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A method for the extraction of nucleic acids from a wide range of environmental samples
was developed. This method consists of several modules, which can be individually
modified to maximize yields in extractions of DNA and RNA or separations of DNA
pools. Modules were designed based on elaborate tests, in which permutations of all
nucleic acid extraction steps were compared. The final modular protocol is suitable
for extractions from igneous rock, air, water, and sediments. Sediments range from
high-biomass, organic rich coastal samples to samples from the most oligotrophic region
of the world’s oceans and the deepest borehole ever studied by scientific ocean drilling.
Extraction yields of DNA and RNA are higher than with widely used commercial kits,
indicating an advantage to optimizing extraction procedures to match specific sample
characteristics. The ability to separate soluble extracellular DNA pools without cell lysis
from intracellular and particle-complexed DNA pools may enable new insights into the
cycling and preservation of DNA in environmental samples in the future. A general
protocol is outlined, along with recommendations for optimizing this general protocol
for specific sample types and research goals.

Keywords: DNA, RNA, extraction, environmental sample, low biomass, modular, intracellular, extracellular

Introduction

The extraction of nucleic acids followed by downstream sequencing provides unparalleled insights
into microbial community compositions in complex environmental samples. Since the advent
of polymerase chain reaction (PCR) and sequencing technologies, a wide range of nucleic acid
extraction methods have been developed, with different methods excelling on different sample
types. These methods typically share the goal to lyse the entire microbial population within a sample
and to subsequently recover and purify the nucleic acids of lysed cells, so they can be used for
downstream molecular biological assays. Molecular biological methods e.g., PCR, realtime PCR,
blotting, spectroscopy, enzymatic assays, or nucleic acid sequencing are then used to quantify and
characterize microbial populations based on their DNA and RNA extracts.
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Nucleic acid extraction protocols employ many different
strategies. Yet, most methods share three aims: (1) the
comprehensive lysis of cells and extraction of intracellular nucleic
acids into aqueous solution, (2) the removal of non-nucleic acid
organic and inorganic molecules from resultant aqueous extracts,
and (3) the minimization of nucleic acid losses throughout this
purification process. Cell lysis is achieved mechanically, e.g., by
grinding, freeze-thawing or bead-beating (e.g., Tsai and Olson,
1991; MacGregor et al., 1997; Hurt et al., 2001), enzymatically,
by incubations with enzymes that hydrolyze cell wall and cell
membrane components (e.g., Holben et al., 1988; Smalla et al.,
1993; Zhou et al., 1996), and/or chemically, by detergents which
solubilize lipid membrane components or chaotropic agents
which perforate cell membranes by denaturing trans-membrane
proteins (e.g., Czomczynski and Sacchi, 1987; Pitcher et al., 1989;
Moré et al., 1994; Zhou et al., 1996). The subsequent purification
is done by washing with organic solutions and/or detergents, such
as phenol, chloroform, or cetyl trimethylammonium bromide
(Ogram et al., 1987; Stahl et al., 1988; Porebski et al., 1997),
precipitation with ethanol, isopropanol, or polyethylene glycol
(e.g., Stahl et al., 1988; Paithankar and Prasad, 1991; Zhou et al.,
1996; Porteous et al., 1997; Wang et al., 2011), and/or filtration
through silica-columns, magnetic beads, ion-exchange resins, or
gels (Zhou et al., 1996; Hurt et al., 2001; Arbeli and Fuentes, 2007;
Zhao et al., 2008; Tanaka et al., 2009). Moreover, because nucleic
acids adsorb to positively charged surfaces, chemical carriers
are added in many protocols, to coat charged surfaces prior to
cell lysis. Chemical carriers often contain phosphate and include
inorganic phosphate species, nucleic acid building blocks, and
even nucleic acids (Rogers and Bendich, 1985; Holben et al., 1988;
Pietramellara et al., 2001; Cai et al., 2006).

While nucleic acid extraction in the 1980s and 1990s
mainly relied on handcrafted chemical solutions and extraction
protocols (e.g., Czomczynski and Sacchi, 1987; Holben et al.,
1988; Tsai and Olson, 1991; Zhou et al., 1996) there has
been a shift toward increased use of commercial extraction
kits since then (e.g., Dhillon et al., 2005; Francis et al., 2005;
Rudi et al., 2005; Schippers and Neretin, 2006; Edgcomb et al.,
2010; Borrel et al., 2012). These kits have many advantages,
which include prepared reagents and streamlined extraction
procedures. Several kits produce adequate nucleic acid yields
across wide ranges of samples (e.g., Roose-Amsaleg et al., 2001;
Webster et al., 2003; Inagaki et al., 2006; Amaral-Zettler et al.,
2009; Coolen et al., 2011). Use of the same kit by different
individuals facilitates cross-comparing molecular biological data
sets due to method standardization. Despite these advantages,
no universal extraction kit that performs best for all sample
types and research goals has been developed (Martin-Laurent
et al., 2001; Lombard et al., 2011). Part of the reason might
be that environmental samples and microbes have divergent
properties that make the design of universally optimized methods
futile. Consequently, there may be a benefit to adjusting
extraction protocols to meet specific sample characteristics and
research requirements. The systematic fine-tuning of commercial
extraction kits for applications with specific environmental
sample types is, however, difficult because reagent recipes are
typically proprietary.

Optimizations of extraction procedures, e.g., with respect to
lysis efficiency and recovery, are especially critical in studies
where nucleic acids are used to infer microbial population
size or community structure (Martin-Laurent et al., 2001; Lipp
et al., 2008; Morono et al., 2014). Similarly, adjustments to
existing protocols are often essential with samples possessing
low population densities, high adsorptive properties, or complex
matrices, where the extraction of any amplifiable nucleic acids
can present a challenge (e.g., Sørensen et al., 2004; Alain et al.,
2011; Nielsen et al., 2014). Moreover, the selection of commercial
kits decreases dramatically when specific extraction requirements
need to be met. An example is the wide selection of kits for
DNA or RNA extraction and the comparatively much smaller
selection of kits for extraction of both DNA and RNA. For
unconventional applications that are only of interest to a small
community of scientists, e.g., the separate extraction of different
DNA pools (e.g., Ogram et al., 1987; Corinaldesi et al., 2005),
commercial kits may not even exist. As a result, despite the added
effort of preparing reagents and more time-intensive extraction
protocols, handcrafted extraction methods remain relevant to
certain fields of nucleic acid-based research (Martin-Laurent
et al., 2001; Schneegurt et al., 2003; Lipp et al., 2008; Bey et al.,
2010; Alain et al., 2011; Alawi et al., 2014; Morono et al., 2014).

Recognizing the possibility that a universally best extraction
method may never exist, we design a modular nucleic acid
extraction protocol that provides high nucleic acid yields across
a diverse range of environmental sample types. Most samples
tested are marine sediments, ranging from surface to deep
subsurface, and eutrophic to ultraoligotrophic, however, we also
include lacustrine sediment, igneous rock, water, and air samples.
With only minor modification, this method can be adapted to
meet specific research needs, such as the simultaneous extraction
of DNA and RNA, and the separate extraction of two different
DNA pools. The two DNA pools are an aqueous-extractable
“soluble DNA” (sDNA) pool, that is likely dissolved or adsorbed
to the initial sediment matrix, and a “non-soluble” (nsDNA)
pool, that is within cells or particle-complexed in the initial
sediment matrix, and requires cell lysis and chaotropic treatment
to become water soluble. In the past, these two DNA pools
have been termed “extracellular DNA” and “intracellular DNA,”
respectively (Ogram et al., 1987; Corinaldesi et al., 2005; Alawi
et al., 2014; for more details see “Discussion”).

To develop this modular nucleic acid extraction method, we
use an iterative approach. High-biomass, organic-rich coastal
sediment is used as initial test material. Starting with a
suboptimal original protocol, we incrementally improve DNA
yields by modifying the original protocol through trials of single-
variable permutations. Using the best-performing permutation
as the reference method in each new trial, we continue our
trials until DNA yields no longer increase. Subsequently, we
test the best DNA extraction protocol for coastal sediment on
other sample types, including buried soil (ultra)oligotrophic
freshwater and marine sediments, deeply buried and ancient
subseafloor sediments, subseafloor basalt, lake water samples,
and air samples. With a subset of these additional sample types we
perform further tests to improve DNA yields on these particular
samples. We then test modifications that enable the separation
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of sDNA and nsDNA pools, the simultaneous extraction of DNA
and RNA, and conclude with comparing DNA and RNA yields to
commercial kits by MO BIO Laboratories and MP Biomedicals.

Methods

Sampling
An overview of the samples tested is presented in Table 1.

Sediment Samples
For initial tests, we used organic-rich coastal sediment from
Aarhus Bay stations M5 and MIMOSA. Whole round gravity
cores were transferred to gas-tight bags to minimize oxygen
exposure and stored at 4◦C. All other marine sediment samples
and the Greenland glacial lake sample came from minimally
contaminated inner parts of sediment cores and were stored
at −80◦C. Prior to sampling, these sediment samples were
allowed to warm without fully thawing, i.e., only until sediments
were soft enough for subsampling with a sterile metal spatula.
Samples collected from Subglacial Lake Whillans were sampled
as described previously (e.g., Priscu et al., 2013). Subsamples
were weighed and kept on ice until the start of extractions. In
tests comparing nucleic acid extraction efficiencies of different
extraction treatments, samples were homogenized prior to
weighing to reduce variability in DNA content between sample
aliquots.

Drill Cutting and Drilling Mud Samples
Samples of drill cuttings and drilling mud were obtained during
riser drilling aboard the R/V Chikyu during Integrated Ocean
Drilling Program (IODP) Expedition 337 in 2012. These samples
were frozen at −80◦C immediately after arrival on deck.

Rock Sample
The basalt core was kept at −80◦C until sampling. The exterior
of basal cores was decontaminated by washing and flaming as
outlined in Lever et al. (2006). Sampling of core interiors was
done as described in Lever et al. (2013).

Air Samples
Air samples of ∼500 m3 volume were collected with an impinger
sampler from a 2nd floor balcony. The impinger sampler
streamed air through 2 L of “high-salt sampling solution,”
in which microbial cells are captured (Šantl-Temkiv et al.,
2013). The high-salt sampling solution, consisting of 25 mM
sodium citrate, 10 mM EDTA, and ammonium sulfate (450 g
L−1, pH 5.2), was designed to preserve RNA throughout sample
collection. Captured cells were subsequently concentrated onto
Sterivex™ filter units (0.22 μm, Millipore), which had been
capped with Luer-Lok caps. Further details in Supplementary
Online Material (SOM).

Water Samples
Water samples were filtered through 11-μm filters to remove
algal cells. Microbial cells from half a liter of sample were
concentrated onto Sterivex™ filter units. RNA was fixed with
2 mL of high-salt solution (see “Air samples”) and capped with
inlet and outlet Luer-Lok caps. Filters were kept at 4◦C for 3 h.

Afterward the high salt solution was washed off with 10 mL
of sterile deionized water and the filters were frozen at –80◦C.
Further details in SOM.

Extraction Tests
We tested mechanical, chemical and enzymatic cell lysis methods,
methods to prevent nucleic acid adsorption, nucleic acid
purification methods, precipitation assays, and commercial kits.
An overview of all variables and kits tested is shown in Table 2.

Physical/Mechanical Lysis (Table 2A)
We investigated effects of bead-beating, use of a homogenizer,
freeze-thawing, and heat treatment on nucleic acid yields.

Chemical/Enzymatic Lysis (Table 2B)
We compared effects of detergents (SDS, Triton X-100, and
CTAB), enzymes (proteinase K, lipase, lysozymes), humic
substance complexation agents (CTAB, PVPP), inclusion of PCI
and reductants (2-hydroxyquinoline, β-mercaptoethanol, TCEP)
and extraction/lysis buffer chemical composition (pH, Tris-
HCl, EDTA, phosphate, guanidium hydrochloride, and sodium
chloride).

Adsorption Prevention (Table 2C)
We tested the effect of pH (range: 5–10), and adding variable
doses of sodium pyrophosphate, sodium hexametaphosphate,
dNTP, and salmon sperm DNA on DNA recovery.

Purification (Table 2D)
DNA purification methods involving chloroform, phenol (pH
7.9), chloroform-isoamylalcohol, and phenol-chloroform-
isoamylalcohol (pH 7.9) were tested. We also tested adding the
reductants 2-hydroxyquinoline, β-mercaptoethanol, and TCEP
to prevent phenol oxidation.

Precipitation (Table 2E)
We compared nucleic acid precipitation methods involving
ethanol-NaCl, isopropanol-ammonium acetate, isopropanol-
NaCl, PEG 6000-NaCl, PEG 8000-NaCl, and PEG 8000-ethanol-
NaCl at temperatures ranging from room temperature to −20◦C.
Further variables tested were adding different NaCl doses
during ethanol-NaCl precipitation, adding MgCl2 or solutions
containing sodium acetate, sodium acetate-glacial acetic acid, or
glacial acetic acid during PEG 6000-NaCl precipitations, as well
as the use of two different centrifugal forces to pellet nucleic acids
after precipitation with PEG 6000-NaCl.

Commercial Purification and Extraction Kits
(Table 2F)
For post-extraction purification, we tested two purification kits.
We also compared DNA and RNA yields obtained with our
extraction protocol to those obtained with five commercial
extraction kits.

Separation of DNA Pools
We developed a protocol for the separate extraction of sDNA and
nsDNA, with the aim to maximize DNA yields of both pools,
while preventing cell lysis and false incorporation of nsDNA
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TABLE 1 | Details of samples used to test this extraction method.

Location Site/Station Latitude Longitude Depth (mbsl) Depth (mbsf/mblf) Sample type

Aarhus Bay (Kattegat) M5 56.103◦N 10.458◦E 27 1.2 Clay-rich mud, MGZ

MIMOSA 56.260◦N 10.469◦E 16 1.2 “ “ “ , MGZ

M1 56.118◦N 10.347◦E 15 0.05 “ “ “ , BTZ

M1 “ “ 15 0.80 “ “ “ , SRZ

M1 “ “ 15 1.60 “ “ “ , SMTZ

M1 “ “ 15 3.10 “ “ “ , MGZ

M1 “ “ 15 10.55 Terrestrial soil , MGZ

Namibian Shelf GeoB12806 25.001◦S 14.389◦E 133 0.04 Sulfidic, mudbelt, SRZ

GeoB12806 “ “ 133 ∼2.8 “ “ “

Bering Sea U1342B-1H-2 54.828◦N 176.917◦E 830 1.75 Silty clay, SRZ

U1343E-80X-5 57.556◦N 175.817◦W 1968 712 Diatom clay, ash, MGZ

U1344C-1H-3 59.050◦N 179.203◦W 3184 3.35 Diatom clay, SRZ

U1344A-7H-2 59.050◦N 179.203◦W 3183 59 Silt/sand, MGZ

Guaymas Basin Orange mat (M14) 27.008◦N 111.407◦W ∼2000 0.02 Petroleum-rich, hydrothermal sediment, SRZ

“ “ “ “ ∼2000 0.31 “ “ “ “

Yellow mat (M14) “ “ ∼2000 0.02 “ “ “ “

Peru Trench ODP 1230A-21-3 9.113◦S 80.584◦W 5086 190 Diatom clay/ooze, MGZ

Off Shimokita Peninsula 10R-1 41.178◦N 142.201◦E 1180 1630 Silt/fine sand, MGZ

24R-3 “ “ 1180 1990 Medium sand, MGZ

C0020 (165LMT) “ “ 1180 N/A Drilling mud

C0020 (61SMT) “ “ 1180 947 Unwashed drill cutting, silt

C0020 (61SMT) “ “ 1180 947 Washed drill cutting, silt

Bornholm Basin, Baltic Sea Station 024 7GC 55.250◦N 15.436◦E 94 ∼10 Ice lake clay, FeRZ, SRZ

Subglacial Lake Whillans Drill Site 84.237◦S 153.614◦W 800# 0.05 Subglacial clay, oxic

South Atlantic Gyre GeoB12815 27.237◦S 10.000◦E 4662 0.01 Pelagic red clay, oxic

South Pacific Gyre SPG 1 23.850◦S 165.650◦W 5697 0.10 Pelagic red clay, oxic

SPG 6 27.917◦S 123.167◦W 3738 0.01 “ “ “ “

SPG 6 “ “ 3738 1.12 “ “ “ “

U1371F-1H-1 45.964◦S 163.184◦W 5301 1.1 Diatom clay/ooze, microoxic

Juan de Fuca Ridge Flank 1362A-17R-3 47.761◦N 127.761◦W 2672 462.1 Massive basalt, vein

Danish lake, north Jutland N/A 57.360◦N 9.941◦E Surface N/A Eutrophic water, oxic

Greenland glacial lake N/A 65.312◦N 50.202◦W Dried up N/A Glacial till, MGZ

Aarhus University 2nd floor balcony 56.166◦N 10.200◦E N/A N/A Outdoor urban air

All samples were stored frozen prior to extraction except samples from Aarhus Bay Stations M5 and MIMOSA, which were stored in a gas-tight plastic bag at 4◦C. “Orange mat” and
“Yellow mat” refer to sites that were covered by orange- and yellow-colored Beggiatoa mats, M14 refers to “Marker 14.” Mbsf, meters below seafloor; mblf, meters below lakefloor;
N/A, not applicable; BTZ, bioturbation zone; SRZ, sulfate reduction zone; FeRZ, iron reduction zone; MGZ, methanogenesis zone.
#, meters below ice surface.

during the sDNA extraction process. To design this method, we
examined the effects of pH, amount of PO4 added g−1 sediment,
and sDNA extraction solution composition on the yields of sDNA
and nsDNA (variables tested are included in Table 2D). We
checked for cell lysis due to the sDNA extraction procedure
by epifluorescence microscopic enumeration (Methodological

details in SOM). To assess how other sDNA extraction methods
compared to ours, we performed cell counts on sediments from
which sDNA had been extracted using protocols by Ogram et al.
(1987) and Corinaldesi et al. (2005). Finally, we examined size
distributions of sDNA to gain insights into the cycling of sDNA
in sediments.
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TABLE 2 | Overview of variables examined in nucleic acid extraction tests.

(A) MECHANICAL LYSIS

Method Purpose Approach

Bead-beating Break up particles containing cells, dislodge cells, and/or
mechanically destroy cells

Shaken for 1 min on FastPrep FP120 Homogenizer
(Thermo Savant) or TissueLyser LT 25000 (Qiagen), or
for 10 min on Vortex Genie at maximum setting (3000)
with 0.1-mm zirconia/silica beads (Biospec Products)
added to ∼15% of 2-mL screw cap tube volume

Homogenizer Cell dislodging and cracking Pro Scientific 300D (Pro Scientific); homogenized for
2 min at 1000, 2000, 3000, 4000, 6000, 8000, 10,000,
or 15,000 rpm.

Freeze-thawing Cell cracking by ice crystals Deeply frozen at -80◦C

Heat Heat-stimulation of chaotropic chemicals, surfactants,
protein, lipid-, and peptidoglycan-degrading enzymes

Gently mixed at 50◦C for 1-h intervals on thermomixers
(Eppendorf) set to 600 rpm, or in shaker incubators

(B) CHEMICAL/ENZYMATIC LYSIS

Chemical Purpose Treatment

Tris Hydrochloride (Tris-HCl) Buffers pH of lysis solutions at levels that are suited for
enzymatic treatments

Tested 10–300 mM

Na2EDTA (EDTA) Inactivates nucleases Tested 10–100 mM

Guanidium hydrochloride Denatures proteins 800 mM; with and without 50◦C incubation

Triton X-100 Disrupts cell membranes 0–2% vol/vol; with and without 50◦C incubation

Sodium dodecyl sulfate (SDS) Anionic surfactant that disrupts cell membranes and
denatures proteins

0–4% vol/vol using 20% SDS stock solution, with and
without 50◦C incubation

Phenol-chloroform-isoamylalcohol (PCI;
25:24:1)

Phenol denatures proteins. Chloroform dissolves/binds
nonpolar constituents. Isoamylalcohol stabilizes interface
of phenol-choroform and aqueous extract

Compared treatments with PCI to ones without PCI
during initial lysis

Cetyl trimethylammonium bromide (CTAB) Cationic surfactant that disrupts cell membranes Concentration range: 0–2%; 1-h incubation at 50◦C
followed by 1-h incubation at 65◦C

Proteinase K Destroys proteins (structural, membrane-bound and
enzymatic)

Tested 0–4 μg mL−1

Lysozyme (muramidase) Hydrolyzes N-acetylmuramic acid N-acetylglucosamine
bonds

Tested 0–0.5 μg mL−1

Lipase Typ7 Hydrolysis of lipids Concentration of 0–0.5 μg mL−1

2-hydroxyquinoline Antioxidant; prevents phenol oxidation. Tested 0–0.1% wt/vol in PCI

β-mercaptoethanol Antioxidant, prevents phenol oxidation, and reduces
disulfide bonds

Added 0–0.2% vol/vol to lysis buffer I or PCI

tris(2-carboxyethyl)phosphine (TCEP) Same as β-mercaptoethanol Supplied to lysis buffer I at 0–10 mM

(C) ADSORPTION PREVENTION

Chemical Purpose Treatment

pH pH 5–10

Sodium pyrophosphate (pyroPO4; P2O4−
7 ) Bind competitively with nucleic acids onto charged

mineral surfaces.
Dose g−1 sample: 0–0.045 g or 0–400 μmol PO4

Sodium hexametaphosphate (hexaPO4;
(PO3)6−6 )

Dose g−1 sample: 0-0.061 g or 0–600 μmol PO4

Deoxynucleoside triphosphates (dNTPs) Dose g−1 sample: 0-0.029 g or 0–180 μmol PO4

30-base pair PCR product Dose g−1 sample: 3.3 × 10−7g or 0.001 μmol PO4 g−1

Salmon sperm DNA Dose g−1 sample: 0-0.005 g or 0–15 μmol PO4

(D) PURIFICATION

Chemical Purpose Treatment

CTAB Removal of polysaccharides 0–2%*

Polyvinylpolypyrrolidone (PVPP) Removal of polyphenolic compounds (e.g. fulvic and
humic acids)

0–0.2%

Phenol (pH 7.9) Denatures proteins. Removes proteins, lipids and
detergents by dissolution or accumulation at aqueous
interface.

1:1 (v/v) extract, followed by PCI and chloroform wash

(Continued)
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TABLE 2 | Continued

Phenol-chloroform-isoamylalcohol (PCI;
25:24:1; pH 7.9)

Removes proteins, lipids and detergents by dissolution
or accumulation at aqueous interface.

1:1 (v/v) extract and PCI, followed by 1–2 chloroform
washes

Chloroform-isoamylalcohol (CI; 24:1) Removes residual phenol, proteins, lipids and detergents
by dissolution or accumulation at aqueous interface

1:1 (v/v) extract and CI, 1–3 washes

(E) PRECIPITATION

Chemical(s) Purpose Treatment

Ethanol-NaCl DNA concentration Add NaCl to 1.2–1.8 M, then add 2.5 V ethanol

Isopropanol-NaCl DNA and RNA concentration Add NaCl to ∼0.8 M, then add 1.5 V isopropanol

Isopropanol-Ammonium acetate DNA and RNA concentration Add NH+
4 -acetate to ∼3.8 M, then add 1.5 V isopropanol

PEG 6000-NaCl DNA concentration Add 2 V solution (30% PEG, 1.6 M NaCl)

PEG 8000-NaCl DNA concentration Add 2 V solution (30% PEG, 0.4–2 M NaCl)

PEG 8000-Ethanol-NaCl DNA concentration Add 2 V solution (75% ethanol with 1 M NaCl mixed with
4% w/v PEG 8000)

PEG 6000-NaAcetate/Acetic Acid DNA concentration 0.1 V of 3 M Na acetate, 0.1 V of 1:1/9:1/99:1 (v:v) 3 M
acetic acid + Na acetate, 0.1 V of 3 M acetic acid

PEG 6000-NaCl-MgCl2 Enhance DNA yield 0.1 V of 300 mM MgCl2 + 2 V (30% PEG, 1.6 M NaCl)

Precipitation temperature Enhance DNA yield and purity -20◦C, 4◦C, room temperature in dark

Centrifugal force Enhance DNA yield 14,000×g, 20,000×g

(F) COMMERCIAL PURIFICATION AND EXTRACTION KITS

Name Purpose

CleanAll RNA/DNA Clean-up and Concentration Kit (Norgen Biotek)
PowerClean DNA Clean-Up Kit (MO BIO Laboratories)

Purify nucleic acid extracts after precipitation (Norgen:
DNA and RNA, MO BIO: DNA only) for downstream
enzymatic assays or PCR applications

PowerSoil DNA Isolation Kit (MO BIO Laboratories)
PowerLyzer PowerSoil DNA Isolation Kit (MO BIO Laboratories)
FastDNA SPIN Kit for Soil DNA Extraction (MP Biomedicals)

Extraction and purification of DNA from soil and
sediment for downstream enzymatic assays or PCR

PowerWater® SterivexTM DNA Isolation Kit (MO BIO Laboratories) Extraction and purification of DNA from water samples
for downstream enzymatic assays or PCR

RNA PowerSoil® Total RNA Isolation Kit (MO BIO Laboratories) Extraction and purification of RNA from soil and
sediment for downstream enzymatic assays or PCR

The extraction components that were tested are shown in six subdivisions: (A) mechanical lysis (B) chemical/ enzymatic lysis (C) adsorption prevention (D) purification (E) precipitation,
and (F) commercial purification and extraction kits. Chemicals that serve multiple functions are listed in more than one subdivision.

DNAse Treatment and Reverse Transcription
To remove DNA, 10 μL of 10× Reaction Buffer and 2 μL
TURBO™ DNase (Ambion) were added per 100 μL of extract
and incubated on a Thermomixer Comfort (Eppendorf) shaking
at 600 rpm for 30 min at 37◦C. RNA was reverse-transcribed
into cDNA using the Omniscript RT Kit (Qiagen) with random
hexamer primers (Biomers.net) and ANTI-RNase (Ambion) as
RNA inhibitor.

Nucleic Acid Quantification
Nucleic acid extraction efficiency was assessed by fluorescence
spectroscopic measurements and quantitative real-time PCR
(qPCR) assays.

Quantification by Fluorescence Spectroscopy
DNA and RNA were quantified using a Nanodrop-3300
fluorospectrometer (Thermo Scientific). Standard curves were
prepared using dilutions of lambda DNA/HindIII ladder
(Invitrogen) for DNA and dilutions of 0.1–2 Kb RNA Ladder
(Ambion) for RNA. Standard concentrations spanned 1 pg to

10 ng μL−1. DNA and RNA were stained with the fluorescent
dyes Quant-iT™ PicoGreen and Quant-iT™ RiboGreen,
respectively, using 25-fold dilutions of the manufacturer’s dye
solutions (both Invitrogen). All standards and dye solutions
were prepared with the same buffers used for DNA or RNA
dissolution/elution, due to the strong influence of buffer
composition on fluorescence values. Duplicate or triplicate
measurements on 2-μL aliquots were performed on final
mixtures consisting of 3 μL of dye solution and 3 μL of standard
or sample. These mixtures were thoroughly homogenized by
vortexing, then centrifuged for 1 min at 10,000×g, and measured
within 10 min of being homogenized, as quick processing
was essential to measurement reproducibility. DNA or RNA
solutions were kept on ice until addition of dye, then maintained
at room temperature until measurement.

Quantification by qPCR
Bacterial and archaeal 16S rRNA gene copy numbers were
quantified on a Roche Light Cycler 480. The primer combinations
8Fmod-338Rabc and Bac908F_mod-Bac1075R were used for
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Bacteria, whereas the primer combinations 806F-958R and
915Fmod-1059R were used for Archaea (Table 3). Standard
curves were based on pGEM-T plasmids (Promega) with
bacterial or archaeal 16S rRNA gene inserts. Each run included
extraction and PCR negative controls. PCR inhibition was
checked using 1:10 and 1:100 dilutions of extracts. All standards,
controls, samples, and sample dilutions were run in duplicate or
triplicate. Each 20-μL reaction mixture was composed of 10 μL
Roche Light cycler master mix containing SYBR-Green, 1 μL of
each 50 μM primer solution, 2 μL of 1 mg mL−1 bovine serum
albumin, 2 μL DNA/copy DNA (cDNA) template solution, and
4 μL molecular-grade H2O. The qPCR protocol consisted of (1)
95◦C polymerase activation for 5 min, followed by (2) 45-50 PCR
cycles consisting of (a) denaturation for 30 s at 95◦C (b) annealing
for 30 s (temperatures in Table 3) (c) elongation for 30 s at 72◦C,
and (d) fluorescence measurement after 5 s at 80◦C. Each qPCR
run was concluded with (3) a stepwise melting curve from 95 to
55◦C for 1 min, which was used to check for primer specificity.

Statistical Analyses
Using the online statistical software program Wessa.net
(www.wessa.net), we performed unpaired student t-tests to
check whether differences in DNA yields between treatments and
treatment permutations were statistically significant. This test
was chosen after confirming—using the D’Agostino skewness
test, Anscombe-Glynn kurtosis test, and Jarque-Bera Normality
Test on a subset of data—that DNA yields within treatments
and treatment permutations did not deviate significantly from
normality. P-values below 0.05 were considered statistically
significant.

Results

We present the tests, which were instrumental to the design
of this modular protocol for nucleic acid extraction. During
the protocol development, progress in extraction yields was not
always linear, with outcomes of downstream treatments resulting
in modifications to upstream treatments late in the development.
For the sake of clarity, we have organized the test results in the
chronological order of the extraction protocol. After showing the
DNA extraction test results, we present results for the extraction
of RNA and the separate extraction of sDNA and nsDNA. We
then compare DNA/RNA yields to ones obtained with widely

used commercial kits and provide an overview of samples to
which this protocol has been successfully applied.

General Protocol Tests
Physical/Mechanical Lysis
We here only discuss effects of bead-beating and homogenizer
treatment. Effects of freeze-thawing and heat treatments are
discussed in the context of chemical/enzymatic lysis treatments,
with which both were typically combined.

Bead-beating
We compared effects of bead-beating on gene copy numbers
across organic-rich coastal sediment, oligotrophic subglacial
lake sediment, drilling mud, and subseafloor sediment cuttings
(Figure 1). Effects varied, with bead-beating increasing bacterial
and archaeal 16S rRNA gene copy numbers by ∼50% in coastal
sediment (Figures 1A,B). No effect was observed by contrast
in subglacial lake sediment (Figures 1C,D). In drilling mud
and sediment cuttings bead-beating lowered bacterial gene copy
numbers by ∼40 and ∼65%, respectively (Figures 1E,F).

Homogenizer
Spillage and overheating of sediment extracts occurred during the
use of homogenization probes. Overheating also occurred when
these probes were directly applied to basalt rock. We conclude
that this physical disruption method is not compatible with our
extraction method.

Chemical/Enzymatic Lysis
Chemical and enzymatic lysis treatments consisted of incubating
samples in lysis solutions for 1-h cycles at 50◦C and gentle
shaking. Typically these cycles were preceded by freeze-thawing.
The combination of freeze-thawing and 1-h incubations at 50◦C
is termed a freeze-thaw+heat cycle.

Effects of enzymes and SDS, test I
DNA yields with SDS and lysis-enhancing enzymes were
compared. Using an extraction solution of 3% NaCl, 10 mM
EDTA, 10 mM sodium pyrophosphate, and 0.1% Tween 80, SDS
concentration had a significant effect on DNA yields (p <

0.05). In lysis incubations that included proteinase K, yields
obtained with 4% SDS were 60% higher than yields with 1% SDS
(Figure 2A). Omission of proteinase K had no significant effect
on DNA yields at 1% SDS. Similarly, neither the combination

TABLE 3 | 16S rRNA gene primers used for qPCR examinations of bacterial and archaeal nucleic acid extraction efficiency.

Primer Target Tm (◦C) Sequence (5′–3′) References

8Fmod Bacteria 60 AGA GTT TGA TYM TGG CTC AG Juretschko et al., 1998

338Rabc Bacteria 60 ACW CCT ACG GGW GGC WGC Daims et al., 1999

Bac908F_mod Bacteria 60 AAC TCA AAK GAA TTG ACG GG This study, modified from Ohkuma and Kudo (1998)

Bac1075R Bacteria 60 CAC GAG CTG ACG ACA RCC Ohkuma and Kudo, 1998

806F Archaea 55 ATT AGA TAC CCS BGT AGT CC Takai and Horikoshi, 2000

915Fmod Archaea 55 AAT TGG CGG GGG AGC AC Cadillo-Quiroz et al., 2006

958R Archaea 55 YCC GGC GTT GAM TCC AAT T DeLong, 1992

1059R Archaea 55 GCC ATG CAC CWC CTC T Yu et al., 2005
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FIGURE 1 | Bar chart illustrating the effect of bead-beating on DNA
yield determined by qPCR of 16S rRNA genes. BB indicates sample was
bead-beaten prior to freeze-thawing and chemical lysis, no BB indicates no
bead-beating prior to freeze-thawing and chemical lysis. Chemical lysis
consisted of incubating samples in a lysis buffer with guanidium hydrochloride
and pH 10 for 1 h at 50◦C (see Section on Chemical/Enzymatic Lysis). White
bars indicate bacterial copy numbers, gray bars archael copy numbers. Tests
were performed on Aarhus Bay station M1 sediment (A,B), Subglacial Lake
Whillans sediment (C,D), drilling mud (E), and subseafloor sediment cuttings
(F). Only bacterial qPCR checks were performed on drilling mud and cuttings.
Solid error bars indicate ranges of two replicate extractions, dashed error bars
indicate ranges of PCR replicates on the same extract.

of proteinase K and lipase nor the combination of proteinase K,
lipase, and lysozyme increased DNA yields relative to treatments
where enzymes were omitted.

Chemical composition of extraction buffer
We kept the proteinase K treatment and examined how
changes in extraction buffer composition affected DNA
yield. The variables tested were pH (5.0 vs. 8.0), SDS
concentration (0.1–4%), addition of the chaotropic compound
guanidium hydrochloride (800 mM), and addition of the
nonionic membrane-disrupting detergent Triton X-100 (0.5%)
(Figure 2B). Parallel to increasing the pH from 5.0 to 8.0, we
changed from a phosphate buffer to a Tris-HCl buffer. This
change in buffer composition and pH significantly (p < 0.01)
increased the DNA yield. Adding guanidium hydrochloride and
Triton X-100 had no significant effect, and neither did reducing
the SDS concentration from 4 to 0.1% in buffer containing
guanidium hydrochloride and Triton X-100.

Effects of enzymes and SDS, test II
The results in Figure 2A suggested that proteinase K might not
increase DNA yields in the presence of SDS, while the results
in Figure 2B indicated that DNA yields did not depend on

SDS concentration in the presence of guanidium hydrochloride
and Triton X-100. To investigate this further, we continued our
tests using the same guanidium hydrochloride and Triton X-
100 containing buffer (30 mM EDTA, 30 mM Tris-HCl, 800 mM
guanidium hydrochloride, 0.5% Triton X-100, pH 8.0) and
examined possible benefits of proteinase K and SDS addition.
As before, proteinase K did not increase DNA yields from
M5 sediment (Figure 2C). Moreover, in treatments without
proteinase K, addition of SDS to lysis solution containing
guanidium hydrochloride and Triton X-100 did not increase
DNA yields from the M5 or MIMOSA sites (Figure 2D),
contrary to its DNA yield enhancing effect in the absence of
guanidium hydrochloride and Triton X-100 (Figure 2A). We
additionally compared treatments with and without SDS by
bacterial and archaeal qPCR assays. These indicated negative
effects of SDS, with significantly higher (p < 0.05) copy
numbers of Bacteria in extractions from M5 and MIMOSA
and Archaea in extractions from M5 where SDS had been
omitted (Figures S1A,B). As a final trial, we used samples of
drilling mud as test material and examined DNA yields using
extraction buffer amended with (a) Triton X-100 but no SDS (b)
SDS but no Triton X-100, or (c) both Triton X-100 and SDS,
using bacterial 16S rRNA gene copy numbers as an indicator
of yield (Figure 2E). For both detergents, we observed positive
concentration-dependent effects when they were added alone.
Yet, Triton X-100 produced higher bacterial copy numbers
when the same volumes of detergent were added (0.5%, 2%).
By contrast, adding both detergents in combination negatively
affected DNA yields, with the lowest bacterial copy numbers in
treatments with 2% of each Triton X-100 and SDS. Interestingly,
increasing the amount of Triton X-100 from 0.5 to 2% lowered
the DNA yield from sediment samples (data not shown). Thus,
we—contrary to the results based on drilling mud—opted for
a final lysis solution consisting of 30 mM Tris-HCl, 30 mM
EDTA, 800 mM guanidium hydrochloride, and—unless specified
otherwise—0.5% Triton X-100. We termed this solution lysis
solution I.

CTAB/PVPP
We investigated possible benefits of adding a second aqueous
lysis solution, consisting of 2.5 M NaCl, CTAB, and/or PVPP.
This second lysis solution was added after samples had
undergone two freeze-thaw+heat cycles with lysis solution I.
After adding the second lysis solution, samples underwent two
more freeze-thaw+heat cycles, however, the temperature during
the final heat incubation was raised to 65◦C. The purpose of the
65◦C cycle was to induce binding of CTAB to polysaccharides and
subsequent removal of polysaccharides during centrifugation.
The high NaCl concentration was chosen so that CTAB—which
binds to DNA at concentrations below 0.7 M (Murray and
Thompson, 1980)—did not remove DNA. PVPP was added
because it binds polyphenolic substances. Addition of this
solution reduced the color of the supernatant, and slightly,
but not significantly increased DNA yields from organic-rich
sediment from Aarhus Bay, when 2% CTAB and 0.1% PVPP
were applied (Figure S1C). We termed this solution lysis
solution II.
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FIGURE 2 | Effects of lysis buffer composition on DNA yields.
Sediment from Aarhus Bay Station M5 was used in (A–D). In addition,
sediment from Aarhus Bay Station MIMOSA was used in (D). Drilling mud
was used for the tests shown in (E). (A) Effect of two SDS concentrations
(4%, 1%) and presence of three different enzymes on DNA yields in a
pyrophosphate (pyroPO4)-based DNA extraction buffer. (B) Effects of DNA
extraction buffer composition on DNA yields (Gu-HCl, guanidium
hydrochloride). (C) Effect of proteinase K on DNA yields using a

Tris-EDTA-based extraction buffer containing guanidium hydrochloride and
Triton X-100. (D) Effect of SDS (0.1%) on DNA yields wity a Tris-HCl–EDTA
(TE)-based extraction buffer containing guanidium hydrochloride and Triton
X-100. (E) Comparison of DNA yields at two concentrations of Triton X-100
and SDS. The two detergents were added alone or in combination to the
TE-based extraction buffer containing guanidium hydrochloride. Error bars in
(A–D) indicate the standard deviations of three replicate DNA extractions.
Enzyme concentrations were 1 μg mL−1 of extract.

Reductants
To prevent DNA oxidation reactions during extractions and
increase DNA recovery by breakage of disulfide bonds, we tested
adding the reductants β-mercaptoethanol and TCEP to lysis
solution I. However, neither chemical significantly affected DNA
yields (data not shown).

Comparison of Lysis Protocols (LPs)
Over the course of our tests, three different chemical lysis
protocols were established, each suited for a different sample type
or extraction criterion. Lysis Protocol I (LP I) had the shortest
lysis protocol, which consisted of bead-beating in the presence
of lysis buffer I, phosphate solution, and PCI. Inclusion of PCI
had been shown to greatly enhance DNA yields during rapid
lysis (Figure S2A). Lysis Protocol II (LP II) consisted of typically
one, but in some cases up to three, freeze-thaw+heat cycles in
the presence of lysis buffer I and phosphate solution (but not
PCI), which were in some cases preceded by bead-beading. Lysis
Protocol III (LP III) was the most extensive protocol, consisting
of two freeze-thaw+heat cycles in lysis buffer I and phosphate
solution, followed by two more freeze-thaw+heat cycles after
lysis buffer II addition, with the final 1-h incubation at 65◦C.
Samples processed by LP III were typically not bead-beaten.

When comparing DNA yields obtained with LPs I and II,
marginal increases in bacterial and archaeal 16S rRNA gene
copy numbers occurred in glacial lake sediment treated with
LP II compared to LP I (Figures 3A,B). For sediment from

Subglacial Lake Whillans, archaeal copy numbers increased more
than twofold compared to LP I (Figure 3D), but there was no
difference in bacterial copy numbers (Figure 3C). In certain
highly oxidized samples, e.g., pelagic red clay from the South
Pacific Gyre, the use of phenol during LP I was not suitable, as
revealed by a color change from clear to red after bead-beating,
which indicated pronounced phenol oxidation, possibly by iron
oxides.

When comparing DNA yields obtained with LP II and LP
III across different sample types, we found that LP III was
typically not suitable for applications with organic-poor, low-
biomass samples, as revealed by consistently lower DNA yields
(Figure S2B,C). We thus tested effects of additional freeze-
thaw+heat cycles as part of LP II—rather than including lysis
solution II as in LP III—on oligotrophic sediments from three
locations. In surface sediment from the South Atlantic Gyre and
shallow subsurface sediment of the Bering Sea (IODP Site 1342),
bacterial and archaeal gene copy numbers were decreased twofold
by additional freeze-thaw+heat cycles. However, bacterial and
archaeal gene copy numbers from buried ice lake clay of
the Bornholm Basin were increased above detection by these
additional freeze-thaw+heat cycles (Figures 3E,F).

Adsorption Prevention
pH
We tested whether DNA yields from station M5 would increase
by raising the pH of lysis solution I from 8.0 to 10.0, and
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measured a ∼30% increase in DNA yields (Figure 4A; p < 0.05).
From then on, a pH of 10.0 was used in lysis solution I.

Phosphate addition
We tested how adding different phosphate species prior to
cell lysis affected nucleic acid recovery. Phosphate species

FIGURE 3 | Results of qPCR assays on bacterial 16S rRNA gene copy
numbers are shown in the left column, results for Archaea in the right
column. (A,B) Gene copy numbers in sediment from an oligotrophic glacial
lake in Greenland obtained using a rapid lysis method involving PCI addition
during bead-beating and no freeze-thaw+heat cycles (LP I) compared to a
slower lysis method involving bead-beating without PCI followed by one
freeze-thaw+heat cycle (LP II). (C,D) Same treatments as in (A,B), tested on
sediment from highly oligotrophic Subglacial Lake Whillans. (E,F) Effects of
increasing the number of freeze-thaw+heat (FT-Heat) cycles from one to three
on oligotrophic sediments from three locations. Error bars indicate data ranges
for samples where extractions were duplicated (A–D).

tested included pyrophosphate, hexametaphosphate, dNTPs, a
30-bp PCR product consisting of double-stranded DNA, and
salmon sperm double-stranded DNA. In organic-rich sediment
from Aarhus Bay Station M5, addition of pyrophosphate
prior to cell lysis caused an average increase in DNA yield
at intermediate phosphate additions, but this effect was not
statistically significant (Figure 4B). There was no difference
in the effect of pyrophosphate and hexametaphosphate on
DNA yields from M5 or Aarhus Bay Station M1 (Figure S3A).
Similarly, adding two different concentrations of dNTPs to
Greenland glacial lake sediment had no effect on bacterial or
archaeal gene copies (Figure S3B). This changed when dNTPs
were added as a PO4 source to oligotrophic sediment from
Subglacial Lake Whillans. While increasing the PO4 treatment
from 45 to 150 μmol g−1 sediment only resulted in a slight
increase in archaeal gene copies, further increasing the PO4 dose
to 450 μmol g−1 increased archaeal copy numbers by a factor of
five, from 8.2 × 102 copies g−1 sediment at 45 μmol PO4 g−1

sediment to 4.4 × 103 copies g−1 sediment at 450 μmol PO4
g−1 sediment (Figure 4C). These elevated archaeal gene copy
numbers at the high PO4 treatment were reproduced in a second
extraction test (5.3 × 103 copies g−1 sediment; Figure S3C),
and the same PO4-concentration-dependent increase in copy
numbers was seen when the rapid lysis method with PCI
was employed, albeit at overall lower copy numbers (data not
shown). Similarly, increasing the amount of PO4 dose from
15 to 150 μmol g−1 sediment cuttings resulted in an 8-fold
increase in DNA yields (Figure 4D). Yet, the opposite trend,
i.e., lower DNA yield at high PO4 addition was also observed.
Drilling mud had ∼75% lower DNA yields, when amended with
150 μmol g−1 PO4 instead of only 15 μmol g−1. DNA yields in
several other samples, e.g., sediment from Guaymas Basin and
off Greenland, were also markedly higher at low PO4 additions
(data not shown). By comparison, addition of small amounts of
dsDNA (0.001 μmol PO4 g−1 sediment) did not increase archaeal
or bacterial gene copy numbers (Figure S3C). We also tested
addition of salmon sperm DNA. The results were inconclusive,
however, as viewing qPCR products on agarose gels revealed
unspecific amplifications of both bacterial and archaeal 16S rRNA
genes. This suggested that—without further treatment of salmon

FIGURE 4 | (A) Effect of pH of lysis buffer I on DNA yields from sediment of
Aarhus Bay Station M5. (B) Effect of adding different amounts of
pyrophosphate on DNA yields from Aarhus Bay Station M5. The PO4
amounts shown correspond to 0, 40, 200, and 800 μmol pyrophosphate
g−1 sediment. (C–E) Effect of adding different amounts of

dNTPs—expressed in PO4 monomer units—on extracted archaeal gene
copies g−1 from sediment of Subglacial Lake Whillans (C), and bacterial
gene copies g−1 from sediment cuttings (D) and drilling mud (E). Error bars
in (A,B) indicate standard deviations of triplicate DNA extractions. Error bars
in C indicate data ranges of duplicate DNA extractions.
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sperm DNA to eliminate this unspecific amplification—reliable
quantifications of bacterial and archaeal gene copy numbers were
not possible.

Purification
After the various lysis and adsorption prevention treatments,
we washed nucleic acid extracts with CI or PCI. Initially, we
had also tested washes with phenol and chloroform; however,
DNA yields were lower with pure phenol, and chloroform
alone failed to produce a sharp interface between the aqueous
and organic phase. In the absence of a sharp interface, clean
transfers of aqueous supernatants containing nucleic acids were
more difficult. Due to the stabilizing effect of isoamylalcohol on
aqueous-organic interfaces, we only used CI or PCI from then on.

The importance of washing with CI or PCI after the previously
described lysis treatments is evident from Figure 5. In DNA
extractions following a precursor of LP III, that still involved
pH 5 extraction buffers with SDS and proteinase K treatment
(Figure 2A), omission of CI washes resulted in dramatic
downstream losses of DNA (Figure 5A). DNA yields after
extraction following the final LP III did not differ significantly
if DNA extracts were washed two times with CI or once with PCI
followed by once with CI (Figure 5B). Several observations were
made nonetheless: on one hand, washes with PCI more efficiently
removed color, detergent and precipitates than the initial CI
wash. Thus, in some cases, three CI washes were necessary to
remove precipitates and obtain the same visual purity as after
one PCI and one CI wash. On the other hand, phenol oxidation,
indicated by pinkish to bright red color, often occurred after
vortexing PCI with DNA extracts. This discoloration was—as
mentioned earlier—most prominent in oxidized sediments, such
as red clays. However, even in organic-rich, anoxic sediment
from Aarhus Bay Station M1 there was an increase in phenol
oxidation, from being virtually absent in surface sediments to
being pronounced in deeper layers, especially with extracts from
the terrestrial soil layer. To reduce phenol oxidation, we tested
adding the reductants 2-hydroxyquinoline, β-mercaptoethanol,
or TCEP to PCI, or to lysis solution 1, however, none of these
reductants visibly reduced phenol oxidation.

In further tests, we examined effects of lysis solution I
carryover on DNA recovery. We used DNA ladder instead of
DNA extracts as a template, and mixed this ladder with water
or lysis solution I prior to precipitation with polyethylene glycol
8000 solution. The results show that in the absence of CI washes
chemicals present in lysis solution I dramatically lower DNA
recovery (Figure 5C). This problem is eliminated by two CI
washes prior to DNA precipitation (Figure 5D).

Precipitation
We compared DNA yields after precipitation with Ethanol-
NaCl to precipitations with Isopropanol-Ammonium Acetate
(Figure 6A), Isopropanol-NaCl (Figure 6B), PEG 6000-NaCl
(Figure 6C), PEG 8000-NaCl, or PEG 8000-Ethanol-NaCl
(both Figure 6D). In all comparisons, DNA yields were
significantly higher after Ethanol-NaCl precipitation (p < 0.05).
In comparison to Ethanol-NaCl precipitation, Isopropanol-
Ammonium Acetate precipitation resulted in ∼20–30%,

FIGURE 5 | (A) Effect of two CI washes on DNA recovery from Aarhus Bay
station M5 sediment after extraction using LP III. (B) Comparison of DNA
recovery from samples that were purified by one PCI wash, followed by one CI
wash to samples that were purified by two CI washes. Samples were from
marine sediments of Aarhus Bay Stations M5 and M1 (3.1 mbsf), and from a
deeply buried terrestrial soil layer at Station M1 (10.5 mbsf). (C,D) Effect of
chloroform washes on DNA ladder recovery. In two separate experiments, two
different concentrations of 100-bp DNA ladder were prepared by dilutions with
water or lysis solution I. These ladder solutions were directly precipitated in
PEG 8000-NaCl solution (C) or washed twice with CI and then precipitated in
PEG 8000-NaCl (D). The resulting DNA pellets were dissolved in TE buffer and
quantified spectrofluorometrically. Error bars indicate standard deviations of
tests that were run in triplicate.

Isopropanol-NaCl in ∼20–50%, and PEG 6000-NaCl in 30–40%
lower DNA yields. PEG 8000-NaCl and PEG 8000-Ethanol-NaCl
performed the next best with only ∼10% lower DNA yields.

We also checked the influence of precipitation temperature—
i.e., room temperature vs. −20◦C—and possible benefits of
higher NaCl concentration—i.e., 1.2 M vs. 1.8 M prior to
ethanol addition—on DNA yields. Neither temperature nor
salt concentration improved DNA yields (Figures S4A,B). DNA
pellets were smallest when precipitation was conducted at room
temperature, possibly due to less co-precipitation of residual
detergent, and with the lower NaCl concentration, due to less co-
precipitation of salt. These smaller pellets more readily dissolved
after drying. Consequently, we opted for precipitations at room
temperature and 1.2 M NaCl concentrations.

The size of DNA pellets differed markedly between different
precipitation methods. Ethanol-NaCl produced the largest and
PEG-NaCl produced the smallest pellets. In fact, after PEG
precipitation, DNA pellets were frequently invisible and often
did not stick to centrifuge tube walls. In ∼10–30% of the cases,
significant fractions or most of the DNA pellet were lost during
the removal of PEG-NaCl solution or subsequent wash steps with
80% ethanol. The solution was to avoid decanting and to remove
supernatants as follows: tubes were held vertically, supernatants
were slowly pipetted off from the surface downward, with the
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FIGURE 6 | Comparisons of DNA yields by different precipitation
methods in relation to Ethanol-NaCl precipitation. (A)
Isopropanol-ammonium acetate precipitation; (B) isopropanol-NaCl
precipitation; (C) PEG 6000-NaCl precipitation; (D) PEG 8000-NaCl and
PEG-EtOH-NaCl precipitation. As a co-precipitant, we added LPA to a
concentration of 20 μg mL−1 of extract to all samples shown in (A–D). LPA
and salt solutions were homogenized with extracts prior to adding alcohol or

PEG solution. This ensured that nucleic acids in solution were exposed to
LPA and added salt. Without this prior homogenization step, LPA was
immediately precipitated without going into solution. Due to light sensitivity of
LPA, all precipitations were for 2 h in the dark. (A,B) were performed
at −20◦C (C,D) at room temperature. Error bars in (A-C) indicate standard
deviations of tests that were run in triplicate, error bars in (D) indicate data
ranges of tests that were run in duplicate.

pipet tip closely following the liquid-air interface, and pipetting
was stopped when ∼20 μL of liquid were left in the tube. By
pipetting in this fashion, no DNA pellets were lost any longer
after precipitations with PEG 8000-NaCl or PEG 6000-NaCl and
final DNA yields were only ∼10% lower than after ethanol-NaCl
precipitation.

To further improve our precipitation methods, we examined
whether interactions between the amount of PO4 added and the
precipitation method affected the DNA yield and purity after
precipitation (Figure S4C). Based on 1:10 dilutions of extracts,
there was no difference in bacterial 16S rRNA gene copy numbers
at different amounts of PO4 added (15 vs. 150 μmol PO4 g−1

sediment) or using different precipitation methods (PEG-NaCl,
PEG-EtOH-NaCl, EtOH-NaCl). However, based on undiluted
extracts, PCR inhibition was more pronounced in high PO4
treatments, and highest in high PO4 treatments that had been
precipitated with ethanol. We also tested PEG solutions with
different NaCl concentrations (2 M, 1.2 M, 0.8 M, 0.4 M)
but detected no improvement in DNA recovery compared to
1.6 M NaCl (data not shown). In further tests on the PEG-
NaCl precipitation method, this time using dilutions of DNA
ladder as test material, we observed a clear detrimental effect of
autoclaving PEG 8000-NaCl (Figure S4D). Furthermore, effects
of centrifugal force (14,000 vs. 20,000×g), adding MgCl2 or
acetate, or lowering the pH of PEG solution were examined
(Figure S4E). With overall DNA recovery being very high and
virtually no DNA loss compared to non-precipitated original
solutions, none of these treatments performed significantly better
than the others.

Final Purification
Though PCR amplification without further purification
was in some cases possible after nucleic acids had been
precipitated, washed twice with 80% ethanol, air-dried, and
subsequently dissolved in water or TE buffer (Figure S4C),
PCR inhibition of undiluted DNA extracts was common. Since
extract dilution reduces the detection sensitivity of nucleic acids
by spectrofluorometry or qPCR. we tested commercial DNA
purification kits, i.e., the PowerClean DNA Clean-Up Kit (MO

FIGURE 7 | (A) Comparison of DNA recovery using two commercial kits, the
PowerClean DNA Clean-Up Kit (MO BIO Laboratories), and the Clean All
RNA/DNA Clean-up and Concentration Kit (Norgen Biotek). These kits were
used to further purify DNA after Ethanol-NaCl precipitation. Triplicate DNA
extracts from Station M5 were divided into equal parts for these tests, with
each half of the extract purified by a different kit. (B) Comparison of DNA
ladder concentrations before and after cleanup with the kit by Norgen Biotek.
Error bars indicate standard deviations of tests that were run in triplicate.

BIO Laboratories), and the CleanAll RNA/DNA RNA/DNA
Clean-up and Concentration Kit (Norgen Biotek). Both kits
resulted in clean DNA extracts, where PCR inhibition was absent
when undiluted DNA extracts were used as PCR templates.
Yet, we observed a ∼50% lower DNA yield after purification
with the PowerClean compared to the CleanAll RNA/DNA kit
(Figure 7A; p < 0.05). Further tests to examine DNA recovery
using two concentrations of DNA ladder indicated no significant
DNA loss using the CleanAll RNA/DNA kit at both ladder
concentrations (Figure 7B).

Separation of DNA Pools
We developed a protocol to separately extract sDNA and nsDNA.
sDNA is initially separated from the nsDNA using a wash step.
Subsequently, the same general protocol that was the outcome of
the tests outlined in the previous section was used.

sDNA Extraction Protocol
The sDNA fraction is extracted by a 1-h incubation of 0.2 g
sediment with carbonate dissolution mix (CDM; 0.43 M acetic
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acid, 0.43 M sodium acetate, pH 4.7—composition based on
Kallmeyer et al. (2008)—and sufficient PO4 to minimize DNA
sorption) followed by a second 1-h incubation after addition
of 10× TE buffer (300 mM Tris-HCl, 10 mM EDTA, pH
10.0). Throughout the incubations, samples are kept at room
temperature and gently mixed, e.g., using a shaker incubator or
rotator mixer (600 rpm). The NaCl concentration in the CDM
and TE buffers is adjusted to reflect the salinity of samples, e.g.,
3% NaCl for typical seawater samples. After the second hour of
incubation, samples are centrifuged for 20 min at 10,000×g. The
supernatant containing sDNA and the sediment pellet containing
nsDNA are then separated and subsequently undergo separate
treatments, which closely follow those of the “General Protocol.”

Desorption of sDNA
We examined the effects of pH, amount of PO4 added g−1

sediment, and sDNA extraction solution composition on the
yields of sDNA and nsDNA (Figures 8A,B). For sediment from
Aarhus Bay Station M5, the highest yields of sDNA and nsDNA
were obtained when a high amount of PO4 was added along with
the CDM, and the pH during the final hour of sDNA extraction
exceeded 9 (Figure 8A). At the pH and PO4 range tested, pH was
the most important variable, with a threefold increase in sDNA
recovery resulting from raising the pH from pH 8 to pH > 9
in spite of a fourfold lower amount of PO4 added (p < 0.01).
Yet, increasing the PO4 dose from 60 to 600 μmol g−1 at pH>9
contributed an additional 5-fold increase in sDNA yield (p <

0.05), and demonstrated that both pH and PO4 dose are critical
variables in maximizing sDNA yields. By comparison, the effects
of pH increase and PO4 reduction either canceled each other
out or had no effect on the nsDNA yield (Figure 8B). Only the
combination of pH > 9 and high PO4 resulted in a significant
(∼40%; p < 0.05) increase in nsDNA yield.

sDNA Extraction Buffer Composition
We investigated effects on sDNA and nsDNA yields of changing
from the 1-h treatment with CDM followed by a 1-h treatment
with 10× TE to a 2-h treatment with only 1× TE (30 mM Tris-
HCl, 1 mM EDTA, PO4 dose as previously in CDM, pH 10.0;
Figure 8C). No effect was seen. We also checked for cell lysis as a
result of the CDM-10× TE treatment, by performing cell counts
on sediment pellets after sDNA extraction (Figure 8D). There
was no difference in cell numbers after our sDNA extraction
protocol compared to controls without sDNA extraction. To
assess how other sDNA extraction methods compared to ours, we
also performed cell counts on sediments after sDNA extraction
following the protocols by Ogram et al. (1987) and Corinaldesi
et al. (2005). We observed no cell loss after treatment by the
Ogram et al. method, but the cell recovery after treatment as
in Corinaldesi et al., was only ∼40%. Further tests, in which
we omitted SDS, which had been included at low concentration
in the original sDNA extraction method by Corinaldesi et al.,
revealed that ≥50% of the cell lysis in this protocol was due to
SDS.

We then examined possible sources and particle size-
associations of sDNA. The first test was to check whether sDNA
consisted of cells that had remained in solution after 20 min of

FIGURE 8 | Effect of pH and amount of PO4, added as
hexametaphosphate, g−1 sediment on the yield of the (A) sDNA
fraction, and (B) nsDNA fraction from the same samples from Aarhus
Bay Station M5 (legend in A also applies to B). The pH was controlled by
the ratios of CDM and 10× TE added: a pH of 8 was produced by adding
800 μL CDM and 800 μL of 10× TE, a pH > 9 by adding 200 μL CDM and
1600 μL 10× TE. Hexametaphosphate was added with the CDM, and
concentrations in the CDM were 10 mM in the 240 and 60 μmol PO4
treatments and 100 mM in the 600 μmol PO4 treatment. (C) Effect of two
different sDNA extraction protocols on sDNA and nsDNA yields from Aarhus
Bay Stations M5 and M1. The first protocol (CDM, 10× TE) is equivalent to the
third protocol (pH > 9, 600 μmol PO4 g−1) in (A,B). The second protocol (1×
TE) consisted of incubating 0.2 g of sediment with 1800 μL of 1× TE buffer at
room temperature and gentle shaking at 600 rpm for 2 h. The 1× TE buffer
had been corrected for salinity and amended with the same amount of
hexametaphosphate as introduced by the CDM solution (30 mM Tris-HCl,
1 mM EDTA, 3% NaCl, 11 mM metaphosphate, pH 10.0). (D) Comparison of
cell counts on sediments that had undergone different methods of sDNA
extraction. These methods were by Ogram et al. (1987), Corinaldesi et al.
(2005), without SDS, and this method. Controls consisted of sediment that
had not undergone sDNA extraction. Note: Results shown for M5 in (A,B) are
from a different extraction trial than those shown for M5 treated with CDM,
10× TE in (C). Error bars indicate standard deviations of tests that were run in
triplicate.

centrifugation at 10,000×g. Our results indicate that nearly all
sDNA passes through a 0.2 μm-pore size filter (Figure S5A), and
that in most samples the bulk of sDNA was free or attached
to particles smaller than 0.02 μm (Figure S5B). Ratios of the
amount of DNA passing through 0.02 μm relative to the amount
of DNA in the 0.02–0.2 μm size fraction varied from 2:1 to 10:1
in marine sediment layers (0.05–3.1 mbsf). In a buried terrestrial
soil layer (10.5 mbsf) this ratio was, however, inverted, with
3 times more DNA in the 0.02–0.2 μm size fraction than in
the <0.02 μm size fraction. The same quantitative trends in DNA
size fractions were confirmed by qPCR assays on 16S rRNA genes
(Figures S5C,D).
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We then examined if repeated freezing of sediment samples
affected the extracted nsDNA pool size (Figure S6). One-time
freezing had virtually no effect on the size of the nsDNA pool.
Even two freeze-thaw cycles yielded no statistically significant
change in extracted nsDNA.

We conclude these tests by examining size distributions
of sDNA and nsDNA pools by gel electrophoresis, using
two different precipitation and cleanup methods (Figure S7).
Our results show no difference in DNA size distributions for
nsDNA. However, sDNA precipitation with ethanol followed by
purification via the Norgen CleanAll RNA/DNA kit resulted in
a strong bias against short DNA fragments compared to PEG
precipitation without subsequent cleanup.

Simultaneous Extraction of DNA and RNA
We examined the compatibility of our protocol with RNA
extraction. Using Aarhus Bay Station M1 surface sediment, we
assessed whether LP I was effective at extracting RNA in addition
to DNA, and compared RNA yields to a modification of LP I, in
which PCI was omitted (Figure 9A). Fluorescence spectroscopic
analyses indicated a ∼50% higher DNA yield (p < 0.05) and
a >200% higher RNA yield (p < 0.01) with the standard version
of LP I.

We performed further tests, this time using lake water filtrates,
and compared DNA and RNA yields following LP II and LP
I without PCI, both without bead-beating (Figure 9B). While
bacterial gene copy numbers doubled by including the freeze-
thaw+heat incubation from LP II, cDNA copy numbers increased
tenfold. We compared these data to bacterial copy numbers
obtained with two commercial kits, the PowerWater Sterivex
DNA Isolation Kit and RNA PowerSoil Total RNA Isolation
Kit (adapted as described in the SOM). The PowerWater kit
resulted in three times lower copy numbers than our method
with LP II. Moreover, 16S rRNA gene copy numbers based on
cDNA pools were 14 times lower with the PowerSoil kit, and 42
times lower with the PowerWater kit compared to those obtained
with LP II.

FIGURE 9 | (A) DNA and RNA yields from surface sediment of Aarhus Bay
Station M1, based on relative fluorescent units after DNA-staining with
PicoGreen and RNA-staining with RiboGreen. DNA and RNA were extracted
by a modification of LP I, in which only lysis solution I and PO4 but no PCI
were added prior to bead-beating, and by LP I (same except with PCI). (B)
DNA and cDNA yields from a lake water sample, treated by LP II, LPI omitting
PCI, and two commercial kits by MO BIO Laboratories. Error bars in (A)
indicate standard deviations of extractions that were run in triplicate.

After the simultaneous precipitation of DNA and RNA,
additional purifications were necessary. Extracts were divided
into two volumes, one for DNA and one for RNA purification.
For DNA purification we used Protocol A of the Norgen CleanAll
RNA/DNA kit. For RNA extraction, we compared Protocols C
and D of the same kit, both of which are designed for RNA
purification. We chose Protocol C due to the ∼30% higher RNA
recovery compared to Protocol D. After this first purification,
RNA extracts were treated with DNAse to remove residual DNA.
We tested possible variations of the manufacturers protocol,
including longer digest times (2 h instead of 30 min) or addition
of bovine serum albumin to improve the efficiency of the
DNA digest, but found that neither resulted in improvements
(Eickenbusch, 2014). Adding BSA increased the digestion of
DNA, but also lowered RNA recovery by ∼80%. After DNAse
incubation, RNA extracts were purified one final time following
Protocol C of the Norgen CleanAll RNA/DNA kit and were then
ready for downstream analyses.

Comparison of General Protocol Results to
Commercial Protocols
DNA yields obtained with this extraction protocol were
significantly higher than those obtained with three widely
used DNA extraction kits. Compared to the kits by MO
BIO Laboratories, DNA yields were approximately one order
of magnitude higher with this extraction protocol using LP
III on samples from Aarhus Bay Stations M5 and MIMOSA
(Figures 10A,B). Compared to the FastDNA SPIN kit, the
difference was smaller, but our extraction protocol nonetheless
yielded ∼two to fivefold higher DNA yields (also Figures 10A,B).
Using qPCR on DNA extracts from four marine sediment layers
and one soil layer from Aarhus Bay Station M1, this method
yielded 2–10 times higher bacterial and archaeal copy numbers
than the FastDNA SPIN kit (Figures 10C,D). Using the two
deepest samples from this station, similar differences in qPCR
copy numbers were observed between this method and both
MO BIO kits (Figures 10E,F). The only exceptions were bacterial
copy numbers in the soil layer, which were nearly identical across
all three methods (Figure 10E). The trends in qPCR results in
Figures 10E,F were consistent with fluorescence spectroscopic
measurements (Figure S8).

Application of Protocol to Diverse Environmental
Samples
Our protocol successfully extracted DNA from a wide range of
samples, which ranged over 10 orders of magnitude in bacterial
gene copy numbers and over 8 orders of magnitude in archaeal
gene copy numbers (Table 4). The samples tested were from
“extreme” environments, such as the deepest hole ever drilled
by the IODP (C0020; Inagaki et al., 2012), the central part of
the South Pacific Gyre (SPG 6), which is widely considered
the “deadest” part of the world’s oceans (D’Hondt et al., 2009,
2015), oligotrophic lacustrine clay sediment 800 m beneath the
West Antarctic Ice Sheet (Subglacial Lake Whillans), and a
petroleum-rich, shallow subsurface sediment layer with an in situ
temperature of 93◦C (Guaymas Basin, “Orange mat,” 0.31 mbsf).
The highest bacterial gene copy numbers were found in coastal
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FIGURE 10 | DNA yield comparisons of our extraction method using LP
III to commercial DNA extraction kits by MO BIO (PowerSoil,
PowerLyzer) and/or MP Biomedicals (FastDNA SPIN). Quantifications
were by fluorescence spectroscopy for Aarhus Bay Station M5 (A) and Aarhus
Bay Station MIMOSA (B). Quantifications were by qPCR of 16S rRNA genes
on samples from Aarhus Bay Station M1 (C–F). Five depths, from surface
sediments to 10.5 mbsf were used for comparisons to the FastDNA SPIN kit
(C,D). Two samples were used for comparisons to both MO BIO kits (E,F).
Bead-beating was performed in extractions with the FastDNA SPIN kit and
MO BIO PowerLyzer kit. Sediment samples from Station M5 and MIMOSA
were both methanogenic and from 1.2 mbsf. Sediment samples from Station
M1 were from 0.05, 0.8, 1.6, 3.1, and 10.5 mbsf, which corresponded to
bioturbated surface sediment, sulfate reducing sediment, the sulfate-methane
transition zone, methanogenic marine sediment, and a methanogenic soil
layer, respectively. Error bars indicate standard deviations of extractions that
were run in triplicate.

surface sediment from Aarhus Bay Station M1, whereas the
lowest bacterial gene copy numbers were detected in the urban
atmosphere in Aarhus. The highest archaeal gene copy numbers
were found in oil-rich hydrothermal sediment of Guaymas
Basin, whereas the lowest archaeal gene copy numbers were
detected in deeply buried sediments of the Bering Sea and off
Shimokita Peninsula. Our quantifications of sDNA and nsDNA
pools indicate roughly equal proportions of both pools in coastal
sediments of Aarhus Bay and shelf sediments off Namibia. In
deep-sea sediments of the Bering Sea, sDNA pools exceed nsDNA
pools sizes by factors of four to ten. RNA extracts were quantified
in the two samples from Aarhus University, and our results
indicate 3.5–12 times higher bacterial 16S cDNA copy numbers
than gene copy numbers.

Discussion

Using the modular nucleic acid extraction protocol, we
successfully extracted nucleic acids from a wide range of
environmental samples (Table 4). Adjustments to the protocol,
such as inclusion of mechanical lysis by bead-beating, changes
in the number of freeze-thaw+heat cycles, modifications in the
PO4 dose, or incorporations of a second lysis treatment can all
be made to maximize nucleic acid yields from a given sample.
By adding two initial wash steps, sDNA pools can be separated
from nsDNA pools. Without major adjustments, this protocol is
also compatible with RNA extraction, thus enabling the efficient
simultaneous extraction of DNA and RNA from the same sample.
Higher DNA yields are obtained using this modular protocol
compared to several commercial DNA and RNA extraction kits.
This may be because the modular format allows the user to
incorporate knowledge on specific sample characteristics and
encourages initial tests before a decision on the final protocol
permutation is made. In the following, we review the results of
our tests and identify key variables for obtaining high nucleic acid
yields. We then provide an outline of our final, modular method,
and end with concluding remarks.

Physical/Mechanical Lysis
Freeze-thawing+heating
The inclusion of lysis cycles consisting of freeze-thawing followed
by 1-h incubations at 50◦C, all under gentle agitation in
the presence of chemical lysis solutions, increased DNA and
RNA yields from many samples (Figures 3A,B,D, 9B). In one
sample, increasing the number of cycles from one to three
increased the DNA yields, while in others it lowered DNA yields
(Figures 3E,F). Whether increases in DNA yields were due to
freezing, heating, or longer chemical exposure to lysis reagents,
due to combinations of or all three of these variables is not clear.
Regardless, the combination of freezing, heating, and extended
exposure to lysis chemicals proved effective at increasing yields
of extracted DNA and RNA.

Bead-beating
Whether bead-beating increased nucleic acid yields depended on
the sample type. In clay- and organic-rich sediments from Aarhus
Bay, bead-beating prior to LP II yielded higher DNA yields
than not bead-beating prior to LP II (Figures 1A,B). Though
more tests are necessary for substantiation, increases in DNA
yields from these sediments may occur because bead-beating
breaks up clay structures and large organic particulates, and
thereby enables more efficient penetration of lysis reagents and
release of DNA from aggregates and organic debris. Similar DNA
yield increases due to bead-beating were observed in organic-
rich soils and sediments in a previous study (Miller et al.,
1999). This benefit may be absent from sediments that are less
cohesive and devoid of large organic particles or high organic
matter content (Subglacial Lake Whillans; Figures 1C,D). In
liquid samples (Figure 1E), or samples consisting of liquid mixed
with silty sediment (Figure 1F), bead-beating even lowered
gene copy numbers in extracts, possibly due to DNA shearing.
Our results are in line with an earlier study (Lever, 2008), in
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which bead-beating increased DNA yields from cohesive clay-
dominated lithologies, but decreased DNA yields from loose
sand-dominated turbidites in subseafloor sediments of the Juan
de Fuca Ridge Flank (U1301C). We do not question that direct
mechanical cell lysis by bead-beating can contribute to higher
lysis efficiency of difficult-to-crack cells, such as Gram-positive
bacteria, bacterial endospores or fungal conidia (e.g., Zhou et al.,
1996; Kuske et al., 1998; Wunderlin et al., 2013). Our results
suggest, however, that the sample matrix also plays a role, and
that the decision of whether to bead-beat with our method is
best made based on pilot extraction tests rather than a priori
assumptions.

Chemical/Enzymatic Lysis
Enzymes
In the presence of high concentrations of SDS or guanidium
hydrochloride+Triton X-100, we found no benefit of adding
lysis-enhancing enzymes (Figures 2A,C). This suggests that the
lysis chemicals added are at least as effective at lysing cells and
releasing DNA from cells as the enzymes proteinase K, lipase,
and lysozyme. We realize that this finding may not apply to all
sample types. Past studies have demonstrated increased DNA
yields due to enzymatic treatments (e.g., Krsek and Wellington,
1999; Hurt et al., 2001), and incubations using different kinds of
enzymes could have increased DNA yields from our samples. Yet,
in the absence of documented benefits of enzymes as part of our
protocol, there is no justification for their use.

Detergent Choice
Our tests also suggest that SDS does not increase DNA yields,
if the main lysis buffer is guanidium-hydrochloride-based and
amended with the detergent Triton X-100 (Figures 2B,D). On
the contrary, Triton X-100 resulted in higher DNA yields than
SDS addition, and the combination of SDS and Triton X-100
in some cases lowered DNA yields (Figure 2E, Figures S1A,B).
Though we cannot explain the lowering of DNA yields by SDS,
a possible explanation for the absence of increased DNA yields
with SDS is that guanidium hydrochloride at the concentration
used is an equally or more effective chaotropic agent than SDS.
In addition, the non-ionic detergent Triton X-100 may more
effectively bind and solubilize nonpolar components of cells, such
as membrane lipids, than the ionic SDS. As a result, Triton X-100
may be a superior complement to guanidium hydrochloride in
the lysis of cells and subsequent release of DNA.

CTAB+PVPP
Our results indicate that adding a second lysis solution
containing CTAB and PVPP may increase DNA yields from high-
biomass, organic-rich samples, but lowers DNA yields from low-
biomass, organic-poor samples. A possible explanation for the
lower DNA yields from low-biomass samples is the incomplete
removal of CTAB during the PCI and/or CI purification steps.
As CTAB binds strongly to DNA at NaCl concentrations <0.7 M
(Murray and Thompson, 1980), and NaCl is efficiently removed
during the DNA precipitation procedure, carryover of trace
amounts of CTAB may result in effective precipitation and loss
of DNA during the final elution step. This problem may be

augmented in low-biomass, organic-poor samples, due to the
absence of large amounts of polysaccharides to bind CTAB.
Moreover, losses of DNA due to carryover of CTAB to the final
extracts are likely to be most severe in samples containing low
amounts of DNA to begin with.

Lysis Protocol Recommendation
Over the course of our tests, three lysis protocols evolved: LP I for
extractions where speed was a high priority, i.e., high through-
put applications or simultaneous extractions of DNA and RNA.
Inclusion of PCI is necessary for a high nucleic acid yield using
this protocol, but also bears the risk of phenol oxidation. LP III
was developed for organic-rich samples containing high amounts
of polyphenols and polysaccharides, which are PCR inhibitors
and through complexation may inhibit the release of DNA during
extraction. This protocol was the longest and the most labor-
intensive, but worked well on organic-rich coastal sediments
from Aarhus Bay. LP II is an intermediate between LP I and LP III
and can be used across a wide range of samples—from organic-
poor to organic-rich—often providing high yields of both DNA
and RNA. Depending on the sample type and target molecule
(DNA, RNA), LP II may work best with one, two, or three freeze-
thaw+heat cycles. Reasons for the different extraction yields at
different numbers of freeze-thaw+heat cycles are not clear. Some
cells are more resistant and require longer lysis incubation times
than others (Hoffman and Jarvis, 2003). In addition, there may
be a dependency on the PO4 dose: if insufficient amounts of PO4
were added to prevent adsorption of DNA from lysed cells, then
DNA concentrations in extracts may decrease over time.

Adsorption Prevention
pH
Our results underscore the critical importance of using an
alkaline pH in DNA extraction solutions (Figures 2A, 4A, 8A,B),
and indicate that using a pH of 9–10 instead of the widely
used pH 8.0 of many conventional phosphate- or TE-based
extraction buffers (e.g., Ogram et al., 1987; Zhou et al., 1996;
Corinaldesi et al., 2005) results in higher DNA yields. This
elevated pH does not denature DNA (Ageno et al., 1969) or
induce cell lysis on the samples tested (Figures 8C,D), and is
thus compatible with the separate extraction of nsDNA and
sDNA. Our results are consistent with previously documented
reductions in DNA adsorption to organic and inorganic clays
and nanoparticles, when the pH was raised above 8 (Cai et al.,
2006; Tanaka et al., 2009). Our results indicate that a pH of >9
is especially important in maximizing sDNA yields. Due to a
pKa of 1–3 (Brown et al., 2010), virtually all phosphodiester
groups of DNA are deprotonated in the pH range examined
(pH 5–10), and thus not significantly affected by raising the
pH above 8. Instead, if experiments with silica or aminosilane-
modified magnetic nanoparticles provide an indication, then
a combination of electrostatic and hydrophobic factors might
be at play. These could cause electrostatic repulsion of DNA
from negatively charged solid surfaces at high pH, and increase
cation bonding and hydrophobic interactions of DNA with solid
surfaces at low pH (Isailovic et al., 2007; Geng et al., 2009).
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Phosphate
Consistent with past studies (e.g., Ogram et al., 1987; Holben
et al., 1988; Pietramellara et al., 2001; Tanaka et al., 2009;
Direito et al., 2012), our data indicate that pyrophosphate,
hexametaphosphate, and dNTPs are all effective at reducing DNA
adsorption and even desorbing DNA (Figures 4C,D, 8A,B). We
detect no significant difference in the efficacy of pyrophosphate
and hexametaphosphate in preventing adsorption (Figure S3A),
and also had excellent results using dNTPs (Table 4). Future
studies may further compare the efficacies of these three PO4
sources in preventing adsorption and releasing DNA from
different sample types.

In addition to yield increases, we observed diminished DNA
yields due to high PO4 additions in certain samples (Figure 4E).
These decreases occurred at PO4 additions that were lower than
those resulting in the highest DNA yields on other samples,
indicating that the optimal amount of PO4 added depends
on the sample type. A possible explanation is that samples
with a high DNA adsorption capacity, require higher PO4
doses to release DNA into aqueous solution than samples with
lower DNA adsorption capacity. Since the DNA adsorption
capacity of any sample type has a limit, PO4 doses exceeding
this capacity are carried over to the precipitation step. We
observed that in samples with excess PO4, DNA pellets were not
only larger, but sometimes had a darker color, suggesting that
enhanced PO4 carryover can also increase the carryover of non-
nucleic acid organic matter, e.g., humic compounds. Without
influencing the yield, enhanced PO4 and/or organic matter
carryover then increased PCR inhibition in the absence of post-
extraction purification (Figure S4C). Moreover, during post-
extraction purification using the Norgen CleanAll RNA/DNA
Kit, this carryover increased DNA loss. Presence of high amounts
of PO4 might have increased DNA loss to washout prior to
elution due to competitive binding of PO4 or co-extracted humic
substances to silica membranes. In addition, carryover of PO4
and co-extracted organic matter might have reduced dissolution
efficiency of DNA and resulted in DNA not passing the silica
membrane during elution. Substantial losses during nucleic acid
purification by silica columns were previously documented by
Lloyd et al. (2010) and attributed to competitive binding by
co-extracted humic acids to silica membranes. The fact that a
particularly high DNA loss occurred at high PO4 doses applied
to drilling mud on the D/V Chikyu (compare Figure 4E to
Figure 4B), which does not include humic acids as a typical
ingredient (Masui et al., 2008; Yanagawa et al., 2013), however,
suggests that PO4 carryover is also a part of the problem (also see
“Precipitation” Section in Discussion).

Purification
Our tests with phenol, chloroform, and isoamylalcohol in
different combinations showed a clear positive effect of
isoamylalcohol in stabilizing interfaces of aqueous and organic
phases. Inclusion of isoamylalcohol with chloroform or phenol-
chloroform enabled cleaner transfers of aqueous supernatants
and often lowered the number of necessary CI or PCI washes.
DNA washes with PCI and CI or only CI were essential for
obtaining high DNA yields, possibly due to a combination of

factors, including the removal of detergent and other bipolar
and apolar compounds (Figures 5A,C,D). Yields after one
PCI wash followed by one or two CI washes were typically
equivalent to DNA yields after 2–3 CI washes (Figure 5B).
PCI was more effective at precipitating undesired compounds
at the aqueous-organic interface, but became oxidized when
used with many samples and was thus potentially damaging
to DNA. Adding reductants such as 2-hydroxyquinoline, β-
mercaptoethanol, or TCEP did not solve this problem. Except
on samples where phenol oxidation is absent and carryover of
undesired compounds is not effectively prevented by CI washes,
we thus recommend only using CI for the purification prior to
precipitation.

Precipitation
Our precipitation tests indicate that the best precipitation
method depends on the goals of the study. DNA precipitation
efficiency is highest using ethanol-NaCl or PEG-NaCl, which
can both provide virtually full DNA recovery (Figure 6,
Figures S4C–E). A similarly high recovery is attained with
a solution combining ethanol with PEG and NaCl; however,
this solution has no apparent advantages over precipitation
with ethanol-NaCl or PEG-NaCl. Isopropanol-based extraction
solutions have slightly lower DNA yields, but are also suited for
RNA precipitation.

In precipitations with PEG-NaCl, the choice of PEG (6000
or 8000) does not influence the DNA yield. However, great care
must be taken to not pipet off the frequently invisible DNA
pellet (see Section “Precipitation” in Results), and autoclaving
of PEG solution should also be avoided (Figure S4D). Possibly
autoclaving induces hydrolysis of PEG polymers and shorter PEG
polymer fragments have a lower DNA precipitation efficiency. In
addition, PEG precipitation has clear advantages over ethanol-
NaCl precipitation: DNA pellets are much smaller, because the
solubility of PO4 is considerably higher in 30% PEG-1.6 M NaCl
solution than in ethanol-NaCl solution (∼70% ethanol, ∼0.5 M
NaCl). As a result, purifications of DNA pellets using post-
extraction cleanup kits are often not necessary.

In addition to saving time and reducing expenditures,
omitting post-extraction cleanups has a second major advantage:
excess PO4 carryover in sDNA extracts induces selective loss
of short DNA fragments during cleanup with the CleanAll kit
(Figure S7). These short sDNA fragments might, however, be
of particular interest to certain fields, e.g., research on fossil
DNA pools (Willerslev and Cooper, 2005; Corinaldesi et al.,
2011; Coolen et al., 2013). The selective bias against short
DNA fragments was not seen when 100-bp DNA ladder was
precipitated with ethanol-NaCl or purified using the Norgen
CleanAll RNA/DNA kit in the absence of added PO4 (data
not shown). This not only confirms our earlier interpretation
that high PO4 carryover, and possibly PO4-induced carryover
of humic acids, results in DNA loss during cleanup on silica
columns. It also indicates that PO4 carryover onto silica columns
induces particularly high DNA losses in small DNA size fractions.
The reason why this trend was only seen in sDNA extracts is
likely that, during DNA desorption in the second hour of sDNA
extraction, most PO4 ends up in the sDNA extract. The solution
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to this problem is to perform PEG precipitation on sDNA extracts
(Figure S7). If necessary, PEG precipitation can be followed by
purification with the CleanAll kit, which works well after PEG
precipitation due to the low PO4 carryover. Reducing the PO4
dose to levels that result in less PO4 carryover into final sDNA
extracts might also work, as long as it does not increase sDNA
and nsDNA to adsorption.

Final Purification
The Norgen CleanAll RNA/DNA kit proved easy-to-use, versatile
in its effective purification of both DNA and RNA, and
had excellent nucleic acid recovery except in cases with
high PO4 carryover (Figure 7). Final extracts after purification
were typically devoid of visible coloration, were suitable
for spectrofluorometric quantification on the ND-3300, an
instrument that is highly sensitive to impurities from detergent or
humic substances, and showed no signs of PCR inhibition. High
purity and absence of PCR inhibition is especially paramount in
PCR-based applications on low-biomass samples, where dilutions
of nucleic acids can easily lower DNA or RNA concentrations
below background contamination.

Separation of DNA Pools
Our tests indicate that the separation of sDNA and nsDNA pools
is feasible. To effectively extract sDNA, high pH and high PO4
concentrations in extraction solutions are critical. An extraction
buffer with pH 8 or low PO4 concentrations only recovers a
small fraction of the sDNA that is extracted at pH > 9 and
high PO4 (Figure 8A). By contrast, a pH of 8 and low PO4
dose recovers ∼70% of the nsDNA that is extracted at high
pH and high PO4 (Figure 8B). The observed trends allude to
differences in origin between sDNA and nsDNA pools. sDNA
may primarily consist of DNA that is adsorbed or weakly bound
by intermolecular forces. Using an ample supply of PO4, which
competes with sDNA for adsorptive surfaces, and an alkaline
pH, sDNA readily dissolves. By contrast, the nsDNA pool may
be tightly complexed within living cells, viruses, or non-soluble
organic matter. The latter may include detrital DNA-binding
proteins and humic substances (Nielsen et al., 2006). Part of
the nsDNA pool may also be locked within clay aggregates
or dead cells. This nsDNA is only released into solution after
cell membranes, cell walls, DNA-binding proteins, and other
structures have been dismantled by physical and/or chemical lysis
agents.

Inevitably, our interpretations concerning characteristics
of sDNA and nsDNA pools in sediments require further
confirmation. Yet, the results of additional tests are in line
with our interpretations. For instance, we can rule out a large
contribution of living cells to sDNA pools, based on the absence
of cell lysis during sDNA extraction (Figure 8D), and because
nearly 100% of the extracted sDNA readily passes through
0.2-μm pores (Figure S5A). It also appears that—at least in
marine sediment—the bulk of sDNA is non-viral, as it passes
through 0.02-μm pore sizes (Figures S5A–C). By contrast, in
a deeply buried terrestrial soil layer, most sDNA was within
the 0.02–0.2 μm size fraction, possibly indicating a higher
viral contribution. Alternatively, more sDNA might have been

complexed with dissolved organic matter in the 0.02–0.2 μm size
fraction.

Both sDNA and nsDNA are measurable by fluorescence
spectroscopy and PCR-amplifiable using bacterial and archaeal
16S rRNA gene primers (Table 4). The relative contributions
of sDNA and nsDNA appear to vary considerably, with sDNA
accounting for 10–83% of total DNA based on qPCR results.
Fluorescence spectroscopic and qPCR results compare well,
though we on average observed a higher fraction of sDNA
according to fluorescence spectroscopic measurements. This
could be due to a higher non-amplifiable DNA fraction in the
sDNA pool compared to the nsDNA pool.

Comparison to Commercial Protocols
Higher DNA yields were achieved with this modular protocol
than with several widely used commercial kits for the extraction
of DNA and/or RNA from soil and filtrates. Given that the active
ingredients of various commercial protocols are proprietary, it
is not possible to identify why this modular protocol yielded
higher DNA or RNA yields. We attribute the higher yields at
least in part to the fact that we took into account specific sample
characteristics and, in many cases, performed initial extraction
trials in which variables, such as bead-beading or PO4 dose were
tested, before deciding on a final extraction protocol.

Final Protocol
A flow chart of our final modular DNA/RNA extraction protocol
is presented in Figure 11. In the following, we provide a written
outline of the protocol and its various permutations. All recipes
for reagents can be found in the SOM.

Weighing and Aliquotting of Sample
The desired amount of sample is placed into a pre-weighed
centrifuge tube. If bead-beating is performed in later steps, screw-
cap centrifuge tubes are used, which are filled to∼15% of the total
volume with 0.1-mm zirconium silicate beads prior to sample
addition.

PO4 Addition
Concentrated PO4 solution is added to prevent adsorptive
losses of nucleic acids. The optimal PO4 dose depends on the
adsorption capacity of the sample, and can only be determined
empirically. For total DNA extractions from organic-rich and
sandy sediments, 10–100 μmol PO4 g−1 are often sufficient,
whereas for organic-poor clay sediments with high sorption
capacity, 100–1000 μmol PO4 g−1 might be necessary. Water
and air samples that are filtered onto membranes may only
require 10 μmol L−1 of water or air, or less. If nsDNA and sDNA
are extracted separately, then higher PO4 additions, e.g., 100–
1000 μmol PO4 g−1 for organic-rich sediment samples, may be
necessary to maximize desorption of sDNA. After addition of
PO4 solutions, samples are gently mixed to coat the entire sample
with PO4 solution. If RNA extraction is intended, samples should
be kept on ice throughout the PO4 addition procedure.

Separation of sDNA and nsDNA
This step is skipped unless the separate extraction of sDNA and
nsDNA pools is desired. There are two options for the separate

Frontiers in Microbiology | www.frontiersin.org 19 May 2015 | Volume 6 | Article 476

http://www.frontiersin.org/Microbiology
http://www.frontiersin.org
http://www.frontiersin.org/Microbiology/archive


Lever et al. A modular method for nucleic acid extraction

FIGURE 11 | Flow chart of modular nucleic acid extraction protocol.

extraction of sDNA and nsDNA. For carbonate-rich samples,
1 volume CDM is added per equivalent weight of sample, e.g.,
0.2 mL CDM per 0.2 g of sediment. Samples are then gently mixed
at room temperature for 1 h, e.g., using a shaker incubator, rotator
mixer, or hybridization incubator with a rotisserie assembly.
Afterward, 8 volumes of 10× TE buffer are added, e.g., 1.6 mL
10× TE per 0.2 g of sample. Samples are then gently mixed at
room temperature for a second hour. For samples containing low
amounts of carbonate, 9 volumes of 1× TE buffer are simply
added, e.g., 1.8 mL 1× TE per 0.2 g, and samples are gently
shaken for 2 h at room temperature. We have seen no detrimental
effect of applying the protocol for carbonate-rich samples to
carbonate-poor samples and—when in question—recommend
this protocol.

After 2 h, samples are centrifuged for 20 min at 10,000×g. The
supernatant containing sDNA is filtered through a 0.2-μm filter
and transferred to a clean tube. Further processing of sDNA is
discussed at the end of this protocol. For extraction of nsDNA
the following step is used.

Cell Lysis
The first step of the cell lysis procedure is the addition of
2.5 volumes lysis solution I, e.g., 500 μL lysis solution I per
0.2 g of original sample. Samples are gently mixed to ensure

homogenization and then frozen at −80◦C. Afterward, our
modular protocol offers three separate lysis protocols (LPs I–
III), with the best protocol depending on the sample type and
scientific goal.

LP I
This short combined mechanical and chemical lysis procedure is
suited for simultaneous extraction of DNA and RNA and high-
throughput applications. 2.5 volumes of cold PCI are added to
the frozen samples already containing PO4 solution and lysis
solution I, e.g., 500 μL PCI per 0.2 g of the original sample.
Samples are allowed to thaw. After thawing, samples are vortexed
for 10 s, and then bead-beaten at medium to high speed for
30 s to 1 min, with the duration of bead-beating representing
a compromise between cell lysis efficiency and nucleic acid
shearing. Using a TissueLyzer LT 2500 (Qiagen) or FastPrep-24
(MP Biomedicals) we have had good results from cohesive, clay-
rich samples using 1 min at maximum speed. For loose samples
or coarse-grained samples, lower speeds may be preferable, and
vortexing for 30 s might be a superior alternative.

LP II
This protocol is perhaps the most versatile of the three LPs,
providing high DNA and RNA yields from a wide range
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of samples, including ultra-oligotrophic sediment and basalt
samples. Samples amended with PO4 solution and lysis solution
I are thawed, homogenized by vortexing for 10 s, and incubated
for 1 h at 50◦C, e.g., using a shaker incubator, rotator mixer, or
hybridization incubator with a rotisserie assembly. Bead-beating
for 30 s to 1 min, or vortexing horizontally attached screw-
cap tubes with beads for 10 min, may substitute for brief 30 s
vortexing prior to the incubation, but is often not necessary. Up
to two additional freeze-thaw+heat cycles may increase yields on
certain samples.

LP III
The lengthiest of the three protocols is perhaps the most suitable
for DNA extractions from organic-rich samples containing high
amounts of polysaccharides, humic substances, and (recalcitrant)
cell structural components. Samples amended with PO4 solution
and lysis solution I are thawed, vortexed for 10 s at high speed,
and incubated for 1 h at 50◦C, e.g., using a shaker incubator,
rotator mixer, or hybridization incubator with a rotisserie
assembly. After the following, second freeze-thaw+heat cycle,
2.5 volumes lysis solution II, e.g., 500 μL lysis solution II per
0.2 g of original sample, are added, and two more freeze-
thaw+heat cycles are performed. During the final 1-h incubation,
the temperature is raised to 65◦C to promote binding of CTAB to
organic components.

After bead-beating in LP I, and after the (final) 1-h incubations
in LPs II and III, samples are centrifuged for 10–20 min at
10,000×g and 4◦C, and supernatants containing nucleic acid
extracts are transferred to clean centrifuge tubes. The necessary
centrifugation time depends on the temperature and volume
of the sample prior to centrifugation. After the 10–20 min
centrifugation period, all samples should be ∼4◦C cold. With
samples treated by LP I, care is taken to transfer as much aqueous
supernatant as possible, while avoiding the organic phase or
precipitates at the aqueous-organic interface. After centrifugation
of samples treated with LPs II and III, as much supernatant
is transferred as possible, while keeping transfer of sediment
particles to a minimum.

Purification
To remove detergents and residual bipolar organic compounds,
supernatants are washed with 1 volume of CI. After CI addition,
aqueous supernatants are emulsified with CI by vortexing at
maximum speed for 10 s, or until thoroughly mixed. After
centrifugation for 10 min at 10,000×g and 4◦C, tubes are kept
cold, and—avoiding the CI phase and precipitates at the organic-
aqueous phase—aqueous supernatants are transferred to clean
tubes. The whole procedure consisting of CI addition, vortexing,
and centrifugation is repeated one more time. During the second
transfer of supernatant there should be no carryover of CI
or visible precipitates. With certain, very “clean” samples, the
second CI transfer can be skipped, while with other samples, a
third CI wash might be necessary. For samples that are very rich
in humic substances, PCI may be used instead of CI in the first
wash step, though only if strong phenol oxidation, indicated by
conspicuous reddish discoloration after vortexing, is absent.

Precipitation
For DNA work, we recommend Ethanol-NaCl or PEG-NaCl
precipitation. Ethanol-NaCl precipitation is easier to perform
than precipitation with PEG-NaCl, due to formation of a
clear, solid pellet after centrifugation. However, ethanol-NaCl
precipitation more often than PEG-NaCl precipitation requires
additional purification to prevent PCR inhibition or enable
spectrofluorometric quantification. At high PO4 carryover, this
additional purification can be associated with significant DNA
losses. For the simultaneous extraction of DNA and RNA, or
only RNA, both isopropanol-NaCl and isopropanol-ammonium
acetate precipitations are suitable.

The first step in every precipitation protocol is the addition
of linear polyacrylamide (LPA) to purified supernatant to a final
LPA concentration of 20 μL mL−1. LPA is a co-precipitant, which
significantly enhances the precipitation efficiency of nucleic acids
(Bartram et al., 2009). LPA is fully dissolved and homogenized
with the sample. For Ethanol-NaCl precipitations, samples are
then homogenized with 0.2 volumes 5 M NaCl solution, and
subsequently with 2.5 volumes of pure ethanol. For isopropanol-
NaCl precipitations, samples are homogenized with 0.1 volumes
of 5 M NaCl solution followed by 1.5 volumes of isopropanol.
For isopropanol-ammonium acetate precipitations, samples are
mixed with 0.5 volumes of 7.5 M ammonium acetate solution,
followed by 1.5 volumes of isopropanol. For PEG precipitations,
samples are simply mixed with a non-autoclaved solution
containing 30% w/v PEG 6000 or PEG 8000 and 1.6 M NaCl.
DNA-targeted Ethanol-NaCl and PEG-NaCl precipitations then
proceed through incubation in the dark at room temperature for
2 h. These precipitations can also be done overnight, but should
be refrigerated at 4◦C in this case. RNA- and RNA+DNA-targeted
isopropanol precipitations proceed in the dark at −20◦C for a
minimum of 2 h and can also be stored overnight.

After the incubation period, samples are centrifuged at
14,000×g for 30 min. For tubes containing large fluid volumes,
e.g., half-full to full 15-mL or 50-mL tubes, the centrifugation
period is increased to 45 or 60 min. The centrifugation
temperature is room temperature for DNA applications,
and +4◦C for downstream applications involving RNA. The
supernatant is carefully decanted or pipetted off (never decant
after PEG precipitations).

After centrifugation following Ethanol-NaCl precipitation,
the pellet containing nucleic acids is air-dried. Prior to
drying, 1–2 washes with 70% ethanol may be included. If
further purification with the Clean All kit is planned, these
washes, which effectively remove NaCl, but not PO4, are not
necessary. An efficient way of drying nucleic acid pellets, while
minimizing contamination risk, is to use a vacuum centrifuge
set to 40–50◦C. To remove isopropanol, pellets precipitated
by isopropanol-containing solution are washed once with 70%
ethanol, centrifuged for 10 min at 14,000×g, and air-dried after
removal of the supernatant. To remove PEG from pellets that
have been precipitated with PEG-NaCl, pellets are washed twice
with 70% ethanol followed by 10 min centrifugation at 14,000×g.
Two washes are necessary, as removal of PEG solution has to be
done with great care to avoid pellet loss, and applying this extra
care results in higher PEG carryover between washes.
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All pellets are dissolved in 100–200 μL of water and are then
ready for final purification, e.g., using the Norgen Clean All
RNA/DNA kit. PEG precipitated DNA is ready for downstream
quantifications and PCR-based applications without further
cleanup.

Cleanup of sDNA
After sDNA extraction (see “Separate extraction of sDNA and
nsDNA”), the sDNA is concentrated by Ethanol-NaCl or PEG-
NaCl precipitation. The pellet is dissolved in 100 μL water,
amended with 500 μL of lysis solution I, and incubated for 1 h at
50◦C under gentle shaking, e.g., using a shaker incubator, rotator
mixer, or hybridization incubator with a rotisserie assembly.
With organic-rich samples, 500 μL of lysis solution II may be
added afterward, and a second 1-h incubation at 65◦C may be
performed.

After the (final) 1-h incubation, samples are centrifuged for
10–20 min at 10,000×g and 4◦C, and supernatants containing
nucleic acid extracts are transferred to clean centrifuge tubes.
From hereon the regular protocol is resumed from the
“Purification” section.

Conclusions

We have developed a modular method for the extraction
of DNA from a wide range of environmental sample types.
Through minor adjustments in the protocol, which likely
address differences in sample matrices, mineralogies, organic
matter contents, organic matter compositions, and phylogenetic
community compositions, DNA yields from different sample
types are substantially increased. The fact that different variations
of our protocol work best for different sample types is not unique
to our protocol, but a general feature of nucleic acid extraction
protocols (e.g., Sørensen et al., 2004). This does not mean that this
DNA extraction protocols needs to be fine-tuned and optimized
for every individual sample in a study. It is, however, advisable
to perform pilot extraction tests at the beginning of every study
involving new sample material, in which samples tested represent
the range of sample types studied. Key variables such as the
suitable PO4 dose, lysis protocol, and precipitation method are
then evaluated for each sample type. Moreover, in studies where
standardized lysis protocols are necessary, it is possible to design
a lysis module that works across all samples. If desired, this lysis
module can then be combined with other standardized modules,
or with modules that are optimized for non-lysis-related variables
affecting nucleic acid recovery, such as PO4 dose.

In addition to enabling extraction of DNA from a wide range
of sample types, this protocol enables the simultaneous extraction
of RNA, and the separate extraction of sDNA and nsDNA.
A clear advantage of using the same protocol for DNA and
RNA extraction is that it provides insights to the phylogenetic
compositions of active and less active community members
without phylogenetic biases induced by separate extractions or
extraction methods. The fact that different DNA pools can
be analyzed on the same samples, moreover, invites further
investigations on the nature of these two pools with respect
to their phylogenetic origin, turnover, and preservation. These

investigations will be crucial to assessing the extent to which
molecular biological assays on total DNA extracts accurately
inform on living microbial communities in environmental
samples.
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Supplementary Material

The Supplementary Material for this article can be found
online at: http://journal.frontiersin.org/article/10.3389/fmicb.
2015.00476/abstract

Figure S1 | (A,B) 16S rRNA gene copy numbers cm−3 sediment corresponding
to the DNA extracts shown in Figure 2D (A: Bacteria; B: Archaea). (C) DNA yields
obtained after incubating sediments from Aarhus Bay Station M5 with a second
lysis solution containing two concentrations of CTAB (2%, 0.5%) and PVPP (0%,
0.1%). Error bars indicate standard deviations of triplicate DNA extractions.

Figure S2 | (A) Comparison of bacterial and archaeal 16S rRNA gene copy
numbers after DNA extraction by LP I compared to LP I without PCI. Surface
sediment from Aarhus Bay Station M1 was used as test material. Error bars
indicate standard deviations of triplicate DNA extractions. (B,C) Comparison of
bacterial (B) and archaeal (C) 16S rRNA gene copy numbers after DNA extraction
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by LP II compared to LP III from two oligotrophic sediments [Bering Sea, South
Atlantic Gyre (SAG)] and subseafloor basalt (Juan de Fuca Ridge Flank).

Figure S3 | (A) Effect of adding the same concentration of pyrophosphate and
hexametaphosphate on DNA yields from subsurface sediments of Aarhus Bay
Station M5 and M1. Concentrations of pyrophosphate and hexametaphosphate
correspond to 80 and 240 μmol PO4 g−1 sediment, respectively. (B) Bacterial
and archaeal 16S rRNA gene copy numbers in DNA extracts from a Greenland
glacial lake after two different amounts of PO4 had been added in the form of
dNTPs (5 and 15 μmol dNTPs g−1). (C) Bacterial and archaeal 16S rRNA gene
copy numbers in DNA extracts from Subglacial Lake Whillans. The PO4
treatments included 450 μmol PO4 g−1 as dNTPs (“450”), small amounts of
dsDNA (“dsDNA”; 0.001 μmol PO4 g−1), and 450 μmol PO4 g−1 as dNTPs plus
0.001 μmol PO4 as dsDNA (“450+dsDNA”). Error bars indicate standard
deviations of triplicate extractions (A), or ranges of duplicate extractions (B,C).

Figure S4 | Comparison of DNA yields, expressed in ng DNA or gene copy
numbers, using different precipitation methods. (A) DNA yields by
Ethanol-NaCl precipitation at room temperature and at −20◦C using DNA extracts
from Aarhus Bay Stations M5 (1.2 mbsf) and M1 (3.1 cmbsf). (B) DNA yields by
Ethanol-NaCl precipitation after LP III. The first treatment with ∼1.2 M NaCl left
from Lysis Solution II prior to ethanol addition, the second treatment with addition
of 0.2 volumes of 5 M NaCl, which raised the NaCl concentration to ∼1.8 M prior
to ethanol addition. (C) Effect of precipitation method at two different dNTP
additions on PCR inhibition based on quantifications of bacterial 16S rRNA gene
copy numbers in original and tenfold diluted extracts. DNA was extracted from
Aarhus Bay Station M1 surface sediment and PCR-amplified after precipitation,
without further purification by the Norgen CleanAll kit. I–III: 15 μmol PO4 added
g−1 sediment, IV–VI: 150 μmol PO4 g−1 sediment. Precipitation methods: I, IV:
PEG-NaCl; II, V: PEG-ethanol-NaCl; III, VI: EtOH-NaCl. (D) Effect of autoclaving
PEG-NaCl solution on DNA recovery from three dilutions of 100-bp ladder (original
concentration: 500 ng DNA μL−1). (E) Effects of centrifugation force, MgCl2
addition, or manipulating the pH of the PEG 8000-NaCl solution with acetate
buffers on DNA recovery by PEG 8000-NaCl precipitation. Aliquots of the same
homogenized DNA extract from Aarhus Bay Station M5 were diluted tenfold and
used for these tests. I: conventional PEG precipitation with 2 volumes of solution
containing 30% PEG 6000-1.6 M NaCl (pH 8.3); II: as I, but amending PEG-NaCl
solution with 0.1 volumes of 300 mM MgCl2 (pH 8.4); III: as I, but 0.1 volumes of

3 M Na acetate added to PEG solution (pH 8.7); IV: as I, but 0.1 volumes of 1:1
(v:v) 3 M acetic acid: 3 M Na acetate added (pH 4.6); V: as I, but 0.1 volumes of
9:1 (v:v) 3 M acetic acid: 3 M Na acetate added (pH 3.7); VI: as I, but 0.1 volumes
of 99:1 (v:v) 3 M acetic acid: 3 M Na acetate added (pH 3.2); VII: as I, but 0.1
volumes of 3 M acetic acid added (pH 3.1); No ppt, control consisting of
non-precipitated original extract. Error bars in (A–C) indicate standard deviations
of triplicate extractions, error bars in (D) indicate data ranges of duplicated
precipitation tests.

Figure S5 | (A) Amount of sDNA that passes through a 0.2-μm filter compared to
total sDNA. Samples were from Aarhus Bay Stations M5 and MIMOSA. sDNA was
extracted by the same method as in Figure 8C. (B) Amount of sDNA in the
0.02–0.2 μm fraction compared to the amount of sDNA in the <0.02 μm fraction.
Data from five different depths at Aarhus Bay Station M1, of which the uppermost
depths (0.05 mbsf, 0.80 mbsf, 1.40 mbsf, 3.10 mbsf) correspond to marine
sediment, and the lowermost depth (10.5 mbsf) corresponds to a soil layer. (C,D)
Bacterial (C) and archaeal (D) qPCR results on the same DNA fractions and
samples as shown in (B). Error bars indicate standard deviations of triplicate
extractions.

Figure S6 | Effect of freezing on nsDNA yields from Aarhus Bay Station
M5. Error bars indicate standard deviations of triplicate extractions.

Figure S7 | DNA size distributions after nsDNA and sDNA extract
precipitation by PEG 8000-NaCl without further cleanup (PEG), and after
precipitation by Ethanol-NaCl followed by cleanup using the Norgen
Clean All kit (Nk). Two previously frozen samples from 3 cmbsf and 34 cmbsf at
Aarhus Bay Station M1 were used as test material. We used two different DNA
ladders, Lambda DNA/HindIII Marker (Thermo Scientific) to illustrate the large DNA
fragment size spectrum, and GeneRuler 100 bp Plus DNA ladder (Fermentas) to
illustrate the short DNA size spectrum.

Figure S8 | DNA yield comparisons of our extraction method using LP III
to commercial DNA extraction kits by MO BIO (PowerSoil, PowerLyzer). All
measurements done by fluorescence spectroscopy. (A) Aarhus Bay Station M1,
3.1 mbsf, and (B) Aarhus Bay Station M1, 10.5 mbsf. Bead-beating was used in
extractions with the MOBIO PowerLyzer kit. Error bars indicate standard
deviations of triplicate extractions.
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