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Bacteria are essential components of all natural and many engineered systems. The
most active fractions of bacteria are now recognized to occur as biofilms, where cells
are attached and surrounded by a secreted matrix of “sticky” extracellular polymeric
substances. Recent investigations have established that significant accumulation
of nanoparticles (NPs) occurs in aquatic biofilms. These studies point to the
emerging roles of biofilms for influencing partitioning and possibly transformations
of NPs in both natural and engineered systems. While attached biofilms are
efficient “sponges” for NPs, efforts to elucidate the fundamental mechanisms
guiding interactions between NPs and biofilms have just begun. In this mini
review, special attention is focused on NP–biofilm interactions within the aquatic
environment. We highlight key physical, chemical, and biological processes that affect
interactions and accumulation of NPs by bacterial biofilms. We posit that these
biofilm processes present the likely possibility for unique biological and chemical
transformations of NPs. Ultimately, the environmental fate of NPs is influenced by
biofilms, and therefore requires a more in-depth understanding of their fundamental
properties.

Keywords: nanoparticle–biofilm interactions, extracellular polymeric substances, protein corona, pore space,
surface forces, biofilm matrix

Introduction: Important Properties of the Biofilm
Microenvironment in the Bigger Picture

Microbial biofilms are an omnipresent component in many environments supporting life. Hence,
the multifaceted roles of biofilms in the sequestration, accumulation, transformation, and trophic
transfer of environmental contaminants have been a subject of much study and controversy. A
biofilm is, in its simplest form, a collection of surface-attached microbial cells that are surrounded
by a matrix of extracellular polymers. The inherent properties and physical structure of biofilms
resemble that of a sorptive sponge capable of capturing various chemical and biological components
in their vicinity. Natural and engineered systems that are significantly impacted by biofilms include
soil mineral surfaces, microbial mats, wastewater treatment, and biofouling of ships and pipes. These
will not be addressed further here. Rather, this review focuses on the mechanistic interactions
of bacterial biofilm with natural and synthetic nanoparticles (NPs); an emerging concern in both
the environment and health. Such NP–biofilm interactions within the aquatic environment are
highlighted.
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Nanoparticle–Biofilm Interactions

It is now recognized that environmental biofilms are efficient
binding matrices for NPs (Battin et al., 2009; Ferry et al.,
2009; Nevius et al., 2012; Kroll et al., 2014), and this can be
attributed largely to the extracellular polymeric substances (EPS)
that hold biofilms together (Flemming and Wingender, 2010;
Nevius et al., 2012). Recent studies have shown that significant
accumulations of NPs occurred in biofilms of riverine- and
marine-mesocosms (Battin et al., 2009; Ferry et al., 2009). When
gold nanorods (65 nm× 15 nm)were added to amarine/estuarine
mesocosm containing sediments, seagrass, bivalves, shrimp, and
plankton, the nanorods were most strongly bioconcentrated by
microbial biofilms with their bioconcentration accounting for
greater than 60% of the added nanorods (Ferry et al., 2009).
Similar bioconcentration was found in riverine mesocosms using
20 nm TiO2 NPs (Battin et al., 2009). These initial studies point
to an important role of biofilms for influencing environmental
partitioning of NPs within natural systems. In retrospect, this is
not surprising since biofilms are efficient chelators for physical-
trapping and binding of dissolved and colloidal forms of metals
and organic matter in a wide range of systems such as wastewater
treatment (Wuertz et al., 2000; Hu et al., 2005; Hawari and
Mulligan, 2006), drinking-water filtration (Lehtola et al., 2004;
Berry et al., 2006), and marine and freshwater systems (Schlekat
et al., 1998; Decho, 2000; Battin et al., 2009). As the research
focus on NP–biofilm interactions is still in its early stages, this
mini review is designed to provide a brief overview of published
studies and some insights into future directions to improve
our understanding of the mechanisms and the bigger-picture
implications of these interactions.

The interactions between NPs and the biofilm can be viewed
as a three-step process: (1) transport of NPs to the vicinity of the
biofilm; (2) attachment to the biofilm surface; and (3) migration
within thebiofilm (Figure1).At eachof these steps, the interactions
are a complex interplay of a myriad of factors including, but not
limited to, NP characteristics, the physicochemical and biological
makeupof the biofilmmatrix, and environmental parameters such
as water chemistry, flow, and temperature. The effects of various
environmental parameters on the fate ofNPshave been extensively
studied and reviewed in detail (e.g., Petosa et al., 2010; Levard
et al., 2012). Similarly, many biofilm researchers have studied
how environmental parameters influence biofilms (as reviewed by,
e.g., Sutherland, 2001; Karatan and Watnick, 2009). For example,
the effects of ionic strength of the aqueous environment on both
NPs (e.g., NPs aggregate as ionic strength increases) and biofilms
(e.g., pore sizes change with different ionic strengths) are well
documented. While such parameters are likely to have direct or
indirect impacts, studies that thoroughly examine their influence
on NP–biofilm interactions are currently lacking. Rather, the
following sections aim to highlight the currently known NP and
biofilm factors that have a critical impact on their interactions.

Impact of NP Characteristics on NP–Biofilm
Interactions
Engineered and naturally forming NPs can vary widely in their
physicochemical characteristics such as shape, size, and charge

FIGURE 1 | The three steps involved in NP–biofilm interactions: (1)
transport of NPs to the vicinity of the biofilm, (2) initial deposition of
NPs onto the biofilm surface, and (3) migration of NPs into deeper
areas of the biofilm. NPs may also interact directly with cell surfaces within
the biofilm matrix.

(Hochella et al., 2008; Petosa et al., 2010). As discussed in the
following section, these NP characteristics have been reported to
impact their interactions with biofilm-coated surfaces at all three
steps of the interactions. NP transport through the water column
has been studied extensively (Lecoanet and Wiesner, 2004; Jaisi
et al., 2008; Phenrat et al., 2009) and is primarily a function of
various NP characteristics and water chemistry conditions; these
bulk-phase transport phenomena will not be discussed in length
here. Instead, this section will focus on the NP characteristics that
influence the small-scale interactions in the proximity of biofilm
surfaces including transport and attachment.

Surface modification of NPs, through ligand capping during
synthesis or post-synthesis passive sorption of organic molecules,
plays a critical role in NP–biofilm interactions. In fact, pure
and single-component NPs are rare or non-existent in the
environment. Engineered NPs are typically functionalized by
specific organic ligands for a variety of target applications.
When these capped NPs are being used or released in various
environments, they are often subjected to further modifications
in an uncontrollable manner by passive sorption of different
organic molecules (e.g., proteins and polysaccharides). Dawson
and colleagues introduced the concept of the “protein corona”
as an important entity for NPs interacting with the external
environment (Cedervall et al., 2007; Lynch et al., 2009; Walczyk
et al., 2010). The corona is a temporally evolving collection of
organic molecules that associate with NPs. Though these initial
studies focused on proteins, recent investigations have expanded
the concept of the “corona” to include other biomolecules
as well as proteins (Monopoli et al., 2012). When a NP
with an organic corona approaches a surface, proteins and
other biomolecules that reside long enough on the NP surface
will mediate subsequent interactions. These biomolecule–NP
interactions are highlighted particularly in nanomedicine as a
biofunctionalization mechanism. In environmental systems, a
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corona-like coating is also likely to form around NPs; in this case,
the organic molecules in the corona are expected to primarily
consist of components of natural organic matter (NOM). The
organic corona as well as other organic coatings of NPs are
likely to have significant impacts on NP–biofilm interactions.
For example, cadmium selenide quantum dots (QDs) conjugated
with polyethylene glycol were found to penetrate more easily into
Pseudomonas aeruginosa PAO1 biofilms than QDs having surface
carboxyl (–COOH) groups (Morrow et al., 2010). In another
study, incubation of Pseudomonas fluorescens biofilms with silver
NPs pre-exposed to NOM was shown to result in greater cell
viability compared to silver NPs without NOM exposure (Wirth
et al., 2012), suggesting that the NOM-based corona associated
with the NPs had a mitigating effect on silver toxicity.

The charge and size of NPs also affect NP–biofilm interactions.
In the case of fluorescent polystyrene NPs, surface sulfate (SO4−)
groups on NPs resulted in greater sorption onto Alteromonas
macleodii biofilms compared to NPs functionalized with amine
(–NH) or carboxyl groups (Nevius et al., 2012). Both the size and
charge of silver NPs were reported to be important in modulating
their transport within P. fluorescens biofilms with their self-
diffusion coefficients decreasing with increasing size and negative
charge (Peulen and Wilkinson, 2011). This effect of NP size was
also dependent on the density of the biofilmwithNP self-diffusion
becoming severely limited when the size was larger than 50 nm
only in dense biofilms. Electrostatic (not steric) forces were shown
to control the diffusion of positively and negatively charged latex
beads (∼28 nm) in biofilms having relatively low (Lactococcus
lactis) and high (Stenotrophomonas maltophilia) EPS contents
(Guiot et al., 2002). Furthermore, particle size, charge, and particle
surface chemistry may collectively affect the fate and transport
of NPs in biofilm-coated porous media (Tripathi et al., 2012).
While it is clear that NP characteristics influence NP–biofilm
interactions, these interactions involve a highly complex interplay
of such characteristics as well as biofilm features.

Impact of Biofilm Matrix Chemistry on
NP–Biofilm Interactions
The EPS matrix is the primary emergent property of the
biofilm (Flemming and Wingender, 2010). Once NPs reach the
water–biofilm interface, the physicochemical matrix of EPS has
direct implications on both the initial attachment of NPs onto
the biofilm surface and their subsequent movement into the
biofilm matrix. The EPS matrix is physicochemically complex
and extremely heterogeneous over small spatial scales (e.g.,
micrometers; Lawrence et al., 2007). It can be thought of as a 3D
filter, which surrounds biofilm cells and forms a dynamic trapping
network for organic molecules and ions, and NPs, and consists of
an interlinked network of polymer molecules, many of which are
charged.

The density of EPS depends upon its local concentration, but
also the charges andnumber of linkages between adjacent polymer
chains. Although the EPS matrix is usually highly hydrated (often
99 % wt/wt), most of the water is not bound to EPS but rather is
localized in pore spaces between adjacent polymer chains (Schmitt
et al., 1995). These physicochemical features of EPS significantly
impact NP–biofilm interactions. Of particular interest is how

different molecules within the EPS matrix influences the initial
deposition and continued accumulation of NPs. EPS are a
complex array of polysaccharides, proteins, lipids, and even
nucleic acids (Whitchurch et al., 2002; Flemming and Wingender,
2010). Functional group moieties on individual EPS molecules
have varying potentials to bind ions, charged molecules, and
NPs (Braissant et al., 2009). The nature of linkages between
an EPS functional group(s) and the sorbed moiety (e.g., NPs),
therefore, can result in binding with different affinities during
initial deposition and subsequent accumulation.

While the initial attachment of NPs onto the outermost surface
of biofilms may be influenced by a variety of physicochemical
interactions, the specifics of these interfacial NP–biofilm
interactions are largely unknown. A recent study by our
laboratory showed that surfaces coated with polysaccharides, a
major component of EPS, significantly affected the deposition
of iron oxide NPs (hematite, α-Fe2O3) NPs (Ikuma et al.,
2014). Different physicochemical features of surface-adsorbed
polysaccharides, particularly surface charge heterogeneity,
resulted in varying degrees of NP deposition due to changes in
electrostatic interactions (see Liang et al., 2007 for a review of
intermolecular forces). These observations strongly indicate that,
unsurprisingly, not all polysaccharides (or any other group of
EPS components) are equal for NPs, and thus, simple chemical
characterization of the biofilm matrix into groups such as
polysaccharides and proteins may not provide the necessary
information for assessing the likelihood of the occurrence of
NP–biofilm interactions. Electrostatic forces were also implicated
as an important mechanism for deposition of TiO2 NPs onto
synthetic biofilms (Sahle-Demessie and Tadesse, 2011) and for
fullerene (C60) NPs onto surfaces coated with EPS extracted
from Escherichia coli (Tong et al., 2010). On the other hand,
polymer-mediated steric interactions were suggested as a
dominant force for the attachment of poly(acrylic acid)-stabilized
zerovalent iron NPs onto biofilm-coated porous media (Lerner
et al., 2012). While this observation was based on NPs with
polymer coatings, steric interactions are likely to be important in
NP–biofilm interactions in the aquatic environment due to the
polymeric natures of biofilms, and NPs coated with an organic
corona. In addition, other potential interaction forces involved
in NP deposition onto biofilm surfaces can be inferred from
recent studies showing NP attachment to surfaces coated with
organic compounds. For example, NOM has been extensively
documented to adsorb to various NPs through combinations
of many forces such as electrostatic, steric, and hydrophobic
interactions (e.g., Hyung et al., 2007; Pelley and Tufenkji, 2008;
Stankus et al., 2011).

Once a NP binds to EPS, it can subsequently migrate deeper
into the EPS matrix. NP penetration into and movement within
the biofilm is considered to be driven primarily by diffusion
(Peulen and Wilkinson, 2011). In this case, diffusion of NPs into
the biofilm may depend on the pore sizes of the biofilm (Sahle-
Demessie and Tadesse, 2011), the charge of both the NPs and the
biofilm matrix (Peulen and Wilkinson, 2011), hydrophobicity of
the surrounding environment (Habimana et al., 2011), and the
chemical gradient within the matrix. The EPS matrix pore-spaces
(containing water) between adjacent molecules can vary in size.
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Ions and organicmolecules diffuse and penetrate into a biofilm by
moving (i.e., diffusing) through these pore-spaces. This presents
the likely possibility that the EPS pore-spacing will be especially
important in this process. This nanoscale variability, however, is
poorly characterized and understood.

While accumulation of NPs within biofilms results from initial
attachment and migration of NPs, these two processes need not
always occur sequentially. It is likely that more NPs are depositing
onto the outermost surface simultaneously as other NPs are
penetrating into the biofilm matrix and vice versa. Another
possible mechanism that contributes to NP accumulation within
the matrix is the active outgrowth of the biofilm, forming new
layers above the surface-deposited NPs. In such cases, penetration
of NPs into the biofilm matrix is not necessary to occur for
accumulation to take place. However, differentiation between
these different processes would be a difficult task in practice.
All three are likely to occur in the complex and dynamic
environments where biofilms naturally occur. Most recent studies
on NP–biofilm interactions have examined either the combined
effects of initial surface NP deposition and penetration into the
biofilm (Morrow et al., 2010; Habimana et al., 2011; Peulen and
Wilkinson, 2011) or all three steps of NP–biofilm interactions
outlined above in Section “Nanoparticle–Biofilm Interactions”
(transport, attachment, migration; Fabrega et al., 2009; Choi et al.,
2010). Overall, the migration of NPs into the 3D matrix of the
biofilm is the least understood step of NP–biofilm interactions.

Fate of Nanoparticles Within Biofilms

Accumulation of NPs within biofilms has been previously
documented (Ferry et al., 2009; Fabrega et al., 2011). Is the biofilm
a “sink” for concentrating NPs from the overlying water? This is
not likely to be the case. A final point here is that since biofilms and
their associated EPS are readily consumed by grazing animals (see
Decho, 1990, 2000, for reviews), the biofilm presents a potentially
efficient vehicle for the trophic-transfer of NPs to food webs.
However, the exact fate of the NPs within biofilms is not clear.

Behavior of Nanoparticles Upon Accumulation
One questionwe could ask is whether theNPs stay nano-sized and
as particles. Given the right conditions, NPs will easily aggregate
to form micro-size agglomerates. As shown by Choi et al. (2010),
nanosilver that is introduced into E. coli biofilms were shown to
aggregate to a larger degree than in planktonic cultures, possibly
due to differences in ionic strength used in the experiments. On
the other hand, organic ligands, including some that are found in
EPS, typically stabilize NPs against aggregation, suggesting that
NPs that enter the biofilm matrix as monomers may indeed stay
as such within the biofilm. Another potential outcome of NP
accumulation is NP dissolution as the NPs may be surrounded by
enzymes and other organic matter that speed up those processes.
This may especially be an important outcome for metallic NPs.
Carbon-based NPs may undergo different changes in biofilms
compared tometallic NPs. For example, microbial transformation
of carbon-based NPs has been documented (Chae et al., 2014),
which may also occur in the biofilm if the NPs are in contact with
cells.

The EPS matrix is the primary emergent- and adaptive-
property of the microbial cells forming a biofilm (Flemming
and Wingender, 2010). Therefore, the matrix may potentially
change in response to the presence of NPs. NP effects on biofilm
microorganisms are likely to be dependent on the type of NP
that is accumulated. For example, in the case of nanosilver or
otherNPswith antibacterial effects, cells could be severely stressed
or directly killed as the concentration of NPs embedded in the
biofilm increase. However, these antibacterial effects of nanosilver
appeared to be considerably lower on cells in biofilms compared
to planktonic cells (Choi et al., 2010). Other antibacterial NPs are
designed to overcome such barriers; for example, Hetrick et al.
(2009) developed nitric oxide-releasing silica NPs that do not
rely on direct NP–cell contact, and hence, appeared to be highly
effective at controlling pathogenic biofilm growth. The targeted
use of NPs for biofilm control has been studied extensively by
medical and dental as well as biofouling researchers and has
been reviewed in detail (Allaker, 2010; Sousa et al., 2011; Natalio
et al., 2012). Furthermore, nanosilver has been shown to affect
the microbial community in wastewater biofilms (Sheng and Liu,
2011). These changes in the microbial community structure were
mainly attributed to the antibacterial effects of nanosilver and
the differences in tolerance levels across bacterial species. On the
other hand, evenNPs that have no antibacterial effectsmay induce
shifts in the biofilmmicrobial community possibly due to changes
in nutrient availability or chemical gradient within the biofilm
matrix (Fabrega et al., 2011).

Formation of NPs Within Biofilms
The potential of biofilms to act as a factory for NP production
has been increasingly recognized in both natural and engineered
systems. Natural biofilms play a critical role in the biogeochemical
cycling of elements which can lead to NP formation. For
example, microbes precipitate metals in the form of NPs as a
detoxification mechanism. Reith et al. (2006, 2010) have shown
that gold dissolution and re-precipitation of nanoparticulate
gold is directly coupled with biofilms on gold grain surfaces.
Biofilms dominated by sulfate reducing bacteria were found to
be responsible for the formation of zinc sulfide NPs (Labrenz
et al., 2000; Labrenz and Banfield, 2004). As the number
of such biofilm-mediated NP formation studies increases, the
use of biofilms in the synthesis of nanomaterials is becoming
popular for its relatively clean, non-toxic, and environmentally
benign procedures (Mandal et al., 2006). For example, an
electrochemically active biofilmwas being utilized as a catalyst for
extracellular production of monodispersed crystalline silver NPs
(Kalathil et al., 2011).

Conclusions and Future
Directions—Environmental Implications

There has been significant progress in understanding the
micro- and nano-scale complexity within biofilms. Despite
their complexity, it is now possible to experimentally examine
the nature of NP interactions and penetration into biofilms.
The ability to understand these fundamental and decisive
processes can be approached using carefully controlled laboratory
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manipulations of EPS and NPs. Recent development of
surface-sensitive techniques, high-resolution microscopies, and
synchrotron-based spectroscopies provide powerful tools to
promote an integrated approach to understanding NP–biofilm
interactions. Multi-scale computational modeling efforts will
be useful in complementing empirical data and enhancing
the predictability of NP behavior within the biofilm matrix.
Ultimately, improving our mechanistic understanding of

NP–biofilm interactions will enable better risk assessment of
nanotechnology as well as sustainable design of NPs.
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