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Many strains of bacteria produce antagonistic substances that restrain the growth

of others, and potentially give them a competitive advantage. These substances are

commonly released to the surrounding environment, involving metabolic costs in terms of

energy and nutrients. The rate at which these molecules need to be produced to maintain

a certain amount of them close to the producing cell before they are diluted into the

environment has not been explored so far. To understand the potential cost of production

of antagonistic substances in water environments, we used two different theoretical

approaches. Using a probabilistic model, we determined the rate at which a cell needs to

produce individual molecules in order to keep on average a single molecule in its vicinity

at all times. For this minimum protection, a cell would need to invest 3.92
1

× 10−22 kg

s− of organic matter, which is 9 orders of magnitude lower than the estimated expense

for growth. Next, we used a continuous model, based on Fick’s laws, to explore the

production rate needed to sustain minimum inhibitory concentrations around a cell, which

would provide much more protection from competitors. In this scenario, cells would need

to invest 1.20×10−11 kg s−1, which is 2 orders of magnitude higher than the estimated

expense for growth, and thus not sustainable. We hypothesize that the production of

antimicrobial compounds by bacteria in aquatic environments lies between these two

extremes.

Keywords: Bacterial antagonism, diffusion, community ecology, microbial ecology, microbial physiology

Introduction

The bacterial production of molecules with antagonistic activity toward other strains is believed
to be involved in complex inter-strain interactions at the local scale (Cordero et al., 2012;
Pérez-Gutiérrez et al., 2013; Aguirre-von-Wobeser et al., 2014). The role of antagonistic molecules
as a means of gaining competitive advantage by killing other cells, has been extensively stud-
ied in silico (Pagie and Hogeweg, 1999; Czárán et al., 2002; Czárán and Hoekstra, 2003) and in
controlled laboratory experiments (Kerr et al., 2002). Alternatively, other types of interactions
have been proposed, where these molecules change the behavior of target cells, to elicit biofilm
formation, dispersal and other responses (Ratcliff and Denison, 2011). Chemical-mediated com-
petitive interactions can result in local extinction of sensitive strains unless there is a tradeoff paid
by the producing strain. An example is the growth penalty resulting from the metabolic cost of
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the biosynthesis of antagonistic compounds, which results in a
disadvantage for the antagonist producing strain in the pres-
ence of resistant strains (Kerr et al., 2002; Conlin et al., 2014).
If resistant strains pay a metabolic cost for the resistance lower
than the cost of being antagonistic, these interactions may result
in non-transitive cycles, described as a rock, scissors and paper
model (Pagie and Hogeweg, 1999; Frean and Abraham, 2001).
If these cycles are stable, permitting that each strain controls
another from becoming dominant, coexistence of the strains is
favored, while the selective advantage of being antagonistic is
maintained. In a different scenario, where an antagonistic strain
is able to completely out-compete all sensitive strains, the pro-
duction of antagonistic mechanisms would soon become dis-
advantageous (as no competitor strain would survive), and any
non-antagonistic (but resistant) mutants could easily be favored
by natural selection, since they would not need to spend resources
on producing antagonism-molecules in a competitor-free envi-
ronment.

From the literature exploring rock, scissors and paper mod-
els, a consensus view has emerged where a structured environ-
ment seems to be necessary for the competitive advantage to
result in stable coexistence of resistant, sensitive and antagonis-
tic strains (Durrett and Levin, 1998; Czárán et al., 2002; Kerr
et al., 2002; Czárán and Hoekstra, 2003; Greig and Travisano,
2008; Conlin et al., 2014), and therefore, to encourage the sta-
ble prevalence of antagonistic compound production. Indeed,
antagonistic interactions are extremely common in densely pop-
ulated, highly structured environments like soils (Vetsigian et al.,
2011; Pérez-Gutiérrez et al., 2013) or microbial mats (Long et al.,
2013). Surprisingly, bacterial antagonistic activity has also been
found in strains isolated from natural water samples with no
apparent structure (LoGiudice et al., 2007; Aguirre-von-Wobeser
et al., 2014). Although it is well known that at least some aquatic
environments do have structure at the microscopic level (Azam,
1998), they are clearly less stable than sediment environments,
and it is not known if that structure is enough to sustain the rock,
scissors and paper model dynamics.

Antagonistic mechanisms usually involve the release of
molecules to the environment, which can be potentially costly
in terms of resources. This poses a paradox for bacterial strains,
since each strain needs to invest resources to become more com-
petitive, and this often is needed precisely when resources for
growth are scarce. Indeed, higher nutrient availabilities favor
antagonistic strains in competition models (Hulot and Huisman,
2004). Bacterial antagonism mechanisms are varied (Konisky,
1982; Michel-Briand and Baysse, 2002; Rebuffat, 2012). In some
cases, like pyocins, a singlemolecule of the antagonistic substance
is sufficient to kill a competing cell (Michel-Briand and Baysse,
2002). For instance, one single pore-forming molecule can cause
enough depolarization of the membrane of a cell for it to loose
viability (Michel-Briand and Baysse, 2002).

One problem that antagonistic strains could face in aquatic
environments is the diffusion of antagonistic molecules away
from the producing strains. Molecules will wander in random
Brownian motion, which will result in the diffusion of the
released molecules away from the cell. Therefore, there could
be an important cost of producing these molecules, which is

expected to depend strongly on the required production rate,
according with the target concentration at the vicinity of a cell. In
this paper, we propose a model to analyze the order of magnitude
of the investment a cell must do to maintain different concen-
trations of antagonistic molecules. We consider the case where
only one molecule of an antagonistic substance in the proximity
of the cell is required, as a lower bound of resource allocation,
and the case where a certain concentration of these molecules
around it is needed, as an upper bound. Based on the results of
simulations, we hypothesize that the production of antimicro-
bial compounds by bacteria in aquatic environments lies between
these two extremes. Finally, we put forward the hypothesis that
many of these strains regulate the production of antagonistic
substances, for example in response to nutrient availability.

Overview of Mathematical Approaches

Two approaches were used to establish theoretical boundaries
on the costs that cells incur in the production of antagonistic
compounds that are released to the environment.

Probabilistic Mathematical Modeling
In a first scenario, we considered that a cell would need to keep at
least one molecule of an antagonistic substance in order to gain a
minimum amount of protection from competing cells (Figure 1,
left side). With only one molecule on average in the vicinity of
a cell, one cannot use mathematical approaches that depend on
defined concentrations and gradients, like differential equations.
Instead, the problem needs to be approached probabilistically,
modeling the fates of individual molecules. After large num-
bers of simulations, the distribution of the behavior of individual
molecules was analyzed using a mathematical model of the dis-
tribution, chosen for theoretical reasons, as explained below. We
used a probabilistic model based on the Inverse Gaussian Distri-
bution to explore the rate at which a cell would need to produce
antagonistic molecules to maintain on average a single molecule
in its vicinity at all times.

To simulate diffusion of molecules, simulation experiments
were performed to explore the distribution of the time needed
for particles to reach a threshold radius, when randomly drift-
ing in Brownian motion. Particles were simulated as if they were
released at the surface of the cell, and were allowed to take steps,
either toward the cell or away from it. If a particle moved against
the cells surface, it was reflected back to its original position. The
simulations were performed in one dimension, assuming per-
fect radial symmetry around an idealized spherical model cell.
Five sets of simulations were performed with threshold step-
numbers 100, 200, 300, 400, and 500. In each case, 1000 parti-
cles were simulated, and the time needed to reach the thresh-
olds was recorded. Inverse Gaussian Distributions were fitted by
maximum likelihood using Matlab R© (The Mathworks, USA).

Continuous Mathematical Modeling
In a second scenario, we considered that a cell would prefer-
ably maintain a concentration of antagonistic molecules around
itself that could effectively inhibit the growth of potential com-
petitors (Figure 1, right side). For this analysis, since it could be
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FIGURE 1 | Schematic illustration of the scenarios considered in this

study. Cells are shown as red circles, and antagonistic molecules as black

dots. In the lower left side, an example of a random trajectory of a molecule is

represented as a black line. In the lower right side, a gradient represents

concentrations of antagonistic molecules, with darker shades indicating higher

concentrations. On the left side, a cell keeping on average one molecule of an

antagonistic substance in its vicinity is considered. As shown, this would grant

the cell an absolute minimum of protection against competing cells, and the

associated production cost is considered a lower boundary for resource

investment. Note that in these conditions, competing cells still could be close

to the producing strain and not encounter the antagonistic molecule. These

production costs were calculated using in silico simulations in this work,

analyzing the random movements of individual molecules, and modeling the

distribution of many such simulations (probabilistic modeling). On the right side,

another extreme scenario is illustrated, where a cell would obtain full protection

by maintaining certain concentration of antagonistic molecules around itself.

The ideal concentration was arbitrarily chosen to be the minimum inhibitory

concentration, as explained in the text. A cell in an intermediate scenario is

also shown for illustration, although it is not explicitly investigated in this work.

described in terms of concentrations, we used differential equa-
tions. For this purpose, we used known solutions to Fick’s sec-
ond law (one of the most important mathematical models of
diffusion) to explore the rate at which a cell would need to pro-
duce antagonistic molecules, to sustain concentrations that could
inhibit the growth of other strains (Ling et al., 2010).

Mathematical Models

Probabilistic Mathematical Model to Estimate the
Average Time a Particle Stays Close to its
Producing Strain
For the production of antagonistic substances in aquatic envi-
ronments to be effective, it is reasonable to assume that these
molecules need to be close enough to the producing strain to
affect cells that are actual potential competitors. We are inter-
ested in determining the timescale in which, on average, a
molecule produced by a cell is expected to stay close to it, at
a small enough distance to potentially interact with competing
strains.

What constitutes the vicinity of a cell in terms of competition
could be approached in several ways. Cells taking up nutrients

from the environment by diffusion create a nutrient concen-
tration gradient around themselves, where the concentration is
lowest near the cell surface, and increases monotonically up to
the concentration of the environment at a certain radius. Here,
we consider two cells of different strains to be competing if the
regions of lowered nutrient concentrations overlap. Assuming
that nutrients are depleted completely at the cells surface, the
concentration of any nutrient around a spherical cell with radius
a (distances are expressed in meter units throughout this work;
for clarity, units are indicated when variables are defined) is
simply (Pasciak and Gavis, 1974):

C (r) = C∞
(

1−
a

r

)

(1)

expressed as a function of the distance r (radius) from the
cells center in any direction, and where C∞ (concentrations are
expressed in mol L−1 throughout this work) is the concentration
in the medium. Equation (1) states that the concentration of a
nutrient at a given distance from a cell taking it up is a simple
function of the radius of the cell and the concentration of the
nutrient in the surrounding medium. If we consider the radius
where the concentration is 95% of C∞ to be the limit where com-
petition is relevant, then a competitor of the same size is in the
vicinity if it is at a distance r = 2 × 20 = 40 or closer. This dis-
tance is the same for any chemical substance taken up by the cell,
since Equation (1) does not depend on the diffusion coefficient,
or any other property of the chemical involved.

We can assume that an antagonistic molecule released at the
surface of a cell will wander randomly through Brownian motion
in the medium, due to thermal energy. Randommolecular move-
ment has been the subject of extensive theoretical development
for almost two centuries, for instance in the context of the study
of diffusion. In the traditional view of this phenomenon, the
macroscopic flow of molecules (or particles) in a medium with
a concentration gradient is thought to be the accumulated result
of movements of individual molecules, in steps of nanometer
lengths and picosecond timescales, with random directions and
mean square velocity v (m/s) given by (Berg, 1993):

〈

v2
〉
1
2 =

(

kT

m

)
1
2

(2)

Where k is the Boltzman constant (aprox. 1.3806504 × 10−23 J
K−1), T (K) is the absolute temperature and m (kg) is the mass
of the molecule or particle. Thus, according to Equation (2), the
average velocity of a particle depends on the temperature and on
its mass.

The discrete nature of these molecular movements is thought
to reflect the trajectory between collisions with one molecule of
the surroundingmedium to the next one; trajectories whose aver-
age length is known as the mean free path. According to this
random walk model of diffusion, the individual solute molecules
very rarely meet (given sufficiently low concentrations), and their
trajectories and displacements are therefore considered indepen-
dent. This assumption of traditional diffusion theory allows us to
utilize the exact same theoretical framework to study the mean
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FIGURE 2 | Simulation to illustrate “random walk” movements of a

particle away from a cell (black circles) that produced it. (A)

Trajectories of three different particles produced by the same cell at different

time points are shown as colored continuous lines (different colors are used

to distinguish the three independent particles; red dots, circles and squares

mark the start and end positions of the three independent particles), since

the time they are released, until they reach a distance of 3 cell radiuses from

the cell surface for the first time. Notice that they will approach the cell again

with probability 0.5 at the next step, or drift further away. The number of

steps taken to reach that position, is indicated for each case. Note that the

length of each step is greatly exaggerated in this figure, as compared to the

scales of real molecules and bacteria. (B) The trajectories are plotted around

the same depiction of the cell, putting them in the same time-frame. (C) The

trajectories are rotated, putting them in the same spatial frame, illustrating

how these bi-dimensional trajectories can be studied in one dimension if the

only quantity of interest is the distance from the cell. This same reasoning

can be applied for a three-dimensional scenario. (D) Distribution of the

number of steps taken to reach 3 cell radiuses in 1000 simulations with the

same scales as in panel (A). The red line indicates an Inverse Gaussian

Distribution fitted to the data. Note that an equally well fit can be attained

using a Birnbaum-Saunders Distribution, but the Inverse Gaussian is

preferred for theoretical reasons.

displacements of individual molecules released at different times
at a cells surface.

Due to the random distribution of the solvent molecules, in
any frame of reference in a three dimensional environment, the
displacement of diffusing particles is known to be independent
for each of the three spatial dimensions (Berg, 1993). For con-
venience, we set the frame of reference arbitrarily parallel to the
maximum displacement of each particle when they reach radius r
(Figures 2A–C). Note that this is similar to setting the time frame
of reference for every particle at the time they were excreted at
the surface of the cell. Thus, we can model the dispersion of
particles as a one-dimensional random walk (Crank, 1975). In
other words, since the components of random movements that
are not normal (perpendicular) to the cells surface in the direc-
tion that randomly generates the maximum displacement, do not
contribute to drive the molecules away from the cells, only nor-
mal displacement in that direction need to be modeled (note that
we only need to model one dimension, along the radius, although
the particles actually move in three dimensions). Since we assume
that the molecules are not absorbed again at the cells surface, we
consider it a reflected randomwalk, as the molecules are reflected

when they collide with the cells surface. With sufficiently large
numbers of particles, the probability of finding a particle at a dis-
tance r from the origin at time t follows a normal distribution
(Berg, 1993):

p (r, t) =
1

√
4πDt

e−
r2

4Dt (3)

where D (m2 s−1; note that, to use a single unit system, we do
not follow the common practice of expressing D as cm2 s−1) is
the diffusion coefficient, and the variance is 2Dt. So, the expected
number of particles will decline with the distance from the cell,
and the variations around this expected number will be greater
with higher diffusion coefficients.

To model the time needed for a collection of molecules
released at the cells surface to reach a threshold distance from
the cell (say 40 cell radiuses), we can consider each step to be a
normally distributed random variable, as described by Equation
(3). The distribution of the number of steps needed by parti-
cles to reach a threshold distance r = b can be modeled sta-
tistically under certain premises. In the case of a random walk
with positive drift (for example when a current is present) it can
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be described by an Inverse Gaussian Distribution, which has a
probability density function (Folks and Chhikara, 1978):

p (t, µ,λ) =
(

λ

2πt3

)

e
−λ(t−µ)2

2µ2t (4)

for t > 0, where µ is the mean number of steps needed to reach
distance b, and λ is a shape parameter which, together with the
mean, defines the variance as µ3/λ. The time to reach a threshold
radius in a reflected random walk has also an Inverse Gaussian
Distribution (Figure 2D), even when no drift is present (Abate
and Whitt, 2011). Note that the problem is described mathemat-
ically as a one-dimensional, focusing on the relevant dimension,
being the distance of the particle from the cell, as explained above.
A simple simulation study shows that µ is equal to n2

b
where nb

is the number of steps needed to reach b (Figure 3). Although we
lack mathematical proof of this empirically observed relation, it
allows us to express the average number of steps needed to reach
arbitrary radius b as a function of useful quantities, as follows. If
each step takes an average τ s, the mean time to reach b is 〈tb〉 = τ

n2
b
, that is, the average number of steps times the average time

they take. From the definition of velocity as v= δ/τ, and the def-
inition of the diffusion coefficient as D = δ2/2τ, one can express
τ in terms of known quantities as:

τ =
2D

v2
=

2Dm

kT
(5)

which gives us a simple expression for the average step time, and
we can express the average step size as:

δ = τv = τ

(

kT

m

)
1
2

=
2Dm

kT

(

kT

m

)
1
2

= 2D
( m

kT

)
1
2

(6)

The number of steps to reach b is equal to nb = b/δ which, with
b = 40a, equals nb = 40a/δ. Thus:

〈

tb
〉

= τnb
2 = τ 1600

a2

δ2
=

2Dm

kT
1600a2

1

4D2

kT

m
= 800

a2

D
(7)

Using Equation (7), we can calculate the average time for
molecules to reach a distance of 40 cell radiuses from the cell,
by knowing their diffusion coefficients. Diffusion coefficients for
small molecules have an order of magnitude of 10−9 m2s−1 while
for small proteins they tend to range from 10−10 to 10−11 m2s−1

(Erickson, 2009). For example, for an s5-type pyocin from Pseu-
domonas aeruginosa which can target other strains from the
same species (Ling et al., 2010), we can calculate the diffusion
coefficient using the Einstein-Stokes relation:

D =
kT

6πηr
(8)

where η is the viscosity, which for water at 291.15 K (18◦C)
is about 0.001009 Pa s, and the radius of the protein can be
estimated (Erickson, 2009):

r = 6.6× 10−11M
1
3 (9)

FIGURE 3 | Simulation experiment showing the relation between

parameter µ of the Inverse Gaussian Distribution, and the square of

the number of steps n2
b
needed to reach a radius nb from the surface

of the cell, measured in step-lengths. For each point, 1000 particles were

allowed to wander with steps of fixed length and random direction, simulating

Brownian motion, until they reached the radius indicated in the x axis, and the

number of steps taken were recorded. The values correspond to parameter µ,

obtained by fitting the Inverse Gaussian Distribution to the corresponding 1000

times. We notice that this relation can most likely be obtained analytically, but

do not count with a mathematical proof at the moment.

where M is the molecular weight M, which for this protein is
57.6 kDa (Ling et al., 2010). Equation (8) gives an estimated dif-
fusion coefficient of D = 8.29 × 10−10. For a cell with radius
a = 0.5 × 10−6m (0.5µm), Equation (7) estimates the aver-
age time for a molecule of the said pyocin to stay close to the
producing cell to be about 0.24 s.

Thus, in order to maintain at least one molecule of an antag-
onism molecule, of similar size, at a distance close enough to be
able to affect a competitor, a cell would need to produce them at a
rate of 4.1 molecules s−1, or 6.88×10−24 mol s−1. We regard this
figure as the minimum investment that would make any sense in
an aquatic environment (Figure 1, left side). However, in order
to be really protected, and gain competitive advantage, a cell
would need tomaintain a concentration of antagonismmolecules
around itself (Figure 1, right side). Therefore, we are also inter-
ested in the rate of synthesis that a cell would need to sustain
in order to keep certain concentration of antagonism molecules
around it.

Fick’s Laws Based Model to Determine the
Production Rate to Sustain a Minimum Inhibitory
Concentration Around a Cell
In the second approach, we considered the cost for the cell to
maintain a certain concentration around itself to inhibit potential
competitors. For this approach, to model individual molecules
becomes impractical, but the continuous gradients provided by
large numbers of molecules allow us to use differential equations
of known diffusion theory (Figure 1, right side). The change in
concentration C of a substance at a distance r in the presence of
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a gradient can be described by Fick’s second law, which around a
sphere has the following form (Crank, 1975; Berg, 1993):

∂C

∂t
=

D

r2
∂

∂r

(

r2
∂C

∂r

)

(10)

Equation (10) is only valid when the number of molecules pro-
duced is high enough to be adequately described as a continuum
concentration. There is no general solution (lacking unknown
integration constants) for Equation (10), but solutions depend-
ing on particular conditions of a given setting can often be found.
These conditions are termed boundary conditions, and aid in
determining the values of integration constants to obtain partic-
ular solutions for the problem in hand. For instance, if a spherical
cell is producing a substance and releasing it a constant rate at the
surface, Equation (10) can be solved assuming a steady state with
boundary conditions C∞ = 0 (no antagonistic molecules exist in
the surrounding medium, and a current I (mol s−1) originating
at the cells surface (the production of the molecules by the cell),
where C∞ is the concentration of the molecule in the medium
away from the cell. This problem has known solution:

C (r) =
I

4πDr
(11)

Equation (11) conveniently expresses the concentration of the
antagonistic molecules as a function of the distance from the cell,
according the constant production rate and the diffusion coeffi-
cient. Since the concentration is lowest at the outer extreme of
the region of interest, by taking r = 40a, we make sure that the
concentration is high enough in the whole region between this
radius and the surface of the cell:

Cr= 40a =
I

160πDa
(12)

Now we need a value for the ideal concentration in the inter-
est region. For this purpose, we use the concept of minimum
inhibitory concentration (MIC), which is the minimum concen-
tration that yields a noticeable decline in growth of sensitive
strains. This minimum concentration required to inhibit a poten-
tial competitor depends on the specific antimicrobial substance
and the particular sensitive strain. Studies can be found that mea-
sure this quantity (e.g., Ling et al., 2010) and report empirically
determinedMIC values. Using this concept, we substitute Cr=40a

forMIC and get:

I = MIC 160πDa (13)

Values ofMIC are typically in the order of the tens of microgram
per milliliter. For example, for the s-type pyocin mentioned in
the preceding section, a measuredMIC of 0.0126 kg/m3 against a
specific target P. aeruginosa strain has been reported (Ling et al.,
2010). Using the diffusion coefficient calculated with Equation
(8), Equation (13) gives a value of I = 2.1 × 10−13 mol s−1, or
1.26× 1011 molecules per s.

Cost of Producing and Releasing an Antagonistic
Substance
Under the assumption that antagonism molecules have the same
elementary composition as the average stoichiometry of the cell,
the production and release of those molecules would be limited
by the same nutrient(s) as growth. So, comparing the mass range
of these molecules and the mass and growth rates of typical bac-
teria, we can estimate if the production rates we calculated in the
previous sections are sustainable.

To obtain the dry weight of a spherical bacterium, we can use
an empirical relation between the cells volume and the dry weight
W (kg cell−1), valid for cells larger than 0.025µm3 (Romanova
and Sazhin, 2010):

W= 133.745× 10−12V
0.438 = 133.745× 10−12

(

4

3
πa3

)0.438

(14)

For example, for a cell with radius a= 0.5×10−6m, the dry weight
would be approximately 1.32×10−18 kg. To sustain this biomass,
at a growth rate of 1 division per day (1.16 × 10−5 s−1), the cell
would need to produce biomass at a rate of 1.14 × 10−13 kg s−1.
For the pyocin discussed above (Ling et al., 2010), the mass of
a single molecule would be 9.56 × 10−23 kg. It was determined
that a cell would need to produce molecules at a rate of 4.1 s−1

to have, on average, a single molecule of an antagonistic com-
pound in its vicinity at all times (Scenario 1), which amounts to
3.92×10−22 kg s−1. Compared to the cost of biomass production
for growth, this is about 9 orders of magnitude lower. However,
to produce enough molecules to sustain a minimum inhibitory
concentration, a cell would need to produce molecules at a rate of
1.26× 1011 s−1, or 1.20× 10−11 kg s−1. This value is two orders
of magnitude larger than the cost of biomass production.

Discussion

Many bacterial species produce substances to hamper the growth
and proliferation of others in densely populated or highly struc-
tured environments (Vetsigian et al., 2011; Long et al., 2013;
Pérez-Gutiérrez et al., 2013). We are concerned with the theoret-
ical challenge posed by the presence of antagonistic mechanisms
in water environments as well (Long and Azam, 2001; Lo Giu-
dice et al., 2007; Aguirre-von-Wobeser et al., 2014). Moreover,
these mechanisms can be found in highly oligotrophic environ-
ments like the Churince system in Cuatro Ciénegas (Aguirre-
von-Wobeser et al., 2014) where there is not only low struc-
ture, but the cell densities are much lower, and the probability
of encounter with other cells is very low, and where molecules
can easily diffuse away from the producing strain. We specifically
addressed this last issue, since we were interested in calculating
the order of magnitude of the frequency of production of antag-
onism molecules that would make sense for a cell to sustain. We
considered two different scenarios:

1. A cell that would only need to keep a single molecule of
an antagonistic substance in its close proximity most of the
time. This scenario is supported by the observation that for
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some antagonistic compounds, a single molecule can kill a
competing strain (Michel-Briand and Baysse, 2002).

2. A cell that would need to keep a minimum inhibitory concen-
tration around itself.

Since the two scenarios are best described by discrete and contin-
uous mathematical models, respectively, we used different the-
oretical approaches to further our understanding of the cost of
antagonism in a water environment. First we analyzed the situa-
tion where a single molecule around a producing strain could be
advantageous. In this scenario, where a minimum production of
antagonistic molecules is expected, we found the cost of produc-
tion in terms of biomass to be nine orders of magnitude lower
than the metabolic cost of net growth. However, with such a low
release of antagonistic substances, the cell would need to rely on
the chance encounter of the antagonistic molecule with the target
strain, which could be highly random. Therefore, we regard this
absolute minimum antagonismmolecule production as not likely
to be enough for an effective protection from competitors.

Then we analyzed the cost of sustained production of antag-
onistic molecules to create a minimum inhibitory concentration
around the producing strain. To achieve this, the cell would need
to sustain a constant production of antagonistic molecules in
high enough quantities to replenish all the molecules that con-
stantly diffuse away. As expected, the calculated cost contrasted
sharply with what was found in the previous case. The rate of
molecule production the cell would need to sustain turned out to
be even higher than the cost of growth by net biomass synthe-
sis, by two orders of magnitude, when considering one doubling
event per day. This means that the cell would need to spendmuch
more resources for antagonism molecule production than for
growth. In real life, it is not likely that the cells invest continually
these high amounts of resources. For example, Escherichia coli
cells carrying different colicin-producing plasmids show a growth
reduction of approximately 20% (Gordon and Riley, 1999).

The models used in this study were developed to understand
antagonistic substance production in aquatic oligotrophic envi-
ronments with low, possibly negligible structure. However, they
could be adapted to scenarios where structure is more promi-
nent, such as soils, root-associated communities, snow envi-
ronments, eutrophic aquatic environments, marine-snow rich
oceanic waters, among others, to understand the role of diffusion
in such environments.

Although it is possible that the cells synthesize antagonistic
compounds at an intermediate rate between the two extremes
considered, another likely scenario is that these mechanisms are
regulated by differential gene expression, and are only turned on

under certain conditions. Bacteria are known to be very flexi-
ble in their gene expression profiles in varying environmental
conditions (e.g., Aguirre-von-Wobeser et al., 2011; Dugar et al.,
2013). Modulation of the production of antagonistic substances
in response to environmental conditions has been observed
(Bruhn et al., 2007). A recent study has explored regulation of
colicin gene expression in Escherichia coli, and found a very
dynamic regulation of antagonism (Hol et al., 2014). Therefore,

we hypothesize that regulation of antagonistic molecule synthe-
sis is an important strategy for cells to produce these compounds
in the environment when they are cost-effective.

It is a highly complex question to establish at which concen-
trations of nutrients it makes sense for a bacterium to produce
antagonistic substances, and it falls outside the scope of this arti-
cle. However, to have some insight on this problem, the costs
of production of these molecules for aquatic bacteria calculated
in this work could be inserted in growth models that consider
maintenance costs, like those discussed in van Bodegom (2007).
Additionally, such studies would need to include several exper-
imentally obtainable parameters, like growth kinetic parame-
ters of producing and sensible strains and growth penalties for
competing strains with different concentrations of antagonistic
substances.

A possibility that cannot be ruled-out is that at least some
cells have proteins in their external surface that could reversibly
attach to antagonism molecules. In that case, the times in which
the molecules would stay in the cells vicinity could greatly
increase. To the best of our knowledge, this question remains
unanswered.

We conclude that by using theoretical approaches and obser-
vations from the literature, we found that the production of
antagonism by bacteria in non-structured environments is a
complex phenomenon that is likely to be highly regulated. Nutri-
ent availability, cost of production of molecules with antagonistic
activity, diffusion of these molecules and cell motility are likely
forces participating in the process.
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