchard et al., 2004; Llorente et al., 2006). Structures for
individual domains of several NNRV P proteins have been solved
previously (Figure 4; Tarbouriech et al., 2000b; Ding et al., 2004,
2006; Mavrakis et al., 2004; Ivanov et al., 2010), but the structure
of a full-length paramyxovirus P has yet to be determined.

All NNRV P proteins contain a motif in their central
region known as the oligomerization domain (Tarbouriech
et al., 2000b; Ding et al., 2006; Gerard et al., 2009; Ivanov
et al., 2010; Communie et al., 2013a; Cox et al., 2013; Bruhn

FIGURE 3 | NTail and NTai l–PCTD Interaction. (A) The extreme C-terminal
region of N, NTail (green), is highly flexible and extends outward from the
assembled NC (Jensen et al., 2011). (B) A short helix in NTail (green) is
involved in binding the C-terminal NC binding domain of P (red). The N- and
C- termini are labeled (PDB code 1T6O; Kingston et al., 2004a). The NC
model was modified from the mumps NC structure (EMDataBank access
code EMD-2630; Cox et al., 2014).

et al., 2014). In addition, all NNRV P form homo-oligomers,
but their lengths and oligomerization states vary (Tarbouriech
et al., 2000b; Gerard et al., 2009; Communie et al., 2013a;
Cox et al., 2013; Bruhn et al., 2014). However, the tetramer is
considered to represent the physiological oligomer of paramyx-
ovirus P proteins (Tarbouriech et al., 2000a,b; Cox et al., 2013;
Bruhn et al., 2014). Proper P oligomerization is required for its
role in both transcription and replication (Tarbouriech et al.,
2000b; Kolakofsky et al., 2004; Chen et al., 2006), and struc-
tures of the oligomerization domains for several paramyx-
oviruses have been solved (Figure 4; Tarbouriech et al., 2000b;
Communie et al., 2013a; Cox et al., 2013; Bruhn et al.,
2014).

Since the L protein alone is unable to bind efficiently to the
NC, a key function of P is to position the RdRp on the NC and
ensure continued contact between the RdRp and the template as
the complex progresses along the NC. According to the precedent
set by vesicular stomatitis virus (VSV), an NNRV of the rhab-
dovirus family, after P binding to its NC, N-terminal L binding
domains protrude outward and may serve as a latch to position
L (Emerson and Schubert, 1987; Morin et al., 2012). Based off of
previously solved crystal structures, it is possible that paramyx-
ovirus P proteins bind L in a similar fashion (Tarbouriech et al.,
2000a,b; Cox et al., 2013; Bruhn et al., 2014), since in all of
these structures N-terminal domains are proposed to protrude
outward.
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FIGURE 4 | Phosphoprotein organization and structure. (A) The P proteins
of NNRVs vary in length and domain organization. All NNRV P form oligomers.
(B) The oligomerization state of all paramyxovirus P proteins is a tetramer.
Tetrameric structures for NiV, MeV, and MuV are shown from left to right (PDB
codes 4GJW, 4BHV, and 4EIJ for NiV, MeV, and MuV, respectively; Communie

et al., 2013a; Cox et al., 2013; Bruhn et al., 2014). (C) The structures of the
C-terminal NC binding domain of several paramyxovirus P have been solved
and are highly conserved structurally. Structures shown from left to right are for
HeV, MeV, and MuV. (PDB codes 4HEO, 3BBZ, and 1OKS, respectively;
Johansson et al., 2003; Kingston et al., 2008; Communie et al., 2013b).

In the absence of other viral proteins, N has a strong tendency
to polymerize and to encapsidated non-viral cellular RNAs. To
prevent non-productive N polymerization, P acts as a molecular
chaperone and complexes RNA-free N0 forms in N0–P struc-
tures (Mavrakis et al., 2006; Chen et al., 2007; Leyrat et al.,
2011; Yabukarski et al., 2014). In addition to blocking prema-
ture oligomerization, the N0–P complexes inhibit non-specific
encapsidation of cellular RNA and keep N0 soluble (Masters and

Banerjee, 1988; Chen et al., 2007; Leyrat et al., 2011; Yabukarski
et al., 2014). Crystal structures for VSV and NiV N0–P complexes
have been solved (Figure 5; Leyrat et al., 2011; Yabukarski et al.,
2014). A comparison between the structures of the VSV and NiV
N0–P complexes reveals a common mechanism of N0 chaperon-
ing (Leyrat et al., 2011; Yabukarski et al., 2014). In both cases,
the N-terminal N0-binding region of P prevents N polymeriza-
tion by occupying the binding cavity for the N-arm and C-arm of
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FIGURE 5 | N0P and model of the RdRp complex. (A) Structures of the
N0P complex of vesicular stomatitis virus (VSV) and NiV have been solved. P
(red) acts to prevent premature encapsidation and oligomerization of N (green;
PDB codes 3PMK and 4CO6 for VSV and NiV, respectively; Leyrat et al.,
2011; Yabukarski et al., 2014). (B) Model of the interactions between N, P,
and L in the viral RdRp complex. P anchors L to the NC via interactions in
PCTD (red circle) and correctly positions the polymerase to begin synthesizing
the viral RNA. The NC model was modified from the mumps NC structure
(EMD-2630; Cox et al., 2014).

adjacent N subunits. Proper encapsidation of the newly synthe-
sized RNA genome requires the delivery of soluble RNA-free
N0 to the site of RNA synthesis (Yabukarski et al., 2014). The
N0–P complex can bind to the NC, but little is known about
the reaction by which N0 is transferred from P to the RNA.
Conceivably, an N0–P complex may bind to the NC template
through the C-terminal NC binding domain of P, and the intrin-
sic flexibility of P may properly position and orient the N0

molecule within the replication complex and deliver it to the
nascent RNA.

The interaction of P with the NC is mediated through a
well-conserved nucleocapsid binding domain (NBD), which is
located toward the C-terminal end of the P protein (Figure 4;
Johansson et al., 2003; Kingston et al., 2004b). Structures of the
NBDs of several paramyxoviruses complexed with their interact-
ing domain in N have been solved (Figure 3; Gely et al., 2010;
Habchi et al., 2011; Communie et al., 2013b). In the case of MeV,
the P binding site is located near the C-terminus of the N protein,
close to the end of the 125-residue N-tail domain (Kingston et al.,
2004a). How the RdRp accesses the encapsidated RNA is unclear.

One possibility is that a hinge movement of the NTDwith respect
to the CTD results in a transient opening of the groove and expo-
sure of encapsidated nucleotides during RNA readout. In this
model, the N protein acts as a helicase, dissociating the tran-
sient double-stranded RNA segment during procession of RNA
synthesis along the genome (Tawar et al., 2009). The L protein,
the P protein, or the L–P complex might be able to induce this
conformational change (Cox et al., 2014). Physical movement of
the polymerase along the NC during RNA synthesis has further-
more been hypothesized to involve the continuous attachment
and release of the P NBD domains from its counterpart in the
N tails (Kingston et al., 2004b), resulting in “cartwheeling” of the
P–L complexes along the NC (Figure 5; Kingston et al., 2004b). In
this model, the N-tail sections exposed on the outside of the NC
are thought to serve as essential anchor points for recruitment
of the polymerase complex (Curran et al., 1993; Kingston et al.,
2004a,b).

Supporting this hypothesis, minireplicon reporter studies of
truncated SeV and MeV N lacking the P binding domains
in N suggested that N-tail truncated NCs cannot serve as a
template for the RdRp, thus spotlighting a possible essential func-
tion for the N tail-P interaction in polymerase loading and/or
advancement (Curran et al., 1993; Zhang et al., 2002). Strikingly,
however, further truncation of the N-tail beyond the P interac-
tion region largely restored template function of the NC in an
MeVminigenome system (Krumm et al., 2013). This observation
demonstrated that the P interaction with the N-tail is dispens-
able for initial productive loading of the RdRp onto the NC
or subsequent advancement of the complex along the template
(Krumm et al., 2013). Supported by RdRp activity experiments
obtained with negative and positive sense replicon constructs,
N-tail-independent RdRp loading appears not to be restricted to
transcriptase configuration, but is also applicable to the replicase
complex (Krumm et al., 2013). Interestingly, a recent characteri-
zation of the related MuV P protein revealed that its interaction
with NC likewise does not depend on the N-tail but can be
mediated by direct contacts between MuV P and the NTD core
(Kingston et al., 2004a; Cox et al., 2013, 2014). Interestingly, this
MuV P-NTD interaction would bring the associated L protein
into close proximity of the encapsidated RNA. Taken together,
these recent discoveries indicate that the initial tethering of the
RdRp complex to the NC template is independent of the P and N
tail interaction. Rather, cycles of N-tail to P binding and release
may be necessary to stabilize the RdRp–NC complex as the poly-
merase progresses along the genome (Curran and Kolakofsky,
1999; Kolakofsky et al., 2004; Krumm et al., 2013).

Large Protein

The large (L) protein harbors the catalytic centers required for
RNA synthesis, mRNA capping, and mRNA polyadenylation
(Emerson and Yu, 1975; Hamaguchi et al., 1983; Gupta et al.,
2002; Ogino et al., 2005). Bioinformatics analyses have identified
six conserved domains (CR I to CR VI) in NNRV L proteins that
are connected by variable linker regions (Figure 6; Poch et al.,
1988, 1990; Svenda et al., 1997). However, the precise roles for
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FIGURE 6 | L protein domain organization and architecture. (A) The L
protein is composed of six conserved regions (CR), I–VI, each containing
separate functions (Sidhu et al., 1993). (B) Insertion analysis has shown that L
can be further grouped into three large regions (LRI-III; Dochow et al., 2012).
Star symbols mark the proposed position of key residues near the catalytic
site for phosphodiester bond formation in CR III. (C) Positions of L mutations
allowing for resistance to ERDRP-0519 in MeV (black arrows) and CDV (black
circles) (Krumm et al., 2014). Mutations map to areas proximal to the active
site for phosphodiester bond formation (black star) (D) Cartoon resembling
the low-resolution organization of the VSV L protein revealed by electron
microscopy analysis (Rahmeh et al., 2010). The cartoon representation is
labeled with the proposed positions of the CR domains.

each of these L domains in RdRp function are still largely unclear.
CR I has been implicated in L oligomerization (Cevik et al.,
2003, 2004; Smallwood and Moyer, 2004) and L–P interactions
(Horikami et al., 1994; Holmes and Moyer, 2002; Cevik et al.,
2003, 2004; Chattopadhyay and Shaila, 2004), CR III is involved
in phosphodiester bond formation for RNA polymerization
(Malur et al., 2002b), and CRVI contains methyltransferase activ-
ity (Poch et al., 1990; Ferron et al., 2002). A conserved GXXTnHR
motif in CR V of VSV L is thought to mediate unusual capping of
the viral mRNAs through transfer of 5′-monophosphate-mRNA
onto GDP (Ogino and Banerjee, 2007; Li et al., 2008). However,
paramyxovirus L proteins may possess traditional guanylyltrans-
ferase activity, since Rinderpest virus RdRp complexes report-
edly form covalent guanosine monophosphate-L intermediates
in vitro (Gopinath and Shaila, 2009). In addition, a conserved
guanylyltransferase consensus motif required for transcriptase
activity was identified in the C-terminal region of the L protein
of human parainfluenza virus (HPIV) type 2 (Nishio et al.,
2011).

Consistent with L having amodular arrangement of functional
domains, also studies of purified L proteins of NNRV by elec-
tron microscopy supported a linear organization of structural

domains (Figure 6; Rahmeh et al., 2010). Analysis of the L
protein of MeV has furthermore revealed that the protein can
be split into distinct fragments that are capable of reconstitut-
ing RdRp bioactivity through trans-complementation (Duprex
et al., 2002; Dochow et al., 2012). This study showed that MeV
L is composed of at least two independently folding-competent
domains. Consistent with these findings, sequence alignments
of different morbillivirus L proteins had previously suggested
two linker domains that separate three large regions (LR I to
LR III; Figure 6; Mcllhatton et al., 1997; Duprex et al., 2002).
Of these, LR I harbors CR I and II, LR II contains CR III-CR
V, and LR III is considered to encompass the methyltransferase
and, possibly, the recently proposed guanylyltransferase func-
tions of CR VI. L proteins of MeV and rinderpest virus toler-
ated polypeptide insertions into the LR II/LR III but not the
LR I/LR II junction (Duprex et al., 2002; Brown et al., 2005),
consistent with at least a two-domain organization. Additional
domain intersections may well exist in the paramyxovirus
L protein.

In addition to the mandatory interaction with P, Sendai virus
L was shown to exist as an oligomer in the RdRp complex
(Smallwood et al., 2002). Homo-oligomerization was further-
more proposed for MeV and human parainfluenzavirus type 3
L proteins, and in all cases the L–L interaction domain was
proposed to reside in the N-terminal region of the protein
(Horikami et al., 1994; Chandrika et al., 1995; Holmes andMoyer,
2002; Malur et al., 2002a; Cevik et al., 2003; Smallwood and
Moyer, 2004; Dochow et al., 2012). Although this finding spot-
lights that both the L–P and L–L interaction domains are located
in N-terminal regions of the L protein, homo-oligomerization of
MeV and SeV L is reportedly independent of P protein bind-
ing (Holmes and Moyer, 2002; Cevik et al., 2003; Dochow et al.,
2012). The available information is limited, but the specificity
for L–P binding apparently involves multiple non-consecutive
amino acids that are distinct from those implemented in L–L
interactions (Cevik et al., 2004).

Development of Antiviral Therapeutics

The dynamic interplay between the different viral protein compo-
nents of the RdRp and the diverse enzymatic activities catalyzed
by the L protein constitute an array of drug target candidates
suitable for effective inhibition of virus replication. An inher-
ent challenge of all pathogen-directed drug discovery campaigns
is a narrow indication spectrum of the therapeutic candidate,
limiting inhibitory activity to a specific member or, at best,
a single genus within the paramyxovirus family. It may be
possible to overcome this restriction by targeting a host cell-
derived cofactor of the complex that is likewise indispensible
for RdRp activity. For instance, the human translation elon-
gation factor eEF1A is known to be required for VSV RdRp
transcriptase activity (Das et al., 1998; Qanungo et al., 2004)
and was recently shown to be critically involved also in RSV
replication (Wei et al., 2014). A general requirement of eEF1A
and/or additional host factors for paramyxovirus RdRp activ-
ity is possible, but direct therapeutic targeting of, for instance,
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eEF1A will likely be prohibited by its central role in host protein
synthesis. While it may be hypothetically possible to reduce unde-
sirable cytotoxicity through a campaign specifically designed to
block a host cofactor-RdRp protein–protein interaction (PPI),
we consider the development of pathogen-directed RdRp block-
ers more fruitful. Especially “open” high-throughput screening
campaigns in search of RdRp inhibitors should yield pathogen-
directed hits with higher propensity than compounds interfering
with a cofactor-RdRp PPI.

In particular the L protein represents a rich target for drug
discovery campaigns, due to its multidomain organization and
the concentration of several essential enzymatic activities in
a single protein. The L CR-V domain containing a guanylyl-
transferase domain responsible for 5′-cap formation (Li et al.,
2008) is a case in point, since inhibiting the viral capping
machinery using guanosine nucleotide analogs constitutes a
proven antiviral approach (Lampio et al., 1999; Issur et al.,
2011). Likewise, it may be possible to exploit the postulated
S-adenosyl-L-methionine transferase domain responsible for 5′-
cap methylation (Bujnicki and Rychlewski, 2002; Ferron et al.,
2002; Ogino et al., 2005; Murphy and Grdzelishvili, 2009) in L
CR-VI. S-adenosyl-L-homocysteine derivatives have been shown
to selectively inhibit methyltransferase activity of dengue virus
of the flavivirus family, setting an example for the therapeu-
tic potential of antivirals targeting methyltransferase functions
(Lim et al., 2011). The precedence established by the devel-
opment of inhibitors of, for instance, HIV reverse transcrip-
tase and Hepatitis C virus polymerase underscores the value
of high-resolution structural information for the identifica-
tion and optimization of hit structures, the molecular under-
standing of the mechanism of inhibitory activity, and, poten-
tially, the proactive design of analogs with increased resilience
against viral escape from inhibition (Nijhuis et al., 2009; Adams

et al., 2010; Das et al., 2011; Halfon and Locarnini, 2011;
Mayhoub, 2012; Lloyd et al., 2014). However, the paramyx-
ovirus drug development field is hampered by the current
lack of high-resolution structural information for any monone-
gavirales L protein. Overcoming this limitation will be a
major milestone toward the development of next generation
therapeutics.

An envisioned drug application including post-exposure
prophylactic use affects the drug profile requested of a
desirable anti-paramyxovirus therapeutic; a successful candi-
date must be safe and efficacious, amenable to cost-effective
manufacture, ideally be shelf-stable at ambient temperature,
and must be orally bioavailable. Of small-molecule chemical
compounds, large molecule biologics, and peptidic biopharma-
ceutical as candidate drug classes, small-molecules are most
suitable to fulfill these divergent demands (Ganellin et al.,
2013). Two main classes of polymerase-targeted drugs are
currently in clinical use for, among others, antiretroviral therapy,
human cytomegalovirus therapy, and HCV therapy, competi-
tive nucleotide/nucleoside substrate analogs and non-nucleoside
allosteric inhibitors (Sun et al., 2007, 2008; Andrei et al., 2008;
Brown, 2009; Krumm et al., 2011; Mercorelli et al., 2011).
Table 1 provides an overview of some experimental drug
candidates targeted against different paramyxovirus RdRps that
represent these main classes and are currently under clinical
consideration or were found efficacious in animal models of
paramyxovirus disease. As discussed below, we consider it the
most promising approach to combine, if available, a substrate
analog with an allosteric inhibitor to maximize the prospect
of capitalizing on drug combination synergies and in particu-
lar reduce the frequency of viral escape from inhibition and/or
lower the fitness of escape variants with multiple resistance
mutations.

TABLE 1 | Examples of substrate analog and allosteric paramyxovirus RNA-dependent RNA polymerase (RdRp) inhibitors that showed efficacy in animal
models and/or were advanced to clinical trials.

Structure Name Indication Clinical progression

ERDRP-0519 CDV, measles virus (MeV) Orally efficacious in the ferret-CDV
model of morbillivirus disease.

RSV604 Respiratory syncytial virus (RSV) Phase I–III completed.

Ribavirin MeV, mumps virus (MuV), HeV, NIV, RSV hepatitis
C, HIV-1, hPIV2, hPIV3, HSV-1, HSV-2, influenza.

FDA approved.

Structure unavailable ASL-008176 RSV Reduced viral load in phase II
clinical trials in adults.
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Nucleoside and Nucleotide Analogs

Nucleoside analogs contain non-canonical bases that act as chain
terminators after intracellular phosphorylation to the corre-
sponding nucleotide and incorporation into the nascent chain
(De Clercq and Neyts, 2009; Soriano et al., 2013) While nucle-
oside analogs have shown extreme clinical success, ribavirin is
currently the only substrate analog licensed against a paramyx-
ovirus disease, the treatment of RSV infection. The compound
is a purine-analog capable of base-pairing with equal efficiency
with either cytosine or uracil (Wright et al., 2005). Rather than
acting as a chain terminator, the resulting hypermutation of
the newly synthesized strand is considered to block virus repli-
cation through error catastrophe (Crotty and Andino, 2002).
However, ribavirin efficacy against RSV is limited and severe
adverse effects, in particular an increased risk of anemia and
mitochondrial toxicity (Canonico, 1985; Gilbert and Knight,
1986; Huggins et al., 1991), undermine its clinical use for anti-
RSV therapy. In contrast, ALS-008176, a recently presented
novel nucleoside analog, is currently in phase II clinical trials
for use against RSV infection (Devincenzo et al., 2014). In
this trial, the compound ALS-008176 emerged as well toler-
ated and was capable of significantly reducing viral load in
treated adults compared to the placebo control group, when
treatment was initiated at the onset of infection. These data
are highly encouraging, since they provide proof-of-concept
for the clinical benefit of effective RSV inhibitors. In addition,
Favipiravir (T-705), a nucleotide analog investigated for the treat-
ment of several virus infections including influenza A, Ebola
virus, and foot-and-mouth-disease virus (Furuta et al., 2002),
showed activity against RSV in cell culture, albeit at prohibitively
high concentrations for clinical use (Furuta et al., 2002, 2013).
A novel nucleoside analog was recently reported as a screen-
ing hit emerging from a high-throughput anti-RSV campaign
(Laganas et al., 2014). Remarkably, resistance mutations were
characterized and mapped to the RSV P protein rather than
the L polymerase, suggesting a novel mechanism of antiviral
activity that is distinct from chain termination and error catas-
trophe.

Non-Nucleoside RdRp Inhibitors

Non-nucleoside allosteric inhibitors non-competitively block
RdRp activity through docking into allosteric sites that
are frequently located outside of the actual substrate bind-
ing site. Binding of an allosteric ligand can either indi-
rectly alter the active site structurally through a long-range
effect, rendering the enzyme catalytically inactive, or they
may disrupt the formation of protein complexes required for
correct enzymatic function. Examples of clinically approved
allosteric polymerase inhibitors that served as primary medi-
cation in first-line highly active antiretroviral therapy are the
first generation non-nucleoside RT inhibitors Nevirapine and
Efavirenz (Basavapathruni and Anderson, 2007; de Bethune,
2010). However, the genetic barrier to resistance against
these compounds is low and these drugs are unsuitable for

monotherapy (Usach et al., 2013). Second-generation non-
nucleoside RT inhibitors such as Etravirine and Rilpivirine
show improved resistance profiles, allowing use of Etravirine in
treatment-experienced patients containing multidrug-resistant
HIV (de Bethune, 2010).

Analogous to the experience with non-nucleoside RT
inhibitors, the paramyxovirus L protein should present an equally
viable target for effective non-nucleoside therapeutics, in particu-
lar when used in combination with a nucleoside analog to prevent
the induction of genetic drift in the endemic virus populations
leading to the development of preexisting resistance.

We have recently developed and mechanistically charac-
terized an allosteric morbillivirus RdRp inhibitor class that
targets the L protein based on the experimental induction
of escape mutants (Figure 6; White et al., 2007; Sun et al.,
2008; Yoon et al., 2008, 2009; Krumm et al., 2011; Ndungu
et al., 2012; Moore et al., 2013a,b). Specifically, resistance muta-
tions clustered in L protein conserved domains of II, III,
and IV (Yoon et al., 2009). Further development of this class
yielded the clinical candidate ERDRP-0519, a well-tolerated
orally efficacious pan-morbillivirus RdRp inhibitor that rendered
normally lethal CDV disease in the ferret model clinically
asymptomatic when administered in a post-exposure prophy-
lactic regimen commencing at the onset of viremia (Krumm
et al., 2014). Highly encouraging, all post-exposure-treated
animals not only survived primary infection but mounted a
robust immune response and were completely protected against
a subsequent lethal CDV challenge infection (Krumm et al.,
2014).

Currently at an early stage of development, several small
molecule RSV inhibitors were shown to specifically block RdRp
activity in cell culture and show high potential for lead develop-
ment (Liuzzi et al., 2005; Laganas et al., 2014; Matharu et al., 2014;
Tiong-Yip et al., 2014)

In addition to targeting the L protein directly, the paramyx-
ovirus N protein also represents a potential target for viral ther-
apeutics, as evidenced by the recently described RSV inhibitor
RSV604 (Chapman et al., 2007). Resistance mutations to RSV604
were hypothesized to include residues involved in the interaction
of N with the P–L complex (Chapman et al., 2007). Furthermore,
locating resistance hot-spots in RSV N crystal structures revealed
important candidate interaction sites, including the RNA bind-
ing cavity, the site of N-arm attachment, and the NTD region,
which could all also be specifically targeted for the develop-
ment of therapeutic treatments (Chapman et al., 2007; Tawar
et al., 2009; El Omari et al., 2011). Clinical trials have shown
that RSV604 was safe and well tolerated by healthy volunteers
(Chapman et al., 2007; Marty, 2007; Chapman and Cockerill,
2011; Challa et al., 2014). The compound shows potent antivi-
ral efficacy, using a unique mechanism of action, and is likewise
orally bioavailable.

The resistance profile of RSV604 suggests that the compound
could possibly interfere with critical PPIs required for RdRp
activity. Considering the multitude of dynamic protein–protein
contacts required for viral RNA synthesis, specifically targeting
protein interfaces such as those between N and P, P and L, P and
P, or L and L to block paramyxovirus RdRp represents a currently
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underexplored opportunity for therapeutic intervention that may
hold high future promise.

Short-chain peptides have been explored as candidate
inhibitors for a diverse panel of PPIs (DeLano et al., 2000;
De Luca et al., 2011; Gavenonis et al., 2014), although poor
intracellular availability and rapid proteolysis frequently limit
therapeutic use. Small-molecules are more suitable to address
these limitations, but until two decades ago, PPIs were essen-
tially considered undruggable by synthetic molecules due to
the large (typically 1,000–2000 A2) size and flat geometry of
the typical PPI interface (Hwang et al., 2010). Subsequently,
however, natural small molecule products such as rapamycin
and cyclosporine spotlighted that only a subset of residues in
small hot-spot areas confers most of the binding energy, making
PPIs are amenable to small-molecule docking and interference
(Arkin and Wells, 2004; Arkin et al., 2014). In recent years,
over 40 PPIs were successfully subjected to small molecule
targeting (Higueruelo et al., 2009; Basse et al., 2013; Labbe
et al., 2013) and several candidate inhibitors were advanced
to clinical testing (Arkin et al., 2014). The precedence set by
these advanced PPI blockers demonstrates that PPIs most suit-
able for therapeutic intervention concentrate hot-spot residues
in defined areas of less than 900 A2 and binding partners
contain short primary sequences (Smith and Gestwicki, 2012;
Basse et al., 2013). As our structural insight into the organiza-
tion of the paramyxovirus RdRp complex and the geometry of
the dynamic PPIs advances, well designed screening campaigns
should commence with the structure-guided in silico evalua-
tion of druggable candidate interfaces, followed by targeted in
silico and/or high-throughput screens focused on identified suit-
able PPIs.

Conclusion

The high contagiousness of paramyxoviruses, the lack of vaccine
protection against several clinically highly significant members
of the family, and the deliberate decline of vaccination against
other family members due to religious believes or concerns about
vaccine safety create an urgent need for the development of
efficacious paramyxovirus therapeutics. We believe that small-
molecule antivirals are best suited to meet the stringent drug
profile requested of a successful anti-paramyxovirus drug. The
viral polymerase complex in particular presents a rich target for
therapeutic interference through competitive substrate analogs
and allosteric non-nucleoside inhibitors. The recent advance in
the development of PPI inhibitors should furthermore open
up the diverse RdRp protein interfaces to therapeutic interfer-
ence, when more structural insight into the organization of the
polymerase complex and its interaction with the NC template
becomes available. Considering the challenges associated with
rapidly emerging or preexisting viral resistance that we experi-
ence in influenza virus monotherapies, drug combination strate-
gies should be explored and, if possible, implemented from the
onset of anti-paramyxovirus therapy to reduce the frequency of
inducing genetic drift in the endemic virus populations.
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