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Multi-color imaging of the bacterial
nucleoid and division proteins with
blue, orange, and near-infrared
fluorescent proteins
Fabai Wu, Erwin Van Rijn, Bas G. C. Van Schie, Juan E. Keymer† and Cees Dekker*

Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, Netherlands

Studies of the spatiotemporal protein dynamics within live bacterial cells impose a strong
demand for multi-color imaging. Despite the increasingly large collection of fluorescent
protein (FP) variants engineered to date, only a few of these were successfully applied in
bacteria. Here, we explore the performance of recently engineered variants with the blue
(TagBFP), orange (TagRFP-T, mKO2), and far-red (mKate2) spectral colors by tagging
HU, LacI, MinD, and FtsZ for visualizing the nucleoid and the cell division process.
We find that, these FPs outperformed previous versions in terms of brightness and
photostability at their respective spectral range, both when expressed as cytosolic label
and when fused to native proteins. As this indicates that their folding is sufficiently
fast, these proteins thus successfully expand the applicable spectra for multi-color
imaging in bacteria. A near-infrared protein (eqFP670) is found to be the most red-
shifted protein applicable to bacteria so far, with brightness and photostability that are
advantageous for cell-body imaging, such as in microfluidic devices. Despite the multiple
advantages, we also report the alarming observation that TagBFP directly interacts with
TagRFP-T, causing interference of localization patterns between their fusion proteins.
Our application of diverse FPs for endogenous tagging provides guidelines for future
engineering of fluorescent fusions in bacteria, specifically: (1) The performance of newly
developed FPs should be quantified in vivo for their introduction into bacteria; (2) spectral
crosstalk and inter-variant interactions between FPs should be carefully examined for
multi-color imaging; and (3) successful genomic fusion to the 5′-end of a gene strongly
depends on the translational read-through of the inserted coding sequence.

Keywords: fluorescent proteins, bacterial cell division, bacterial chromosome, MinD, HU, FtsZ, TagRFP-T, TagBFP

Introduction

The use of fluorescent proteins (FPs) has greatly advanced our understanding of the subcellular
architecture of bacteria. Soon after the first cloning of the green fluorescence protein (gfp) gene
from Aequorea victoria (Prasher et al., 1992) and its first application as fluorescence marker in
vivo (Chalfie et al., 1994), it was successfully adopted to visualize essential proteins involved
in cell division and division-site selection in bacteria, such as FtsZ/FtsA (Ma et al., 1996) and
MinE/MinD/MinC (Raskin and de Boer, 1997, 1999; Hu and Lutkenhaus, 1999). The results from
these studies planted the significant notion that the intracellular environment of bacteria is not
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only structured, but also extremely dynamic. Other hallmarks
include cytoskeletal filaments responsible for cell shape
maintenance (Jones et al., 2001; Ausmees et al., 2003;
Domínguez-Escobar et al., 2011; Garner et al., 2011; van
Teeffelen et al., 2011), and polarly localized proteins involved
in chemotaxis, virulence and metabolism (Sourjik and Berg,
2000; Charles et al., 2001; Lindner et al., 2008; Li and Young,
2012). Recently, several large fluorescent-fusion libraries
have been constructed for Escherichia coli and Caulobacter
crescentus, allowing genome-scale, quantitative studies of protein
localization, which is especially powerful when accompanied by
the development of a quantitative analysis toolbox (Kitagawa
et al., 2006; Werner et al., 2009; Taniguchi et al., 2010; Kuwada
et al., 2015).

Two decades of efforts have expanded the spectrum of
FPs to a full range, showing strong promise for multi-color
imaging. However, the application of many FPs for live cell
imaging of bacteria have been hindered by various factors. Most
prominently, the fast synthesis and degradation of protein in
bacteria (in contrast to eukaryotes) demands fast-folding of FPs.
This is clearly indicated by the fact that mutations improving the
folding properties of EGFP generation (which resulted in SBFP2,
SCPF3A, SGFP2, and SYFP2), enhanced their effective brightness
by several folds in bacteria, while this was much less the case
when expressed in mammalian cells (Kremers et al., 2006, 2007).
Also, the orange FPs mOrange and mKO were not visible in
live E. coli due to slow maturation, with the latter only visible
after an overnight incubation after fixation (Alexeeva et al., 2010).
The fast-folding properties of some FPs such as Venus, mCherry,
and sfGFP have shown advantages for functional fusions (Osawa
and Erickson, 2005; Bendezú et al., 2009; Dinh and Bernhardt,
2011), and have been broadly used. On the other hand, these fast-
folding FPs do not always provide the native protein localization
patterns (Landgraf et al., 2012). Furthermore, the degree of
oligomerization, the brightness, the photostability, as well as the

spectral separation between FPs are properties no less essential for
successful capture of native events at the demanded spatial and
temporal resolution. However, thus far, these factors have been
barely quantified in live bacteria.

Here, we set out to expand the spectrum of FPs for live cell
imaging in E. coli by labeling the cytosol, the nucleoid, as well as
the division proteins. HU-2, encoded by hupA gene, is a subunit
of nucleoid-associated proteins HU, which serves as a marker for
the nucleoid that was previously shown to colocalize with DAPI
when fused to GFP (Wery et al., 2001). Fluorescently labeled LacI
has been used as an operator-repressor system to label specific
genomic loci by targeting repeated lacO sequences (Lau et al.,
2003). Combining the HU-2 and LacI labels allows us to localize a
genomic locus in the context of the global nucleoid structure. For
imaging division, we focus on FtsZ proteins, which polymerize
to initiate a cytokinetic ring, and whose localization is regulated
by the nucleoid and MinCDE proteins (Ma et al., 1996; Hu and
Lutkenhaus, 1999; Raskin and de Boer, 1999; Bailey et al., 2014;
Du and Lutkenhaus, 2014). To visualize the latter, we constructed
a fusion gene at the endogenous minD locus for expressing
sfGFP-MinD proteins, which oscillate between the two cell halves
of the rod-shape E. coli and form a time-averaged concentration
gradient that have a maxima at the cell poles and minimum at the
mid-cell (Raskin and de Boer, 1999).

Expanding from the FPs derived from jellyfish A. victoria, we
examine the performances of the monomeric FPs at the blue
(TagBFP), orange (TagRFP-T and mKO2), far red (mKate2), and
near-infrared (dimeric eqFP670) spectral colors. All FPs used in
this study are listed in Table 1. The latter proteins are derivatives
of the FPs from the sea anemone Entacmaea quadricolor and
Fungia concinna, known for their brightness, photostability, and
relatively fast maturation (Shaner et al., 2008; Subach et al., 2008;
Shcherbo et al., 2009, 2010; Sun et al., 2009; Morozova et al.,
2010). By quantitatively comparing the brightness, photostability,
and spectral properties of these proteins to other proteins with

TABLE 1 | Properties of the fluorescent proteins (FPs) used in this study.

FP∗ λex (nm) λem (nm) QY EC Brightness Oligomerization Reference Codon

EBFP2 383 448 0.56 32000 18 Monomer Ai et al. (2007) n.a.

SBFP2 383 448 0.47 34000 16 Monomer Kremers et al. (2007) n.a.

TagBFP 402 457 0.63 52000 32.8 Monomer Subach et al. (2008) Mammal

mCerulean 433 475 0.62 43000 26.7 Monomer Rizzo et al. (2004) n.a.

TagCFP 458 480 0.57 37000 21 Monomer Evrogen Mammal

TagGFP2 483 506 0.6 56500 33.9 Monomer Evrogen Mammal

sfGFP 485 510 0.65 83300 54.1 Monomer Pedelacq et al. (2006) Bacteria

TagYFP 508 524 0.62 50000 31 Monomer Evrogen Mammal

mYPet 517 530 0.77 104000 80.1 Monomer Nguyen and Daugherty (2005) n.a.

mKO2 551 565 0.62 63800 39.6 Monomer Lee et al. (2013) Yeast

TagRFP-T 555 584 0.41 81000 33.2 Monomer Shaner et al. (2008) Mammal

mCherry 587 610 0.22 72000 15.8 Monomer Shaner et al. (2004) n.a.

mKate2 588 633 0.4 62500 25 Monomer Shcherbo et al. (2009) Mammal

eqFP670 605 670 0.06 15700 0.9 Dimer Shcherbo et al. (2010) Mammal

TagRFP657 611 657 0.1 34000 3.4 Monomer Morozova et al. (2010) Bacteria

*The properties are: λex/λem , wavelengths for excitation/emission maxima; QE, quantum yield; EC, extinction coefficient; brightness are calculated from QE and EC;
reported oligomerization property; and codon usage for the versions used in this study.
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the same spectral colors, we find that these proteins function
well as cytosolic labels and/or C-terminal tags, and that they
provide strong advantages in brightness, photostability, and
spectral separation compared to other FPs that are currently in
use for bacteria. Furthermore, our approach to tag the minD
gene at its endogenous locus revealed a detrimental effect of the
coding sequence on N-terminal fusions. Finally, we combined
these FP tags in bacterial strains to assess their suitability for
multi-color imaging. Together, Our data provide guidelines for
an optimal strategy in choosing new FPs for multi-color imaging
in bacteria.

Materials and Methods

Plasmid and Strain Construction
The plasmids were constructed using Gateway cloning kit
(Invitrogen, catalog # 11789013, 11791019) and Infusion EcoDry
kits (Clonetech, catalog # 638912), Coding sequences of tagYFP,
tagGFP2, tagRFP-T, ebfp2, tagBFP, hupA, minDE, and aph frt
were respectively amplified from the pTagYFP-C1, pTagGFP2-
C1, pTagRFP-T, pBAD-EBFP, pTagBFP-C1, W3110 genome,
W3110 genome, and pKD13, and inserted into the Gateway
entry vectors through BP reactions as described in the Gateway
protocol. These and previously described entry vectors in
Wu et al. (2015) were then combined through Gateway LR
reaction to produce destination vectors pERB006, pFWB007,
pBVS32, pFWB009, pBVS36, and pBVS37. For constructing
pFWM006, we amplified the backbone of pBVS3 with Plac
and aph, the hupA fragment from pFWB006, and the mKO2
fragment from pyomKO2, and combined these into one plasmid
through a three-fragments Infusion reaction. For construction
of pFWM007, we amplified the backbone of pBVS3 with Plac
and aph, the hupA fragment from pFWB006, and the sBFP2
fragment from pSBFP2-C1, and combined these into one plasmid
through a three-fragment Infusion reaction. Plasmid pFWZ7
was constructed through an ligation reaction (Infusion kit) with
four PCR-amplified fragments, which were the backbone of
pFB174 with arabinose promoter and chloramphenicol resistance
gene, an ftsZ (5′ sequence, 1–999 bp) fragment with an 18
base overhang coding the flexible linker GSGSGS, a GGSGSS
flexible linker plus ftsZ (3′ sequence, 991–1052 bp) plus aph frt
sequence amplified from strain FW1370, two synthesized oligos
containing the tetracysteine (TC) peptide coding sequence and
the two flanking flexible linkers. The TC coding sequence was
then replaced by tagRFP-T, sfGFP, and tagCFP to produce plasmid
pFWZ4, pFWZ5, and pFWZ6 through two-fragment Infusion
reactions. pFWZ0 was constructed through Gibson assembly of
pFB174 backbone and the ftsZ::aph frt sequence amplified from
strain FW1370. All plasmids are listed in Table 2.

The genomic insertions were constructed using λ Red
recombination (Datsenko and Wanner, 2000) and shuffled
between strains using P1 transduction as described previously
(Wu et al., 2015). The PCR fragments from plasmids pERB006,
pFWM007, pFWB006, pBVS32, pFW009, pFWM006, pBVS3,
and pBVS4 were electroporated into the electro-competent cells
of W3110 containing pKD46, to result in strains FW1722,

TABLE 2 | Plasmids used in this study.

Plasmids Descriptions Reference

pKD13 aph frt (AmpR) Datsenko and
Wanner (2000)

pKD46 Para::gam bet exo (AmpR) Datsenko and
Wanner (2000)

pCP20 Pr-flp (AmpR CmR) Datsenko and
Wanner (2000)

pDonR P4-P1R Gateway plasmid entry 1 Invitrogen

pDonR 211 Gateway plasmid entry 2 Invitrogen

pDonR P2R-P3 Gateway plasmid entry 3 Invitrogen

pDEST R4-R3 Gateway destination vector Invitrogen

pTagBFP-C1 Pcmv::TagBFP (KanR) Evrogen

pTagCFP-C1 Pcmv::TagCFP (KanR) Evrogen

pTagYFP-C1 Pcmv::TagYFP (KanR) Evrogen

pTagGFP2-C1 Pcmv::TagGFP2 (KanR) Evrogen

pmKate2-C1 Pcmv::mKate2 (KanR) Evrogen

pTagRFP-T PT7::tagRFP-T (AmpR) Shaner et al. (2008)

pNirFP-N1 Pcmv::eqFP670 (KanR) Evrogen

pBAD-EBFP2 Para::ebfp2-6xhis (AmpR) Addgene, Michael
Davidson

pSBFP2-C1 Pcmv::sbfp2 (AmpR) Kremers et al.
(2007)

pyomKO2 pFA6a-link-yomKO2 (KanR) Lee et al. (2013)

pFX40 Plac::yfp-minD minE (AmpR) Shih et al. (2002)

pKD3ftsQAZ PftsQAZ (AmpR) Dai and
Lutkenhaus (1991)

pFB174 Para::mreBCD (CmR) Bendezú and de
Boer (2008)

pBVS3 Plac::yfp-minD minE::aph frt (KanR,
AmpR)

Wu et al. (2015)

pBVS4 Plac::sfgfp-minD minE::aph frt (KanR,
AmpR)

Wu et al. (2015)

pERA001 Gateway destination vector with Prha

(TetR)
This work

pERB006 pERA001::hupA-ebfp2::aph frt (KanR,
AmpR)

This work

pFWM007 Plac::hupA-sbfp2::aph frt (KanR,
AmpR)

This work

pFWB006 pDEST::hupA-tagBFP::aph frt (KanR,
AmpR)

This work

pBVS32 pDEST::leuB’-Pj23100::tagRFP-
T::aph frt-leuB”
(KanR, AmpR)

This work

pEcTagRFP657 E. coli codon-optimized TagRFP657
gene

This work

pERB004 pERA001::leuB’-
Pj23100::tagRFP657::aph frt-leuB”
(KanR, TetR)

This work

pERB005 pERA001::Pt7::tagRFP657::aph frt
(KanR,TetR)

This work

pFWB009 pDEST::hupA-tagRFP-T::aph frt
(KanR, AmpR)

This work

pFWM006 Plac::hupA-mKO2::aph frt (KanR,
AmpR)

This work

pFWB019 pDEST::hupA-mKate2::aph frt (KanR,
AmpR)

This work

(Continued)
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TABLE 2 | Continued

Plasmids Descriptions Reference

pBVS36 pDEST:: TagYFP-MinDE::aph frt
(KanR, AmpR)

This work

pBVS37 pDEST:: TagGFP2-MinDE::aph frt
(KanR, AmpR)

This work

pFWZ0 Para::ftsZ::aph frt (KanR, CmR) This work

pFWZ4 Para::ftsZswtagRFP-T::aph frt (KanR,
CmR)

This work

pFWZ5 Para::ftsZswsfGFP::aph frt (KanR,
CmR)

This work

pFWZ6 Para::ftsZswtagCFP::aph frt (KanR,
CmR)

This work

pFWZ7 Para::ftsZswTC::aph frt (KanR, CmR) This work

FW1951 and FW1344, FW1401, FW1464, FW2455, FW1462,
FW1534. The PCR fragments of pFWM007, pFWM006, and
pFWB019 were amplified to replace the mCherry in strain
RRL189 through λ Red recombination to result in strains
FW1965, FW2417, and FW2450. The PCR fragments of pBVS3,
pBVS36, and pBVS37 were used to replace the �minD minE::cat
sacB in strain FW1363 through λ Red recombination to result in
strains FW1480, FW1248, FW1393. Note that in strain FW1363
the minC gene is intact. The above listed strains were cured
of kanamycin resistance using pCP20 as described in Datsenko
and Wanner (2000), and listed in Table 2. To confirm the
functionality of YFP-MinD, Plac::yfp-minDE was transduced
from FW1462 into FW1363 to yield strain FW1463. For multi-
color imaging, hupA-tagBFP from FW1344 was transduced into
strain FW1554 to yield 1561; �leuB::eqFP670 was transduced
from FW1489 into FW1554 to yield FW1559; �leuB::tagRFP-T
was transduced from FW1401 into FW1359 to yield FW1406;
hupA-mYPet from FW1551 was transduced into a strain with
aph cured from FW1965 to yield FW2480; Plac::yfp-minDE was
transduced from FW1462 into FW1459 to yield strain FW1503;
pFWZ4 was transformed into strain FW1559. All strains used are
listed in Table 3.

Growth Conditions
For genetic engineering, E. coli cells were incubated in Lysogeny
broth (LB) supplemented, when required, with 100 μg/ml
ampicillin (Sigma-Aldrich), 50 μg/ml kanamycin (Sigma-
Aldrich), or 34 μg/ml chloramphenicol (Sigma-Aldrich) for
plasmid selection, or with 25 μg/ml kanamycin, 20 μg/ml
chloramphenicol, or 0.2% sucrose for selection of the genomic
insertions of gene cassettes. For imaging strains with fluorescent
foci with LacI fusions, we grew cells in liquid M9 minimum
medium (Fluka Analytical) supplemented with 2 mM MgSO4,
0.1 mMCaCl2, 0.4% glycerol (Sigma-Aldrich), and 0.01% protein
hydrolysate amicase (PHA; Fluka Analytical). For imaging other
strains, we grew cells either in liquid M9 minimum medium
supplemented with 2 mM MgSO4, 0.1 mM CaCl2, 0.4% glucose
(Sigma-Aldrich), and 0.25% PHA, or in LBmedium. For imaging,
overnight cultures were back diluted into the fresh medium
described above to an OD (600 nm, same below) of 0.01 in falcon
tubes until an OD of 0.4–0.6 for M9 medium with 0.25% PHA

TABLE 3 | Bacterial strains used in this study.

Strains Descriptions Reference

W3110 F-, lambda-, IN(rrnD-rrnE)1, rph-1 Hayashi et al.
(2006)

FW1363 W3110, �minD minE::sacB cat Wu et al. (2015)

FW1247 W3110, �leuB::Pj23100
tagBFP::aph frt

Wu et al. (2015)

FW1268 W3110, �leuB::Pj23100 tagBFP::frt This work

FW1722 W3110, hupA-ebfp2::aph frt This work

FW2486 W3110, hupA-ebfp2::frt This work

FW1951 W3110, hupA-sbfp2::aph frt This work

FW2485 W3110, hupA-sbfp2::frt This work

FW1344 W3110, hupA-tagBFP::aph frt This work

FW1359 W3110, hupA-tagBFP::frt This work

FW1561 W3110, �minD
minE::exorbs2-sfgfp-minD minE::frt,
hupA-tagbfp::aph frt

This work

RRL189 AB1157, ori1::lacOx240::hygR,
ter3::tetOx240::accC1
�galK::tetR-mCerulean::frt,
�leuB::lacI-mCherry::frt

Reyes-Lamothe
et al. (2008)

FW1965 AB1157, ori1::lacOx240::hygR,
ter3::tetOx240::accC1
�galK::tetR-mCerulean::frt,
�leuB::lacI-sbfp2::aph frt

This work

FW1551 W3110, hupA-mYPet::aph frt This work

FW2480 AB1157, ori1::lacOx240::hygR,
ter3::tetOx240::accC1
�galK::tetR-mCerulean::frt,
�leuB::lacI-sbfp2::frt,
hupA-mYpet::aph frt

This work

FW1401 W3110, �leuB::Pj23100
tagRFP-T::aph frt

This work

FW1459 W3110, �leuB::Pj23100
tagRFP-T::frt

This work

FW1489 W3110, �leuB::Pj23100
eqFP670::aph frt

Wu et al. (2015)

FW2095 W3110, �leuB::Pj23100
eqFP670::frt

This work

FW1464 W3110, hupA-tagRFP-T::aph frt This work

FW1495 W3110, hupA-tagRFP-T::frt This work

FW2455 W3110, hupA-mKO2::aph frt This work

FW2495 W3110, hupA-mKO2::frt This work

FW2417 AB1157, ori1::lacOx240::hygR,
ter3::tetOx240::accC1
�galK::tetR-mCerulean::frt,
�leuB::lacI-mKate2::aph frt

This work

FW2450 AB1157, ori1::lacOx240::hygR,
ter3::tetOx240::accC1
�galK::tetR-mCerulean::frt,
�leuB::lacI-mKO2::aph frt

This work

FW1248 W3110, �minD minE::tagYFP-minD
minE::aph frt

This work

FW1393 W3110, �minD
minE::tagGFP2-minD minE::aph frt

This work

BN1406 W3110, hupA-tagBFP::frt,
�leuB::Pj23100 tagRFP-T::aph frt

This work

FW1480 W3110, �minD minE::yfp-minD
minE::aph frt

This work

(Continued)
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TABLE 3 | Continued

Strains Descriptions Reference

FW1462 W3110, �lacZYA::rbsexo1-yfp-minD
minE::aph frt

This work

FW1463 W3110, �minD minE::sacB cat,
�lacZYA::rbsexo1-yfp-minD
minE::aph frt

This work

FW1503 W3110, �leuB::Pj23100 tagRFP::frt,
�lacZYA::rbsexo1-yfp-minD
minE::aph frt

This work

FW1534 W3110, �lacZYA::rbsexo2-sfGFP-
minD minE::aph
frt

This work

FW1537 W3110, �minD
minE::rbsexo2-sfGFP-minD
minE::aph frt

This work

FW1541 W3110, �minD
minE::rbsendo-sfgfp-minD minE::aph
frt

Wu et al. (2015)

FW1554 W3110, �minD
minE::rbsexo2-sfgfp-minD minE::frt

This work

FW1559 W3110, �minD
minE::rbsexo2-sfgfp-minD minE::frt,
�leuB::eqFP670::aph frt

This work

FW1370 W3110, ftsZ::aph frt::envA This work

JKD7-1 W3110, �ftsZ::aph Dai and
Lutkenhaus (1991)

and LB, and OD of 0.1 for M9 medium with 0.01% PHA. The
growth conditions for the FtsZ complementation assay are as
described in Osawa and Erickson (2005). 0.002% arabinose was
used for the induction of ectopic FtsZswTagRFP-T fusion from
the plasmids in the presence of the endogenous ftsZ.

Microscopy
Fluorescence imaging was carried out using Nikon Ti-E
microscope with 100X CFI Apo TIRF objective with an NA
of 1.49. All fluorescent probes were excited using a Nikon
Intensilight, except for the photo-bleaching of lacI foci, which
was excited by SpectraX LED single-spectrum light sources
(Lumencor) with SpectraX filter sets (Lumencor). For imaging
with Nikon Intensilight, the λex/λbs/λem wavelengths of the
filter cubes are as follows: SBFP2 and EBFP2 (363–391/425/435–
485 nm), TagBFP (395–415/420/435–485 nm), mCerulean
(426–446/455/460–500 nm), sfGFP (450–490/495/500–550 nm),
mYpet and FlAsH (490–510/515/520–550 nm), TagRFP-T and
mKO2 (530–560/562/570–620 nm), mCherry and mKate2 (540–
580/585/592–668 nm), eqFP670 (589–625/649/655–1200 nm).
For imaging with SpectraX, the excitation filters for orange and
red proteins are respectively 555/25 nm (center/width, same
below) and 575/22 nm. The multiband emission filters are
respectively 435/26 – 510/40 – 595/40 – 705/72 nm, and 465/25 –
545/30 – 630/60 nm. The fluorescence signal was recorded by an
Andor EMCCD camera (iXon Ultra 885), with an EM gain of 100.
While our emission filter for the eqFP670 extends to the infrared
region, eqFP670 does not fluoresce beyond 850 nm, which is well-
within the detection range for most EMCCD cameras, including
the one used in this study.

Image Analysis
Analysis of fluorescent microscopy images was carried out using
Matlab with our customized programs. The background intensity
was subtracted for all images individually. For identification of
fluorescent LacI foci or nucleoid, the images were Gaussian
blurred for subtraction, and a threshold for the expected object
size and intensity was applied to eliminate noise. The intensities
of the identified objects were then collected for statistics.
For the photobleaching data, the mean per-pixel intensity of
each nucleoid was calculated independently. To compare the
photostability of more than two FPs in the main figure, the total
intensities of all identified objects were summed and divided by
the total number of pixel for all found objects in the first image,
in order to take the completely bleached objects at the later stage
of the bleaching period into account. In the latter case, the sum
fluorescence intensity of the FPs in individual objects was plotted
only in the supplementary figures. The standard deviation values
of the intensities were not shown in the main figures for the
convenience of display, and are instead plotted in supplementary
figures. The matlab scripts used for these measurements can be
found at http://ceesdekkerlab.tudelft.nl/downloads/.

The signal-to-noise ratio (SNR) of the cytosolic FPs is
calculated using SNRcell = (Icell-Ibg)/SDbg. We use the standard
deviation value of the cell-free region as a measure of background
noise (SDbg).We use the difference between the mean intensity of
a cell (Icell) and the mean background intensity (Ibg) as a measure
of signal. The mean and SD values of the SNR calculated from all
cells are used for plotting.

Results

A Bright Blue Fluorescent Protein for
Multi-Color Imaging in Bacteria
The blue variants of the fluorescent proteins (BFPs) have seen
few applications in bacteria due to their low brightness and
short excitation wavelength (see Table 1). In principle, if a BFP
would be sufficiently bright, it can be imaged with excitation
light that is weak enough to avoid photodamage to the cells.
It was recently reported that the purified monomeric mTagBFP
(commercial name TagBFP) has a brightness that is similar to
EGFP and 1.8 times that of EBFP2 (Subach et al., 2008). To
examine its performance in bacteria, we first transformed a high-
copy plasmid carrying the tagBFP gene under a T3 promoter into
an E. coli strain, and indeed we observed bright blue fluorescence
upon excitation through a customized filter set in a Nikon
Intensilight. Furthermore, we engineered a new construct into
the leuB locus in the E. coli genome, yielding strain FW1268,
where the expression of tagBFP gene is driven by a synthetic
constitutive promoter and a synthetic ribosome-binding site
(RBS). The fluorescence signal of the expressed TagBFP is indeed
sufficient for full cell labeling of bacteria (Figure 1A), indicating
that TagBFPmay have the brightness andmaturation rate suitable
for labeling proteins expressed at their endogenous level.

To compare the performance of TagBFP to other BFP variants
as fluorescent tags in bacteria, we fused either tagBFP, eBFP2, or
sBFP2 genes to the 3′-end of the endogenous hupA gene, and
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FIGURE 1 | Bright blue fluorescent proteins for multi-color imaging in
bacteria. (A) TagBFP is bright when expressed from a genomic copy under a
constitutive promoter for cytosolic label in live Escherichia coli cell.
(B) Fluorescent images of HU-2 tagged by three blue fluorescent protein (BFP)
variants in live E. coli during exponential growth. (C) Brightness and
photostability of HU-TagBFP and HU-SBFP2 in live E. coli cells under the
constant exposure to the Nikon Intensilight with the respective filter sets. Each
line represents the average intensity of one nucleoid. The index n indicates the
numbers of nucleoids examined. The vertical lines indicate the bleaching
halftime. (D) Excitation spectra of SBFP2, TagBFP, and Cerulean (a CFP), and
the ranges of bandpass filters (shown in color) used for the excitation of blue,

cyan, green, and yellow FPs. Note that different filters were used for SBFP2 and
TagBFP due to their different excitation peak. (E) Emission spectra of SBFP2,
TagBFP, and Cerulean, and the ranges of bandpass filters used for collecting the
fluorescent light emitted by blue, cyan, green, and yellow FPs. (F) Endogenous
fusions HU-TagBFP and sfGFP-MinD are combined for dual-color imaging.
From left to right: a HU-TagBFP image, an sfGFP-MinD time series, a per-pixel
standard deviation (SD) image of sfGFP-MinD calculated over time, and a
false-color overlay of HU2-TagBFP and sfGFP-MinD. (G) Three-colors imaging
of chromosome and chromosomal loci using HU2 label and two
operator-repressor systems. Shown are three individual images followed by an
overlay of the latter two, and an extra example. All scale bars indicate 5 μm.

examined their performance (Figures 1B,C). For imaging, we
used two customized filter sets for the different excitation peaks
of the EBFP2/SBFP2 (379 nm) and TagBFP (402 nm; Figure 1D),
and the same emission filter (Figure 1E). Importantly, direct FP
fusions to the C-termini of genes at their endogenous loci have
been confirmed to maintain the endogenous expression level of
these genes (Taniguchi et al., 2010).

HU-TagBFP outperforms HU-EBFP2 and HU-SBFP2 to a
surprising extent in live bacteria, as shown in Figure 1B. It
shows a 20 times higher fluorescence intensity than HU-SBFP2,
showing clear chromosome morphologies for 200 ms exposure
to half of the maximum excitation intensity provided by Nikon
Intensilight. Note that the intensities of the Intensilight do
vary for the different spectral range. Unexpectedly, HU-SBFP2
was threefold brighter in the stationary growth phase, despite
that HU-2 was shown to be four times more abundant in the
exponential phase (Ali Azam et al., 1999). Such an increase
in brightness in the stationary phase was not observed in any
of the other HU-2 fluorescent fusions. We hypothesize that

the increase in brightness is due to a slower turnover of HU-
SBFP2 proteins at stationary phase, allowing the proteins to
successfully mature and fluoresce. Next to their higher brightness,
the HU-TagBFP also shows superior photostability. The above
constructs were used to compare the photostability of HU-
TagBFP and HU-SBFP2 under the constant exposure to the
same excitation light as imaged for Figure 1B. HU-TagBFP
showed a bleaching half-time of 18 s, in contrast to the 6-
s half-time for HU-SBFP2, see Figure 1C. In other words,
the fluorescence signal of HU-TagBFP would only drop 50%
after acquiring 90 images with the settings for Figure 1B.
The initial intensity of the 196 nucleoids is measured to
equal 2671 ± 354 (mean ± SD, a.u.), i.e., the HU-TagBFP
concentration has a standard deviation that is only 13% of the
mean value across the cell population during exponential growth
in LB.

TagBFP’s excitation/emission spectra are well-separable from
green and yellow fluorescent proteins (GFPs and YFPs) for multi-
color imaging (Figures 1D,E). Taking advantage of the narrow
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excitation profile of TagBFP and its excitation peak at 402 nm,
we customized a filter set to maximize the excitation efficiency
and to collect the majority of the emitted light (Figures 1D,E).
This filter set can be combined with regular commercial filter sets
for GFP or YFP for two-colors imaging. Here, we illustrate such a
combination by transducing the endogenous hupA-tagBFP fusion
construct into a strain with a bright endogenous sfGFP-minD
fusion (for details see Figure 4), yielding strain FW1561. Shown
in Figure 1F, these two fluorescent probes successfully captured
both the localizations of the nucleoids and the MinD oscillations,
which together define the mid-cell for the localization of the
cytokinesis machinery.

A potential combination of BFPs with cyan fluorescent
proteins (CFPs) can further increase the options for multi-color
imaging. Despite the higher brightness of TagBFP compared
to SBFP2, it has more spectral overlap with CFP and thus
is found less suitable for this application. As shown in
Figures 1D,E, SBFP2 can be well-separated from common
CFPs through customized filters, whereas the overlap between
TagBFP and the CFPs is larger. Note that our current emission
filter range for SBFP2 can be further adjusted to a 410–
460 nm range to avoid crosstalk with CFPs. The combination
of SBFP2 and SCFP3A was previously shown in Hela cells,
where SBFP2 was highly expressed in the cytosol (Kremers
et al., 2007). However, the limited subsequent usage in bacteria
and our not fully satisfactory results for the HU-SBFP2 fusion
lowered our expectations for the extent of its applications.
Nevertheless, we suggest that, SBFP2 may find its application
in protein co-localization studies if the morphology is not
overly complicated. Here, for example, we replaced the mCherry
in a LacI fusion (strain RRL189 Reyes-Lamothe et al., 2008),
resulting in a LacI-SBFP2 fusion that targets the 240 lacO
repeats in the origin region of the E. coli genome (strain
FW1965). In this strain, the expression of the LacI-SBFP2 is
constitutive. We found that it can be co-imaged with ter foci
label TetR-mCerulean (cyan) and chromosome label HupA-
mYpet (yellow; strain FW2480) (Figure 1G). Notably, the
LacI-SBFP2 foci are much dimmer than the original LacI-
mCherry fusion, requiring 2-s exposure time with Nikon
Intensilight, thus less suitable for time-lapse imaging in
dynamics studies. Alternatively, Everogen has produced TagCFP
(Ex/Em = 457/480 nm) which can be combined with TagBFP,
but we did not persue this route due to its potential spectral
crosstalk with YFPs, and that our FtsZ-TagCFP fusion did not
fluoresce.

Bright and Photostable Fluorescent Proteins in
the Orange-Red, Far-Red, and Near-Infrared
Spectral Range
By applying the same procedure above to characterize the
performance of TagRFP-T and eqFP670 (commercial name
NirFP) as cytosolic labels, we found that they perform superiorly
in brightness and photostability for the orange and near-infrared
spectral range, respectively (Figure 2A). Despite the fact that
these two proteins are excited with long-wavelength and hence
less phototoxic compared to GFP, frequent time-lapse imaging
of strains FW1459 and FW2095, with the same setting for

Figure 2A at a frame rate of 5 s for 5 min did lead to
cell growth arrest although no significant photobleaching was
observed (data not shown), indicating that the photostability is
not a limiting factor for imaging live cells using these FPs. Note
that this is an overexposure test for whether the photostability is
sufficiently high when imaging is carried out at a lower rate where
photodamage is avoided. The trade-off between photodamage,
fluorescence signal, and temporal resolution requires moderation
of the settings to specific cases.

Notably, despite the fact that the near-infrared dimer eqFP670
was reported to have a brightness that is only 8% of EGFP as
well as a modest maturation speed (Shcherbo et al., 2010), we
were able to visualize the cells using either a regular far-red filter
set or a customized near-infrared filter set (Figures 2B,C). This
is largely owing to the almost full collection of far-red emission
lights, while a smaller part of the emitted light is collected for
the other proteins to avoid cross-talk. By contrast, a monomeric
derivative TagRFP657 (excitation/emission peaks at 611/657 nm),
which was produced for flow cytometer applications is not visible
in our constructs even when placed under either the same
synthetic promoter as above or a T7 promoter in a plasmid
with pBR322 origin (pERB004 and pERB005). This agrees with
the invisibility of TagRFP657 in a previous attempt in yeast
(Lee et al., 2013). These facts thus make eqFP670 the most
red-shifted protein applicable to bacteria so far, although we
note that it’s dimeric property limits its application for protein
fusions.

TagRFP-T and eqFP670 have the spectral properties that allow
multi-color imaging at the red-shifted spectral range. While
TagRFP-T has been reported as a red FP, its excitation and
emission spectra are more blue shifted compared to conventional
RFPs such as mCherry (Shaner et al., 2008). By comparing
the spectral data of TagRFP-T and eqFP670, we propose that
TagRFP-T can be imaged solely at the orange spectral range for
excellent separation from GFPs/YFPs as well as from eqFP670,
provided that latter is imaged at the near-infrared spectral range
(Figures 2B,C). These customized filter sets allow us to measure
the relative brightness of the two proteins in live cells (as shown
in Figure 2A) from yellow to near-infrared spectral region
(Figure 2D). Both TagRFP-T and eqFP670 are invisible with a
YFP filter, while they show an equal brightness when imaged with
a regular far-red filter used for mCherry. As expected from the
spectral data, TagRFP-T does not show any bleed-through into
the near-infrared spectral range. In the orange spectral range,
TagRFP-T exhibits an over 10 times higher signal-to-noise ratio
than the small bleed-through signal from eqFP670. The bleed-
through from the eqFP670 into the orange spectral range is
difficult to avoid due to the long tail of its excitation spectrum
into the shorter wavelength. From these data, we conclude that
the combination of TagRFP-T and eqFP670 is excellent for
multi-color imaging at the orange and near-infrared spectral
range.

As TagRFP-T was reported to be the most photostable FP
at the red-shifted spectrum (Shaner et al., 2008), we set out to
examine its performance as a fluorescent tag in live bacteria. We
fused the 3′-end of hupA gene to tagRFP-T as well as to another
recently reported FP gene, mKO2, which is expected to encode
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FIGURE 2 | Bright and photostable fluorescent proteins in the
orange-red, far-red, and near-infrared spectral range. (A) E. coli showing
the fluorescence of cytosolic TagRFP-T (using orange filter set) and cytosolic
eqFP670 (using near-infrared filter set) when expressed from a genomic copy
under a constitutive promoter for cell body label in live E. coli. Scale bars, 5 μm.
(B,C) Excitation and emission spectra of TagRFP-T and eqFP670, and the
ranges of bandpass filters for the excitation and emission at yellow, orange,
far-red, and near-infrared spectral range. These spectral ranges are as specified
in the methods section for mYpet, TagRFP-T, mCherry, and eqFP670. The
dotted regions indicate far-red filters. (D) Signal-to-noise ratios of TagRFP-T
(black bar) and eqFP670 (gray bar) expressed in the strains shown in (A), when
imaged with different filter cubes shown in (B,C). Here, the noise is defined by
the standard deviation of the background intensity, and the signal is the
difference between the fluorescence intensity of the cell and the mean
background intensity. (E) Photobleaching of HU-mKO2 and HU-TagRFP-T in live
E. coli cells under the constant exposure to the Nikon Intensilight at different
power as indicated with the orange filter set. Inset shows a false-color image of
nucleoids labeled by HU-TagRFP-T. Vertical lines indicate the bleaching halftime.

(F) Photobleaching of chromosomal ori foci (Ori1::lacOx240) labeled by
LacI-mcherry, LacI-mKate2, and LacI-mKO2 under the constant exposure to
the SpectraX LED light source (1/4 power) with far-red or orange filter sets. The
intensity values are the mean intensities of all the loci, i.e., the total intensity of
detected loci divided by the initial number of detected loci. The indicated
numbers for each probe are, respectively, the excitation wavelength and the
number of spots measured. The inset shows a fluorescence image of the
lacI-mKO2 foci. Vertical lines indicate the bleaching halftime. (G–I) Effect of
microstructures made from different materials on the single-cell identifications in
bright-field imaging (top panels) and using fluorescent microscopy of cytosolic
labels (bottom panels). (G) E. coli cells in agarose-based microstructures, as
described in Takeuchi et al. (2005). (H) E. coli cells between PDMS structures
and an agarose pad, as described in Wu et al. (2015). (I) E. coli cells between
silicon structures and PDMS, as described in Männik et al. (2012). The E. coli
cells in (G–I) are strain BN1590 and fluorescent imaging was done in the
near-infrared channel. The bright-field images in (G,H) were obtained through
phase-contrast microscopy, whereas in (I) it was a regular wide-field image
obtained through reflective light. Scale bar is 5 μm.

a bright, fast-folding orange/red FP (Figure 2E). Indeed, these
two fluorescent probes show excellent brightness as an HU-2
tag in live bacteria, clearly improving the performance of orange
proteins mKO and mOrange, which were previously shown to
be invisible in live cells as fluorescent tags to FtsZ (Alexeeva
et al., 2010). Under the same microscope and camera settings,
HU-mKO2 appear to be 2.2 times as bright as TagRFP-T, but
15 times less photostable (Figure 2E, Supplementary Figure S1).
Even when the exposure of HU-mKO2 was tuned to result in the
same initial intensity as HU-TagRFP-T, it showed a 17-s bleaching
half-time, in contrast to the 102 s for TagRFP-T. Thus, comparing
these two proteins, mKO2 is more suitable for imaging proteins at

low abundance, whereas TagRFP-T is more suitable for long-term
time-lapse imaging.

Besides TagRFP-T and eqFP670, a far-red monomeric FP
mKate2 was derived from the same origin. It showed more
emission at the far-red spectral range and 57% higher brightness
than mCherry (Shcherbo et al., 2009). Its photostability was
shown to be similar to mCherry for purified proteins and 2.5-
fold enhanced when expressed in yeast after codon optimization
(Shcherbo et al., 2009; Lee et al., 2013). Here, we compare
its brightness and photostability in bacteria by replacing the
lacI-mCherry construct in strain RRL189 (see above for LacI-
SBFP2 fusion) with lacI-mKate2. Shown in Figure 2F, the average
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intensity of the fluorescent foci of LacI-mKate2 is 25% enhanced
with the same excitation/emission filters as compared to regular
far-red proteins. The photostability of the two proteins is similar.
In both cases after 300 s of exposure, 95% of all spots were
still detectable through our automated software, showing that
LacI-mCherry or LacI-mKate2 are both excellent candidates for
operator-repressor system in time-lapse imaging. Furthermore,
we engineered a LacI-mKO2 fusion based on strain RL189, and
its foci are five times brighter in the orange spectral range than in
the red spectral range (Figure 2F, Supplementary Figure S2). The
photobleaching half-time of LacI-mKO2 is, however, 2.5 times
shorter at the orange spectral range, likely due to the strong light
absorbance.

Our comparison between all the orange-red and far-red
fluorescent fusion tested here shows that TagRFP-T is indeed
superior in photostability, agreeing with the quantitative data
from the purified proteins and from fluorescent fusions in yeast
(Shaner et al., 2008; Lee et al., 2013). Its far-red derivative mKate2
is indeed brighter than mChrrey in bacteria, but less significantly
as previously reported in purified form and as fusion tag in
yeast, which can be resulted from a slower maturation of mKate2
compared to mCherry.

Expanding the spectral range of fluorescence proteins
for cytosolic label is also advantageous for studies using
microstructures. Microstructures and microfluidics are emerging
tools for studying bacterial physiology (Wang et al., 2010;Männik
et al., 2012; Hol and Dekker, 2014; Wu et al., 2015). While these
tools provide many advantages in manipulating the chemical and
physical environment, they can impose challenges for imaging.
In particular, the materials for the confining microstructures
can make a great difference for visualizing cell body without
fluorescence. For example, the structures made from agarose
gel are transparent and allow phase contrast microscopy to
visualize cell boundaries, owing to the fact that an agarose gel
has lower refractive index (1.33, same as water) than bacteria
(∼1.4; Figure 2G). By contrast, polydimethylsiloxane (PDMS),
the most commonly used polymer for microfluidic applications,
has a reflective index of around 1.4, which is almost identical
to that of a bacterial cell. When imaging bacteria in between
PDMS structures and agarose, the cell boundaries display much
less contrast (Figure 2H). This type of interference between the
microfluidic channel boundary and the bacterial boundary is
evenworsened for PDMS–PDMS interfaces. Furthermore, silicon
structures are non-transparent, thus only allowing bright-field
or DIC microscopy, in reflection rather than transmission, and
bacteria in ∼micron-sized channels are difficult to distinguish
(Figure 2I). In all these scenarios, the availability of cytosolic
labels at the near-infrared (eqFP670) spectral range becomes
particularly useful as a third or fourth color (Figures 2G–I,
bottom panels).

A Bright and Photostable FtsZswTagRFP-T
Fusion for Multi-Color Imaging of Cell Division
As shown above, TagRFP-T can be spectrally well-separable from
the near-infrared protein eqFP670 as well as from GFPs/YFPs.
This can potentially lead to three-colors imaging at the long-
wavelength regime, where phototoxicity can be reduced by

avoiding near-UV excitations (such as necessary for CFPs or
BFPs). Such an approach is in fact essential when frequent
time-lapse imaging is required for tracking dynamic protein
localizations over long time. Here, we describe the construction
of new FtsZ and MinD fusions for time-lapse imaging of division
site selection in E. coli with high temporal resolution.

An FtsZ molecule has a globular structure composed of
independently folded N-terminal and C-terminal domains both
essential for polymerization, followed by an unstructured flexible
linker, and a conserved C-terminal tail responsible for interacting
with its membrane-bound partners FtsA and ZipA as well
as lateral interactions between FtsZ polymers (Figure 3A;
Oliva et al., 2004; Osawa and Erickson, 2005; Shen and
Lutkenhaus, 2009; Erickson et al., 2010; Buske and Levin,
2013). Biochemical and genetic studies also indicated that the
C-terminal tail is the primary target of two negative regulators
of FtsZ polymerization, MinC and SlmA (Shen and Lutkenhaus,
2009; Du and Lutkenhaus, 2014). So far, none of the realized
fluorescent fusions of FtsZ have been shown to be fully functional,
indicating that both the C-terminal tail and the globular domain
are sensitive to spatial perturbations. Two close-to-functional
examples are an EYFP-FtsZ fusion at temperatures below 28◦C
though with a very small fraction of cleaved FtsZ (Alexeeva et al.,
2010), and an FtsZswVenus fusion (where Venus is inserted into
the unstructured linker region of FtsZ) that rescued FtsZ deletion
at 42◦C after several rounds of passage likely involving mutations
in the genome (Osawa and Erickson, 2005).

Since directed replacement and random insertion assays both
indicated that the unstructured linker region of FtsZ can be
perturbed to some extent (Osawa and Erickson, 2005; Buske
and Levin, 2013), we set out to probe the possibilities of
inserting other fluorescent tags at the amino acid 333 of FtsZ
by adopting the strains and selection processes for FtsZswVenus
(see Osawa and Erickson, 2005 and Materials and Methods;
Figure 3A). We hoped that a FP derived from another origin
could perform differently during the folding of the sandwich
fusion, thus have potential to success in sandwich fusion. In
order to confirm the suitability of the custom-designed flexible
linkers and insertion site, we first inserted a tetracysteine
(TC) sequence (FLNCCPGCCVEP) flanked by the short flexible
linkers (GSGSGS-TC-GGSGSS) into the ftsZ gene, yielding
pFWZ7. This TC tag can later be labeled by Fluorescein Arsenical
Hairpin (FlAsH; Griffin et al., 1998). When induced with 0.2%
arabinose, the construct pFWZ7 was able to both co-exist with
the native FtsZ, and rescue the lethal effect of FtsZ deletion
(Figure 3B). Under this growth condition, however, the �ftsZ
strain with pFWZ7 always showed a significant fraction of
filamentous cells (30% in biomass). To label the FtsZswTC with
the FlAsH dye, we optimized the protocol for live cell staining
in E. coli. By incubating an exponentially growing bacterial
culture in LB with 2 μM FlAsH dye for 3 h followed by a
gentle wash step with EDT2 buffer, we were able to observe the
fluorescence of Z-rings localizing at the cell middle in the regular
rod-shaped cells (Figure 3B). By contrast, the filamentous cells
show patches of fluorescence over the whole cell body, indicating
that the filamentation is mainly caused by the overproduction
of FtsZswTC, which disrupted the ratio between FtsA and FtsZ.
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FIGURE 3 | Multi-color imaging of cell division at the green, yellow,
orange, and near-infrared spectral range. (A) A sandwich fusion strategy
for labeling FtsZ and the effectiveness of using various fluorescent tags or
proteins. These fluorescent probes were inserted within the flexible linker
between the extreme C-terminal tail of FtsZ that is responsible for the direct
interactions with FtsA, ZipA, MinC and SlmA, and the globular structure
responsible for polymerization. (B) Fluorescence microscopy images of a
strain expressing FtsZswTC labeled by the FlAsH dye (in green). The top four
cells show regular rod-shaped cells (cell boundary shown in gray scale) with
central Z-ring (green), while the bottom one is part of a filamentous cell in
the same culture showing overexpressed FtsZ fusion proteins (green). (C) A
combination of near infrared, orange-red and green FPs for three-colors
imaging (strain FW1559 with pFWZ4, induced with 0.0002% arabinose). The
FtsZswTagRFP-T was expressed from an ectopic copy under the arabinose
promoter PBAD. (D) Time-lapse images showing the dynamics of

FtsZswTagRFP-T and sfGFP-MinD in an elongated cell (strain FW1554 with
pFWZ4, induced with 0.0002% arabinose) treated with cephalexin. Blue
arrows show stable Z-rings; white arrows indicate the locations where FtsZ
proteins polymerize and depolymerize. All scale bars indicate 5 μm.
(E) Schematic and table showing the effectiveness of the fluorescent labeling
of MinD at different genomic loci with different promoters and RBSs. Note
that for simplicity, the RBSs of MinC and MinE are not shown. P, promoter;
ATG, start codon; the white box denotes the RBS; exo, exogenous; endo,
endogenous. (F) Fluorescent images of strain FW1503 co-expressing
cytosolic TagRFP-T and YFP-MinD used in a cell shaping experiment, where
single cells grow into the shapes of nanofabricated chambers, as described
in Wu et al. (2015). This shows that orange-red and yellow FPs can be
combined for multi-color imaging. The bottom left show cytosolic eqFP670
fluorescence and the top right images are YFP-MinD standard-deviation
image calculated from the 25 images taken in 2 min.

It was shown previously that an overexpression of only FtsZ
or only FtsA can lead to a filamentous phenotype (Dai and
Lutkenhaus, 1992). In order to confirm that filamentation is
caused by an incorrect protein expression level, we engineered
pFWZ0 (Para::ftsZ) and transformed into the �ftsZ strain, which
rescued the cell growth upon induction but also showed a similar
morphological heterogeneity. We were, however, unable to
reduce the proportion of filamentous cells by lowering arabinose
concentration, likely due to the inherent all-or-none expression
pattern of PBAD promoter. Because the FlAsH tag showed very

weak fluorescence and poor photostability, we did not proceed
further to optimize the construct for homogeneous induction or
insertion into the genome.

We further replaced the TC peptide in the pFWZ7 construct
with sfGFP, TagRFP-T, and TagCFP, which are derived from
three different protein origins (Figure 3A). The FtsZswsfGFP
and FtsZswTagRFP-T were able to form fluorescent Z-rings with
or without the existence of native, untagged FtsZ, but they
were not able to rescue the lethal effect of FtsZ deletion. The
FtsZswTagCFP, on the other hand, did not fluoresce and was not

Frontiers in Microbiology | www.frontiersin.org 10 June 2015 | Volume 6 | Article 607

http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/
http://www.frontiersin.org/Microbiology/archive


Wu et al. New fluorescent proteins for bacteria

FIGURE 4 | HU-TagBFP interferes with the localizations of TagRFP-T
and FtsZswTagRFP-T. (A) False-color images of the individual fluorescent
fusions. (B) The recruitment of both the FtsZswTagRFP-T and cytosolic
TagRFP-T by the HU-TagBFP to the nucleoid, when these probes were
combined. Scale bar at the top left indicates 5 μm.

investigated further. Nevertheless, the former two constructs can
serve as alternative ectopic FtsZ probes in addition to the existing
ones.

The FtsZswTagRFP-T is bright and photostable, and can
be combined with eqFP670 and sfGFP-MinD for three-colors
imaging (Figure 3C). The superior brightness and photostability
of both FtsZswTagRFP-T and sfGFP-MinD allowed us to probe
the dynamic relations between the localization of FtsZ and MinD
with a frame rate of 1–4 s for 2 min. Figure 3D shows that FtsZ
filaments can be assembled and disassembled within a time frame
of 20–30 s, in a pattern which anti-correlates with sfGFP-MinD
localization patterns. Besides the above-mentioned advantages,
the use of FtsZswTagRFP-T also results in less phototoxicity
due to its long excitation/emission wavelength, in contrast to
the previous YFP-MinD/FtsZ-CFP combination (Shih et al.,
2005).

The Endogenous minD Fusion Reveals the
Importance of Codon-Dependent Translational
Read-Through for N-Terminal Fusions
Min proteins in E. coli oscillate between the two cell poles,
forming a time-averaged concentration gradient of MinC, an
FtsZ antagonist, with a minimum at the cell middle to allow
Z-ring formation (Figure 1F). Without the Min system, E. coli
often divide asymmetrically, producing anucleated minicells. The
Min operon is composed of minC, minD, and minE genes which
are positioned sequentially in the genome, with one promoter
in front of MinC that drives the transcription of all three genes,
and another promoter embedded in the minC gene to only drive
MinD and MinE expression (de Boer et al., 1989; Figure 3E).
Co-transcription of minD and minE ensures the ratio of their
protein products to be rather constant, which is essential for
the localization patterns of all Min proteins. Previously, gfp-
minDE and yfp-minDE constructs were shown to be able to

complement the �minDE phenotype when placed under the
lac promoter in medium copy plasmids and induced with low
concentrations of IPTG (Raskin and de Boer, 1999; Shih et al.,
2002). These constructs were widely used for studying the Min
protein dynamics. However, it is difficult to match inducible
expression to native protein levels at all physiological conditions,
and the lac promoter is known to show inhomogeneity and leaky
expression.

We set out to engineer a strain where the expression of a
MinD fusion will be driven by the endogenous promoter and
RBS such that the expression level of the fusion will most closely
reflect the native status (Figure 3E; Wu et al., 2015). We first
constructed a few N-terminal minD fusion constructs that are
followed by the minE gene and a kanamycin resistance gene.
The tags are TagYFP and TagGFP2, purchased from Evrogen for
their claimed photostability and fast-folding property, and YFP,
from the original construct mentioned above. Unfortunately,
when inserted into the min locus replacing a �minDE::sacB-
cat cassette, none of them resulted in a strain that showed
fluorescence, and only TagYFP-MinD appeared to be functional
in complementing the minicell phenotype. The non-functional
endogenous yfp-minD fusion must be caused by an insufficient
expression level rather than the functionality of the fusion
proteins, since YFP-MinD fusion was proven functional and
fluorescent when expressed from a plasmid. On the other hand,
TagYFP-MinD appeared to be expressed and functional but do
not fluoresce. We next inserted the Plac::yfp-minDE construct
and a new Plac::sfGFP-minDE construct into the genomic lac
operon, keeping the RBS from the original plasmids, and these
cells showed YFP-MinD/sfGFP-MinD oscillations, when induced
using 15 μM IPTG in both wild-type and �minDE background.
The sfGFP used here is a codon-optimized version. This further
confirms that the difficulty in the endogenous fusion of minD is
caused by the translational read-through when the endogenous
minD RBS is combined with the other FP genes.

To test whether the endogenous minD RBS can be functional
when combined with codon-optimized version of the sfGFP gene,
we first replaced the RBS of the Plac::sfGFP-MinD construct
with the minD RBS, which successfully result in sfGFP-MinD
oscillations under IPTG induction. Finally, we replaced the
�minDE::sacB-cat region with the sfGFP-minDE construct either
with only the endogenous minD RBS or with an exogenous
RBS from the plasmid behind the endogenous minD RBS. Both
strains appeared to completely rescue the minicell phenotype
(Figure 3E). The sfGFP-MinD fusion under the endogenous RBS
was expressed at a level almost identical to the wild-type (Wu
et al., 2015).

The endogenous fusion of the sfGFP-minD, in combination
with cytosolic eqFP670 label, allowed us to study the Min pattern
formation in diverse cell shapes defined by microstructures (Wu
et al., 2015). By inoculating the E. coli cells into microchambers,
we were able to mold them into defined shapes across a large
range of sizes. Studying sfGFP-MinD oscillation patterns in these
cells revealed thatMin proteins are able to orient their oscillations
according to the symmetry and scale of the cell boundary,
and scale their concentration gradients with the cell dimension
within a length range of 3–6 microns (Wu et al., 2015). Here,
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we show that also the ectopically expressed YFP-MinD fusion
(in a wild-type minDE+ background, strain FW1503) can be
combined with cytosolic TagRFP-T (strain FW1503) for the same
applications, yielding the same localization patterns as sfGFP-
MinD (Figure 3F). This confirms that the effect of symmetry
and scale on the Min pattern formation is intrinsic and not
dependent on the FPs, and verifies that the previous studies with
modest YFP-MinD levels indeed represent well the native Min
protein behavior. However, strain FW1503 appeared to be more
sensitive to osmotic shock due to unknown reasons and thus less
suitable for quantitative studies or for producing cells larger than
4.5 μm × 4.5 μm × 1 μm using the same shaping method.

TagBFP Directly Interacts with TagRFP-T
From the characteristics of all FPs above, we expected
that TagBFP and TagRFP-T would be excellent, mutually
exclusive partners for multi-color imaging, in combination
with the broadly available bright GFPs/YFPs variants. Thus,
we transformed pFWZ4 (FtsZswTagRFP-T) into strain FW1359
for co-imaging of FtsZ and chromosome. To our surprise,
we observed patchy blobs in the orange channel, which
colocalize with the fluorescence signals from the TagBFP
channel (Figure 4). It appears that the HU-TagBFP recruites
FtsZswTagRFP-T to the nucleoid. To confirm such a strong
interaction between TagBFP with TagRFP-T, we transduced a
tagRFP-T cassette into strain FW1359, and found that HU-
TagBFP is also able to recruit the freely diffusing cytosolic
TagRFP-T molecules to the nucleoid (Figure 4). Moreover,
this recruitment induced elongated cell morphology and
chromosome-segregation defects (Figure 4).

Discussion

We have introduced recently developed blue (TagBFP), orange
(TagRFP-T and mKO2), red (mKate2), and near-infrared FPs
(eqFP670) into localization studies in bacteria. These proteins
generally showed the superior brightness and photostability
in bacteria, consistent with previous reports of their in vitro
behavior. This indicates that their folding properties are not
the limiting factor for their general application in bacteria,
contrasting earlier versions of proteins in the blue and orange
spectral range, such as EBFP2 and mOrange. The near-infrared
protein eqFP670 exhibited a strong brightness under our imaging
conditions, presenting itself as an excellent candidate for cell body
labeling for long-term and/or frequent imaging. Its extremely
far-red excitation at 610 nm can minimize phototoxicity during
imaging compared to all other FPs presented here. The addition
of these FPs now leads to the ability to re-shuffle optimal
choices of fluorescent probes in vivo for various combinations
of colors. At the far-red spectral range, mKate2 showed a 25%
improvement over mCherry. Since the latter is often chosen for
its super-fast folding property, it is yet to be determined whether
mKate2 and TagRFP-T can outperform mCherry in all aspects,
such as for tagging periplasmic proteins.

For single-color imaging with high temporal resolution,
TagRFP-T appears to be an excellent probe for bacterial studies.

Besides its extremely strong photostability, it is excited with
a much longer wavelength compared to the common GFPs.
Using TagRFP-T reduces the phototoxicity compared to GFPs,
allowing imaging at higher frequency and intensity. Adding to
a previous study which successfully used its ancestor TagRPF
as N-terminal tag (Alexeeva et al., 2010), we showed here that
the brightness and photostability of TagRF-T is not perturbed by
fusions to proteins either in the middle or at their C terminus,
thus proving that TagRFP-T can be generally applicable in protein
fusions.

For two-colors imaging, we have shown that a combination
of TagRFP-T and sfGFP can allow imaging at high frequency
without significant photobleaching. For three-colors protein
tagging, TagBFP/GFP/mKO2 can be a good alternative to the
commonly used set of CFP/YFP/mCherry. In particular, cyan
FPs are mostly dimmer and less photostable than GFPs, whereas
TagBFP is a fast-folding, bright and photostable variant. However,
we note that the excitation spectrum of TagBFP is closer to
the UV range compare to that of CFPs, which imposes a trade
off between brightness and phototoxicity in time-lapse imaging.
When a fourth color is required, one can add eqFP670 to the
former combination (Table 4), whereas SBFP2 can supplement
the latter. However, eqFP670 is a dimer, and thus often unsuitable
for protein tagging, while SBFP2 shows a very low brightness,
thus requiring either high expression levels, or strong excitation
at around 380 nm.

For five-colors imaging, it is possible to combine
SBFP2/mCerulean/mYPet/TagRFP-T/eqFP670 (see Table 5).
Note that the above-mentioned limitations regarding the
brightness of SBFP2 and the dimer property of eqFP670
are evident. The brightness in the blue/cyan spectrum can
be improved by either engineering a bright FP that is more

TABLE 4 | Suggestions of four-colors combinations and
excitation/emission filter sets.

Four-colors

FPs TagBFP sfGFP mKO2 eqFP670

Excitation filter (nm) 395–415 450–490 530–560 589–625

Beamsplitter (nm) 420 495 562 649

Emission filter (nm) 435–485 500–550 570–620 655–1200

Detected color Blue Green Orange Near-infrared

TABLE 5 | Suggestions of five-colors combinations and
excitation/emission filter sets.

Five-colors

FPs SBFP2 mCerulean mYPet TagRFP-T eqFP670

Excitation
filter (nm)

353–391 426–446 490–510 530–560 589–625

Beamsplitter
(nm)

400 455 515 562 649

Emission
filter (nm)

410–460 460–500 520–550 570–620 655–1200

Detected
color

Blue Cyan Yellow Orange Near-
infrared
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blue-shifted than TagBFP, or by engineering a cyan FP with
a narrower excitation/emission spectrum that reduces spectral
cross-talk with TagBFP. Regarding monomeric near-infrared or
infrared FPs, there have been reports of newly evolved versions
with an improved brightness (Yu et al., 2014). They were,
however, mainly developed for deep-tissue imaging, and are yet
to be tested for fluorescent tagging in bacteria for their brightness
and folding properties.

The observed direct interaction between TagBFP and TagRFP-
T prohibits the combination of these two proteins in the same
cell. While the dimerization or aggregation of monomeric FPs
at high concentration has been recognized (Snaith et al., 2010),
the possibility of two monomeric proteins interacting with each
other is not commonly tested. For example, by constructing a
library of individual fluorescent fusions to the same protein in
yeast, Lee et al. (2013) proposed the combination of the above
two proteins for multi-color imaging. Our findings emphasize
that the evolution of future fluorescent probes should take the
interspecies interactions into account.

Our efforts to produce HU-2, FtsZ, and MinD fusion proteins
for fully replacing the endogenous ones exemplify the multi-
faceted challenge regarding fluorescent tagging, which naturally
depend on the structural properties of the native proteins and
the transcriptional/translational read-through at their genomic
loci. The fact that a short TC peptide insertion into the
unstructured region of FtsZ successfully rescued the lethal
effect of �ftsZ but not in the case of sfGFP and TagRFP-
T agrees with the finding that the unstructured region of
the FtsZ has a limited tolerance to the size of a insertion
(Buske and Levin, 2013). For visualizing MinD, we showed
that it is possible to carry out N-terminal fusions at an
endogenous genetic locus, albeit typically requiring independent
sampling effort for individual genes due to the sensitivity of
the transcription and translation read-through at the coding
sequence close to the RBS (Kudla et al., 2009). Regarding
a valid representation of a native localization pattern, a
previous example showed that, while the super-fast folders
sfGFP and mCherry were shown to be particularly advantageous
in N-terminal or sandwich fusions and studies in periplasm
(Bendezú et al., 2009; Dinh and Bernhardt, 2011; Wu et al.,
2015), they were shown to form non-native foci when fused to
ClpXP (Landgraf et al., 2012). Here we assessed the advantage
of the recently developed FPs for studies in bacteria based
on quantitative comparisons on a number of targets. We
suggest that their performance as fluorescent tags be further

tested in comparison to the native proteins in other future
studies.

The expansion and detailed study of the FP reported
in this paper will help imaging cell division in bacteria.
The understanding of the processes involved in chromosome
organization and cell division in bacteria has seen great
development owing to the use of FPs. Current challenges
in microscopy imaging of these processes lie in increasing
the spatiotemporal resolution, uncovering the native behavior,
and simultaneously inspecting the multiple interacting sub-
components. We expect that our quantitative evaluation of
novel FPs and the fusion strategies will facilitate tackling these
challenges.
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