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Filamentation of Campylobacter in
broth cultures

Nacheervan M. Ghaffar, Phillippa L. Connerton and lan F. Connerton*

Division of Food Sciences, School of Biosciences, University of Nottingham, Loughborough, UK

The transition from rod to filamentous cell morphology has been identified as a response
to stressful conditions in many bacterial species and has been ascribed to confer certain
survival advantages. Filamentation of Campylobacter jejuni was demonstrated to occur
spontaneously on entry in to stationary phase distinguishing it fromm many other bacteria
where a reduction in size is more common. The aim of this study was to investigate
the cues that give rise to filamentation of C. jejuni and C. coli and gain insights into
the process. Using minimal medium, augmentation of filamentation occurred and it was
observed that this morphological change was wide spread amongst C. jejuni strains
tested but was not universal in C. coli strains. Filamentation did not appear to be due to
release of diffusible molecules, toxic metabolites, or be in response to oxidative stress
in the medium. Separated filaments exhibited greater intracellular ATP contents (2.66
to 17.4 fg) than spiral forms (0.99 to 1.7 fg) and showed enhanced survival in water
at 4 and 37°C compared to spiral cells. These observations support the conclusion
that the filaments are adapted to survive extra-intestinal environments. Differences in
cell morphology and physiology need to be considered in the context of the design of
experimental studies and the methods adopted for the isolation of campylobacters from
food, clinical, and environmental sources.
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Introduction

Campylobacter is frequently responsible for foodborne bacterial gastroenteritis worldwide (World
Health Organization [WHO], 2013). Campylobacter cells are usually slender, spiral shaped rods
measuring 0.2-0.8 pm wide and 0.5-5 wm in length (Vandamme, 2000) but like many other
microorganisms, filamentous forms have been observed under certain circumstances (Griffiths,
1993; Thomas et al., 1999; Apel et al., 2012; Cameron et al, 2012). Filamentation has been
identified in many different bacteria and is thought to occur through inhibition of cell division,
metabolic changes, or DNA damage which includes the SOS response resulting in the inhibition
of septum formation whilst the chromosome is repaired (Justice et al., 2008). It has frequently
been associated with stress and starvation conditions during which it may confer survival
advantages (Justice et al., 2008). Moreover, it has been suggested that filamentation could
represent a programmed response to unfavorable environments that aids the bacterium’s survival
(Justice et al., 2008) and may enhance virulence (Mulvey et al., 2001; Stackhouse et al., 2012).
Alternatively, filamentation may simply occur through an inadvertent loss of control of the
normal cell division process. Whichever scenario is true may depend on the species of bacteria
and the type of environmental stress encountered. Examples of environmental signals that
have been identified to induce filamentation include: starvation, exposure to oxidative stress,
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reduced water activity, the presence of quorum sensing
molecules, antibiotics, or host immune effectors (Allison et al.,
1992; Jones et al., 1996; Janion, 2001; Miller et al., 2004).
Filamentation as a response to sublethal stress has been observed
in a number of foodborne bacteria, which have led to concerns
that these bacteria may rapidly divide once the growth conditions
become permissive to cause spoilage or disease (Jones et al.,
2013).

Filamentation in Campylobacter has also been observed in
response to mutation of the response regulator RacR and its
sensor Rac$, which are involved in the heat shock response (Apel
et al,, 2012), in response to treatment with certain antibiotics
such as sitafloxacin (Yabe et al., 2010) and as a general response
to hyperosmotic stress (Cameron et al., 2012). Importantly, for
Campylobacter jejuni and Helicobacter pylori broth cultures,
grown in a microaerobic atmosphere, filamentation occurred
spontaneously on entry in to stationary phase (Griffiths, 1993;
Fawcett et al., 1999; Thomas et al., 1999; Wright et al., 2009). Here
nutrients may become depleted, potentially leading to starvation
stress or there may be a buildup of metabolites present in the
spent medium but the lack of a specific stress trigger distinguishes
filamentation of these two related bacterial genera from other
bacteria where stationary phase cells are generally reduced in
size (Nystrom, 2004). Moreover, elongated cells can be readily
identified in scanning electron micrographs of Campylobacter
biofilms (for examples see Kalmokoff et al., 2006; Brown et al.,
2014) indicating filamentation may occur naturally in situations
where biofilms form.

The aim of this study was to investigate the cues that give rise
to filamentation of C. jejuni growing in broth cultures. We also
aimed to investigate the viability of the individual component
cells of the filament using vital staining, determine any strain
dependency and any possible differences in the ability of the two
different morphotypes to survive unfavorable conditions.

Materials and Methods

Bacterial Strains

Campylobacter strains that were used for this study included:
HPC5, HF5, (C. jejuni poultry isolates); NCTC11168,
NCTC12661 (35925B2), 81-176, PT14, 81116 (C. jejuni reference
strains isolated from humans); OR4451C, OR5482C (C. coli
poultry isolates), and FB1 (C. coli human isolate). All strains
were stored at —80°C in Microbank vials (Pro-Lab Diagnostics,
Wirral, UK).

Growth in Liquid Cultures

Nutrient Broth Number 2 (NB2; Oxoid, Basingstoke, UK) and
Mueller Hinton Broth (MH; Oxoid) were prepared according to
manufacturer’s instructions. MEM (minimum essential medium)
without glutamine and phenol red (Catalog number 51200-
038; Life Technologies Ltd, Paisley, UK), with and without
addition of 10 mM sodium pyruvate (Sigma Aldrich, Gillingham,
UK), as an energy source were also tested. The Campylobacter
inoculum was prepared by making a suspension containing
approximately 108 CFU/ml from an overnight culture grown

on blood agar (BA; Oxoid) containing 5% (v/v) of defibrinated
horse blood (TCS, Buckingham, UK) at 37°C incubated under
microaerobic conditions (approximately 7% O;, v/v) obtained
by the evacuation/replacement technique (Bolton and Coates,
1983). The replacement gas mix contained (5% v/v Hy, 10% v/v
CO3, and 85% N). To prepare growth curves, 0.1 ml of the
Campylobacter inoculum was added to three individual 250 ml
conical flasks containing 50 ml of medium and the flasks placed in
anaerobic jars (Oxoid) under microaeobic conditions generated
as described above. The jars were placed in an orbital shaker
and shaken at 100 rpm at 37°C with sampling at appropriate
intervals. For each time point, an aliquot was serially diluted in
maximal recovery diluent (MRD; Oxoid) and the microaerobic
atmosphere re-generated. Enumeration of campylobacters was
carried out by the Miles and Misra method on Campylobacter
blood-free selective agar plates without supplement (CCDA;
Oxoid) and incubated microaerobically at 42°C for 48 h. The
morphology of the cells was examined microscopically over
10 independent fields using bright field, epifluorescence and
Gram-stain for each time point. Pre-used NB2 was prepared
by carrying out the above procedure with incubation for 48 h
and confirmation of the formation of filamentous cells. The cell
growth was removed by centrifugation at 13,000 g for 15 min, and
the supernatant filtered through a 0.2 pm filter (cellulose acetate,
Sartorius Stedim Biotech, Epsom, UK). The pre-used filter
sterilized medium was inoculated as described above to prepare
growth curves. To reduce the potential accumulation of free
radicals in MEM with pyruvate, the medium was supplemented
with 0.15% w/v starch (Sigma Aldrich) prior to sterilization.
Statistical differences were assessed by ANOVA from the Excel
Data Analysis package (Microsoft Corporation, Redmond, WA,
USA).

Fluorescent Cell Staining (Syto9/Propidium
lodide)

Bacterial suspensions (1 ml) were mixed with 1.5 pl of Syto
9 (absorption/emission 485/498 nm) and 1.5 pl propidium
iodide (absorption/emission 535/617 nm) from LIVE/DEAD®
BacLight™ Bacterial Viability Kit (Life Technologies) and
incubated in the dark for 20 min at room temperature. A 5 pl
aliquot was applied to the center of a clean glass microscope
slide. An 18 mm? coverslip was placed over the suspension. The
slides were examined over 10 min at a magnification of 1,250
(100x%, plan Apo) with an epifluorescence microscope (Labophot;
Nikon, Tokyo, Japan) and images captured from 10 independent
fields using a vertical mounted digital camera.

Separation of Short Spiral and Filamentous
Morphotypes

In order to separate the short spiral and filamentous forms, three
independent biological replicates of C. jejuni 12661 or PT14 were
inoculated into 500 ml of sterile MEM with sodium pyruvate,
to a final density of approximately 10° CFU/ml. The flasks were
incubated in a shaking incubator at 100 rpm, at 37°C under
microaerobic conditions for 30 h. The short spiral cells were
separated from filamentous cells by collecting the filtrate from the
culture that was passed through a 0.8 wm sterile nitrocellulose
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membrane (Sigma-Aldrich). The filtration was repeated with a
fresh filter. The filamentous forms were obtained by flushing
the first filter with fresh MEM (with pyruvate) and collecting
the eluate. The suspensions were examined microscopically and
diluted to contain approximately 5 x 10® CFU/ml in either
sterile water (reverse osmosis) or NB2 to examine their survival
characteristics.

Comparison of the Survival of the Short Spiral
and Filamentous Morphotypes

Suspensions of the separated morphotypes in either water or NB2
(prepared as described above) were either incubated at 37 or
4°C for 96 h under microaerobic conditions. Viable counts were
performed as described above at 24 h intervals.

Determination of Intracellular ATP

The ATP concentrations measured by luciferase
luminescence using a commercial kit according to the
manufacturer’s instructions (Promega, Southampton, UK).
Either suspensions of selected morphotypes (prepared as above)
or culture suspensions collected at various time points were
centrifuged at 13,0000 g for 15 min and the cell pellets washed
in Iml of TA buffer (20 mM Tris-acetate buffer pH 7.75)
before re-pelleting. The cell suspensions were lysed with 1%
(w/v) trichloroacetic acid in TA buffer. The ATP assays were
performed by adding 10 pl of the cell extract to a polypropylene
tube containing 100 pl of recombinant luciferase/luciferin
reagent, followed by gentle mixing and immediate reading in a
pre-blanked luminometer (Turner Designs TD 20e, Promega).
The signal was integrated over 10 s with a 2 s delay, and reported
in relative light units (RLU) that could be converted to ATP
concentrations using a pre-prepared standard curve. ATP
contents were normalized according to either viable counts or
microscopic cell counts or protein content (Bradford reagent;
Pierce).

were

Results

Confirmation of Filamentation on Entry to
Stationary Phase and the Imaging of Filament
Component Cells by Vital Staining

Growth curves and microscopic images of C. jejuni strains
HPC5 and HF5 growing in NB2 over 48 h are shown in
Figures 1A-C. These data confirm previous observations that
on entry to stationary phase, after 24 h, progressively longer
filaments are formed (Griffiths, 1993). The morphological
changes coincided with different phases of growth. Exponentially
growing cells showed typical short spiral forms (1.5-2.5 pm),
while mid-stationary phase cells had become elongated. Cell
populations in decline phase featured long filaments and the
appearance of coccal forms. Vital staining was carried out using
a combination of Syto 9, which stains intact cells green and
propidium iodide, which only penetrates membrane damaged
cells, staining them red. This did not produce the expected result,
with many motile and therefore essentially live red-stained cells,
appearing in the exponentially growing population. It appears

>
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FIGURE 1 | Growth curves (A) of Campylobacter jejuni strains HPC5
(a) and HF5 (@) and morphological changes during growth of C. jejuni
HPCS5 (B), and HF5 (C) in NB2. Arrow in (A) indicates the time point at which
the filamentous cells were first observed (on entry to stationary phase). Error
bars are £SD for n = 3. In (B) and (C) the upper row shows cells stained with
fluorescent stains whilst the lower row shows bright field microscopy image of
the same cells. Scale bar, 5 um.

that propidium iodide was able to enter live cells and was not a
good indicator of viability for Campylobacter. Vital staining of the
stationary phase cells showing filamentation was variable, with
the cell filaments, either predominantly red (staining with PI)
or predominantly green (stained with Syto-9) with relatively few
cells containing both fluors (integrated images colored yellow).
Interestingly comparison of the bright field and fluorescent
microscope images presented in Figures 1B,C, clearly showed
that the filaments contained cells that were unstained between
the stained cells, and remarkably these often appeared in a regular
interspersed pattern as demonstrated at the 72 h time points for
C. jejuni strains HPC5 and HF5 in Figure 1.

Growth of Campylobacter in Pre-Used Medium
to Investigate the Potential Role of Quorum
Sensing, Depletion of Nutrients

The exponential growth rates of C. jejuni HF5 and HPC5 in
the pre-used NB2 medium (k = 0.14 /h for both strains), were
marginally reduced compared to fresh medium (k = 0.18 /h
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for HF5 and k = 0.25 /h for HPC5; Figure 2). This difference
was significant for HPC5 (p = 0.03; ANOVA) but not
significant for HF5 (p = 0.4; ANOVA). Although not optimum,
the pre-used medium was able support exponential growth,
suggesting that essential nutrients had not become significantly
depleted in the course of achieving stationary phase in the
previous culture. Moreover the growth period required for
filamentation to occur were similar for fresh and pre-used NB2,
suggesting that the campylobacters were not responding to the
release of soluble signal molecules as observed for auto inducer
molecules involved in quorum sensing.

To investigate further the role of nutritional limitation as a
possible cause of filamentation, growth curves were prepared
using MEM for C. jejuni HF5 and HPC5. Under these conditions
filamentation was observed as early as 2 h (Figure 2; indicated
by arrows), but with no increase in viable count and no filaments
greater than 10 pm in length (Figures 3A-C). Some individual
cells were stained both red and green (Figure 3A). Addition
of sodium pyruvate, as an energy source, produced an increase
in the viable count and filamentation was delayed such that
filaments appeared after 4-6 h of incubation. Longer incubation
periods produced filaments greater than 10 wm in length,
which stained with both Syto 9 and PI. This dual staining was

Viable count log,, CFU/ml

Viable count log,, CFU/ml

4 _ 48 72
Time (h)

FIGURE 2 | Comparison of the growth of C. jejuni strains (A) HPC5 and
(B) HF5 in: NB2 (@), pre-used NB2 (), minimum essential medium
(MEM; 4), and MEM supplemented with 10 mM sodium pyruvate (A).
Arrows indicate the time points at which filamentous cells were first observed.
Error bars are +SD for n = 3.

particularly evident in a third strain investigated, C. jejuni 12661
(Figures 3D,E).

Growth of Campylobacter in Starch-Containing
Media to Reduce Oxidative Stress

To assess if the provision of starch as an antioxidant, in the
culture media could prevent or delay the onset of filamentation,
we cultured campylobacters in either Mueller Hinton broth
or MEM (with pyruvate) containing starch. Neither of these
alternative growth media altered the time of entry to stationary
phase or the subsequent observation of filamentous morphotypes
(results not shown). The accumulation of growth related
oxidative stressors in the culture medium was probably not a
causal effect of filamentation.

Filamentation in Different Strains of C. jejuni

and C. coli

To determine if filamention was widespread amongst C. jejuni
and C. coli a larger group of strains was examined. These
were grown in MEM with sodium pyruvate and morphological
changes compared in terms of the time taken for filamentation
to be first observed (Table 1). Differences were observed, but
filamentation was a feature of all the strains tested (cells > 5 pm)
apart from C. coli strain (FB1), which did not form filaments,
the viable count did not increase, and this strain produced coccal
forms as early as 6 h under these conditions. One strain, C. jejuni
12661, produced particularly long filaments and was therefore
chosen for further experiments involving separation of filaments
from other morphotypes.

Filamentous Forms Show Increased Survival in
Water

In order to compare the characteristics of the filamentous
and spiral cell forms coexisting in stationary phase cultures
of C. jejuni 12661 (exaggerated filamentation phenotype)
were separated using membrane filtration. A 0.8 pm filter
prevented the passage of long filamentous forms and did
not hinder the passage of short spiral forms present after
30 h incubation in MEM with sodium pyruvate at 37°C
under microaerobic conditions. The survival characteristics
of the separated morphotypes were examined in both NB2
and in water. There was no significant difference (p > 0.5;
ANOVA) in the ability of the two morphotypes to survive in
NB2 at either 37 or 4°C (Figures 4A,B). However, marked
differences were observed in the survival of the two morphotypes
incubated in water at either temperature (Figures 4C,D). The
viable count of the short spiral forms fell below the limit of
detection after 72 h at 37°C and 96 h at 4°C, whilst the
filamentous forms remained detectable at 37°C and experienced
only a modest fall in viability of 1.5 logio over 96 h at
4°C.

ATP Contents of Spiral, Filamentous, and

Coccal Cell Types

In order to study the ATP contents of spiral, filamentous and
coccal cell types, C. jejuni 12661 (exaggerated filamentation
phenotype) and C. jejuni PT14 (a strain that showed a typical
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FIGURE 3 | Examples of variation in vital staining observed during
growth in MEM and in MEM supplemented with 10 mM sodium
pyruvate; (A) C. jejuni HPC5 after 2 h incubation in MEM,

(B) C. jejuni HPC5 after 4 h incubation in MEM, (C) C. jejuni HPC5

after 6 h incubation in MEM; (D) C. jejuni 12661 after 48 h
incubation in MEM supplemented with 10 mM sodium pyruvate; and
(E) C. jejuni 12661 after 72 h incubation in MEM supplemented with
10 mM sodium pyruvate. Scale bar 1 um.

filamentation phenotype) were selected. Viable and microscopic
counts of microaerobic cultures at 37°C of C. jejuni 12661 and
PT14 in MEM with sodium pyruvate were collected over 216 h to
encompass exponential, stationary and decline phases of growth
(Figure 5). Spiral cells harvested in mid-exponential phase at 14 h
were serially diluted and the ATP contents of these cells estimated

TABLE 1 | Viability and filamentation of Campylobacter strains growing in
different media.

Media Strain Time to Time to Viable count
achieve first at first
stationary filaments filamentation
phase (h)*  (h) (CFU/mI)

NB2 HPC5 30 24 3.0 x 10°

HF5 30 24 1.3 x 10°

Pre-used HPC5 24 24 2.5 x 10°

filtered NB2 HF5 24 24 8.3 x 108

Minimum HPC5 24 6 1.0 x 107

essential HF5 24 6 1.6 x 107

medium (MEM; FB1$ 24 4% 4.0 x 108

(with sodium OR4451C% 24 6 3.32 x 107

pyruvate) OR5482C% 24 6 6.0 x 107

81116 24 6 6.2 x 107
11168 24 6 1.7 x 107
12661 24 6 2.1 x 107
81-176 24 6 1.3 x 107
PT14 24 6 5.2 x 107

MEM (without HPC5 - 2 2.6 x 108

sodium

pyruvate) HF5 — 2 1.6 x 108

*Determined from growth curve inoculated with ~108 CFU.
T Determined microscopically, *Double length cells, $Cavmpy/obacter coli.

from luciferase/luciferin luminescence after lysis (Table 2). The
ATP contents of the exponential phase spiral cells (0.99 and 1.7 fg
ATP per CFU) were similar to earlier estimates for C. jejuni (Ng
et al., 1985). Recovery and separation of filamentous and spiral
forms in decline phase at 96 h enabled determination of the ATP
contents of these cell populations before the appearance of coccal
forms. Beyond 168 h the majority of the cells appeared coccal
in these cultures, and estimates of viability required the plating
of 0.2 ml culture volumes on multiple blood agar plates and/or
recovery at endpoint dilution in broth cultures. Microscopic
evaluation of 216 h cultures revealed that 61% of the C. jejuni
12661 cells had become coccal compared with 58% for C. jejuni
PT14. After correction for the ATP contents of decline phase
spiral and filamentous cells present in these cultures (Figure 5),
estimates of the ATP contents of the dominant coccal cells were
calculated (Table 2). The low or undetectable ATP contents of
the coccal cells would support the conclusion that they are no
longer viable, and that the viable campylobacters recovered from
these cultures represent the remaining spiral and filamentous
forms.

Discussion

Growth curves and microscopic examination of broth grown
cultures confirmed that filamentous morphotypes were formed
upon entry to stationary phase. Vital staining revealed interesting
structural features of the filamentous cells but also that this
method may not be suitable for distinguishing live Campylobacter
cells from dead ones. The staining patterns observed suggest
growth and septa formation occur within the filaments, and
that this leads to differential dye permeability preventing dye
migration between cells. Moreover, the interspersed pattern
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FIGURE 4 | Comparison of the survival of C. jejuni 12661 morphotypes incubated microaerobically at: (A) 37°C in NB2; (B) 4°C in NB2; (C) 37°C in
water; (D) 4°C in water. Short spiral forms (@), filamentous forms (). Error bars are £SD for n = 3.

FIGURE 5 | Viable counts and microscopic enumeration of the cell
morphotypes observed during microaerobic growth of C. jejuni PT14
and 12661. C. jejuni PT14 (@) and 12661 () were cultured in MEM
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supplemented with 10 mM sodium pyruvate under microaerobic conditions at
37°C, from which samples were taken for microscopic examination and
estimates of cell bound ATP. Error bars are +£SD forn = 3.

would suggest cell division may be taking place at the
predefined cell poles within the filament suggesting at least
some of the component cells were viable. Cameron et al
(2012) observed irregular patterns of cells remaining unstained
by PI within Campylobacter filaments formed in response
hyperosmotic stress. This prompted the authors to investigate

septa formation using Vanco-FL stain that binds D-Ala-D-Ala
moieties of peptidoglycan indicative of septa and/or sites of
new peptidoglycan synthesis. The Vanco-FL stain produced a
punctuated staining pattern in hyperosmotic-induced filaments
that did not co-localize with PI. This observation is also
indicative of internal septa formation, and as the authors
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TABLE 2 | Intracellular ATP content of C. jejuni morphotypes at different
phases of growth.

Cell Forms* C. jejuni 12661

ATP (fg/cell)t

C. jejuni PT14
ATP (fg/cell)t

Exponential phase spirals (14 h) 1.7 £0.35 0.99 +£0.12
Decline phase spirals (96 h) 1.19 £ 0.20 0.84 +£0.14
Decline phase filaments (96 h) 174 £ 22 2.66 + 0.54
Decline phase coccoid (196 h) 0.01 £ 0.005 ND
Decline phase coccoid (216 h) 0.01 £+ 0.004 ND

*Cell morphotypes observed at different time points (h) in microaerobic culture of
MEM with pyruvate. +SD n = 3. ND, not detectable.

conclude phenotypic differences between cells that compose the
filament.

Quorum sensing bacteria produce and release auto inducers
that increase in concentration as a function of cell density leading
to an alteration in gene expression (Miller and Bassler, 2001) and
in some cases filamentation (Allison et al., 1992). As no change
in the time taken to form filaments occurred when pre-used
medium was inoculated with a fresh culture, it seems unlikely
that quorum sensing was involved in the process. The relatively
proficient growth of campylobacters in the pre-used medium
was unexpected, as nutrient depletion on entry to stationary
phase was suggested as a possible trigger for filamentation. This
raises questions as to what actually triggers entry to stationary
and decline phases in Campylobacter broth cultures. This is not
well understood in other bacteria and probably depends on a
combination of factors including the species of bacteria and
growth medium. For Salmonella typhimurium and Escherichia
coli it has been shown that increased levels of acetate (Wilson
et al, 2003) or carbon starvation (Sezonov et al, 2007) are
associated with the cessation of growth. The transition to
stationary phase for Campylobacter is highly dynamic with a
switch from acetate production to utilization together with a
peak in motility and numerous gene expression changes (Wright
et al., 2009). In addition, the bacteria do not appear to exhibit
enhanced stress resistance in stationary phase, unlike many
other bacteria, which is consistent with the absence of RpoS
homologues (Kelly et al., 2001). Despite the absence of RpoS,
campylobacters retain a stringent response that assists survival
in the stationary phase of many bacterial species. Mutation of
the spoT gene results in aberrant cell morphologies and early
coccoid cell formation in stationary phase cultures (Gaynor et al.,
2005).

As a microaerophile, Campylobacter is particularly sensitive
to the presence of free radicals and may suffer oxidative stress
when grown in broth media despite being supplied with a
reduced oxygen atmosphere (John et al., 2011). Strictly anaerobic
conditions in the presence of alternative electron acceptors
nitrate or fumarate have also been shown to induce filamentation
in Campylobacter indicating an oxygen requirement for DNA
synthesis (Sellars et al., 2002). The presence of starch in
Campylobacter culture media acts as an antioxidant and affords
a degree of protection against oxidative stress caused by
free radicles that can accumulate during exponential growth
(Mehlman and Romero, 1982). The provision of starch in

the culture media did not influence the timing or degree of
filamentation, which suggests that the accumulation of reactive
oxygen species (ROS) in the growth medium is not a predisposing
factor to the appearance of the filamentation morphotype.
However, this does not rule out a role for oxidative stress at
a cellular level. Endogenous ROS produced as a consequence
of cellular metabolism have been suggested to play a role as
signaling molecules and effectors in the development of microbial
multi-cellularity, including programed cell death (Cap et al,
2012).

Campylobacters were unable increase in viable count in
MEM, without a carbon source but some increase in cell
size was observed. The addition of pyruvate to the MEM
allowed growth but with the early onset of filamentation as
compared with growth in nutrient rich medium. Nutritional
differences clearly impact on the observed morphological
changes but since pyruvate remained in excess during the
growth period as a carbon and energy source, it is unlikely
that filamentation is a response to carbon starvation in these
experiments. Bacteria also require sufficient iron, phosphorous,
sulfur, nitrogen, and other trace elements for growth and
it is possible that one, or a combination of these, become
quickly exhausted in minimal medium resulting in filamentation,
compared to rich media. However, the response to nutrient
limitation even within a well-mixed Campylobacter broth
culture is not uniform, in most cultures filamentous types
arise among spirals that continue to divide. This implies that
once the growth rate has become limited due to nutritional
availability, then the formation of the filaments is either a
stochastic process or developmentally controlled to generate a
subpopulation that are more able to survive nutritional depletion
and/or environmental stresses. In the wider environment other
limiting physiological factors may also trigger the filamentation
response.

Campylobacter jejuni cultured in MEM with pyruvate exhibit
an ability to retain a viable subpopulation through decline phase
at 37°C under microaerobic conditions despite a fall in viable
count from >8 logjp CFU/ml at the end of exponential phase
(24 h in Figure 5) to 3 logjp CFU/ml at 168 h. We have
measured the ATP contents of cell morphotypes recovered from
the decline phases of these cultures to demonstrate significant
increases in the cellular ATP contents of the filamentous types as
compared with spiral forms, sampled in either exponential phase,
or separated from filaments in decline phase. These increases
may be accounted for because the filaments appear to consist
of multiple cells, joined in an ordered conglomerate. Consistent
with this view, is the observation that the C. jejuni strain 12661
produces notably longer filaments and has a higher ATP content
(17.4 fg ATP/CFU) than C. jejuni PT14 (2.66 fg ATP/CFU).
However, we have noted interspersed staining patterns and cell
division within filaments, which could represent cells with greater
metabolic activity within a single filament. In the later stages of
these cultures (>168 h) the majority of the cells become coccoid.
ATP content estimates of coccal cells were either extremely low
or non-detectable, suggesting they are not viable as concluded
in previous reports (Moran and Upton, 1986; Boucher et al,
1994).
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Differences in the ability of Campylobacter isolates to survive
in microcosm waters have been documented but without
reference to the formation of filaments (Buswell et al., 1998).
The increased ability of the filamentous morphotype to survive
in water compared to the short spiral form suggests that further
research is necessary to assess the impact this may have on
the transmission of the campylobacters from the environment
to farm animals and on the safety of post-process foods.
Based on these observations caution is advised when applying
mathematical models that predict the survival Campylobacter,
but do not take into account that changes in cell morphology
and physiology that can increase their probability of survival.
The presence of multicellular filaments may also lead to
underestimates of viable cell numbers in cultures, since a single
filament can form a single colony despite a multicellular origin,
and filaments can exhibit differing refraction properties to non-
dispersed cell suspensions that can make the interpretation
of optical density measurements problematic (Wright et al,
2009).

Rapid filamentation was observed in MEM with pyruvate,
in all the C. jejuni tested, and in all but one of the C. coli
strains tested regardless of the strains being of either poultry
or human origin. The response appears widespread amongst
the two species. The minimal medium employed in these
experiments did not support any observable growth of the single
C. coli strain that did not form filaments, it could therefore
not be concluded that this strain lacked the capacity to form
filaments.

Laboratory based experiments of protein expression and
metabolism of Campylobacter demand the use of broth grown
cultures to control the phase of growth. Cultures are often
harvested in late exponential phase to maximize cell yields,
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