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Stenotrophomonas maltophilia is an environmental bacterium found in the soil,

associated with plants and animals, and in aquatic environments. It is also an

opportunistic pathogen now causing an increasing number of nosocomial infections.

The treatment of S. maltophilia is quite difficult given its intrinsic resistance to a number

of antibiotics, and because it is able to acquire new resistances via horizontal gene

transfer and mutations. Certainly, strains resistant to quinolones, cotrimoxale and/or

cephalosporins—antibiotics commonly used to treat S. maltophilia infections—have

emerged. The increasing number of available S. maltophilia genomes has allowed

the identification and annotation of a large number of antimicrobial resistance genes.

Most encode inactivating enzymes and efflux pumps, but information on their role in

intrinsic and acquired resistance is limited. Non-typical antibiotic resistance mechanisms

that also form part of the intrinsic resistome have been identified via mutant library

screening. These include non-typical antibiotic resistance genes, such as bacterial

metabolism genes, and non-inheritable resistant phenotypes, such as biofilm formation

and persistence. Their relationships with resistance are complex and require further study.

Keywords: Stenotrophomonas maltophilia, antibiotic resistance, multidrug resistance, intrinsic resistome,

phenotypic resistance

Stenotrophomonas maltophilia is an opportunistic nosocomial pathogen that has caused an
increasing number of infections in recent years (Brooke, 2012). It is associated with a number of
clinical syndromes, such as endocarditis, urinary infections, and respiratory infections, including
pneumonia in patients with cystic fibrosis and the immunocompromised (Falagas et al., 2009;
Looney et al., 2009).

S. maltophilia shows low susceptibility to many antibiotics, including those commonly used to
treat the infections it causes. It is therefore crucial that new antibiotic targets be found, and the
appearance of resistance during treatment be predicted. The analysis of resistance mechanisms
and the identification of antibiotic resistance genes can help in this. Bioinformatic studies have
identified genes showing homology to known antibiotic resistance genes, although their exact
functions remain to be confirmed. In recent years, deep sequencing technologies have allowed the
complete sequencing of two clinical S. maltophilia strains, K279a and D457 (Accession numbers:
NC_010943.1 and NC_017671.1) (Crossman et al., 2008; Lira et al., 2012), and two environmental
strains, R551-3 and JV3 (Accession numbers: NC_011071.1 and CP002986.1). The assembly of the
sequences of several other strains is currently underway, and results should be available in the near
future. Genome sequencing has revealed much of the genome to be conserved across different S.
maltophilia strains (Rocco et al., 2009; Alavi et al., 2014). In addition, most of the genes associated
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with resistance in S. maltophilia have been found present in all
strains examined. However, the genomes show also sequence
variability, associated to normal evolution (mutation frequency)
or induced in some situations. Antibiotic pressure increases the
sequence variability in resistance or related genes, as regulators.
The use of quinolones in S. maltophilia allows the appearance of
mutants overexpressing efflux pumps, first SmeDEF, and when
this is not present, SmeVWX. In both cases the overexpression
is mainly associated to mutations in their regulators, SmeT and
SmeRv, respectively (Garcia-Leon et al., 2014b).

The analysis of transposon mutant libraries allows the
identification of genes which, if deleted, alter susceptibility to
antibiotics, including genes that might appear to have no clear
relationship with antibiotic resistance. The drawback of this
type of analysis is that, since essential genes cannot be deleted,
their putative involvement in antibiotic susceptibility cannot be
confirmed. This methodology has, however, been successfully
used with Pseudomonas aeruginosa and Escherichia coli (Girgis
et al., 2009; Alvarez-Ortega et al., 2010). When S. maltophilia was
thus examined, genes involved in biofilm formation appeared as
being related to antibiotic resistance (Huang et al., 2006; Kang
et al., 2015).

Transformation with genomic libraries allows the effect
of gene overexpression to be investigated; genes whose
overexpression (usually in heterologous microorganisms) exerts
a direct effect on antibiotic susceptibility can therefore be
identified. Only those genes which exert a direct effect on
antibiotic susceptibility identified in this way. The use of a
S. maltophilia D457R chromosomal DNA library allowed the
identification of genes related to antibiotic resistance, and the
subsequent cloning and characterization of the SmeDEF efflux
pump (Alonso and Martinez, 2000; Alonso et al., 2000).

Evolution assays can provide information on the genes
involved in acquired resistance. Such information could be useful
for the rational design of better treatments since it might help
predict the appearance of resistance.

Antibiotic Resistance Mechanisms in S.

maltophilia

The reduced susceptibility of S. maltophilia to antibiotics has
been associated with intrinsic resistance factors common to all
S. maltophilia strains, such as low membrane permeability, the
presence ofmultidrug resistance (MDR) efflux pumps, antibiotic-
modifying enzymes, and the quinolone resistance gene Smqnr
(Crossman et al., 2008; Sanchez et al., 2009) (Table 1). Resistance
can also be acquired via the acquisition of mutations or resistance
genes through horizontal gene transfer (HGT). Microorganisms
sharing the same environment can provide these exogenous
genes. It has been postulated that other unknown mechanisms
may also help account for the S. maltophilia antibiotic resistance
phenotype. The intrinsic resistome has been defined as the
group of chromosomal genes involved in the intrinsic resistance
present in the strains of a bacterial species prior to exposure
to an antibiotic and which is not due to HGT (Fajardo et al.,
2008). The intrinsic resistome involves known and unknown

genes related to antibiotic resistance, which might include genes
involved in cell metabolism (Olivares et al., 2013). To date,
most studies have focused on classical antibiotic resistance genes,
such as those coding for efflux pumps or modifying enzymes
(intrinsic resistance), and on the appearance during clinical
treatment of mutants showing low susceptibility to antibiotics
(acquired resistance). Our knowledge of the S. maltophilia
intrinsic resistome is, however, limited.

Like all Gram negative bacteria, S. maltophilia shows low
membrane permeability—the consequence of it having two cell
membranes and a peptidoglycan wall. The outer membrane is
an efficient barrier. Mutants showing altered outer membrane
permeability or which have a different lipopolysaccharide
structure showmodified susceptibility to antibiotics (Vaara, 1993;
Rahmati-Bahram et al., 1996).

Low susceptibility to antibiotics is often related to the presence
of active efflux pumps. Such pumps have been identified in S.
maltophilia K279a, including eight MDR efflux pumps belonging
to the putative resistance nodulation cell division (RND) family,
two belonging to the major facilitator superfamily (MFS), and
two ATP-binding cassette (ABC) pumps (Crossman et al., 2008).
In Gram negative bacteria, RND efflux pumps are composed
of three proteins: an inner membrane protein, which binds the
substrate, an outer membrane protein (porin), and a membrane
fusion protein (MFP), which binds the outer and inner proteins
in the periplasmic space. In general, the genes coding for the
porin, MFP and inner protein are located in the same operon.
Some exceptions in which there is no porin-coding gene have
been identified. In addition, MDR efflux pumps are modulated
by a regulator protein encoded by a gene located upstream and
divergently transcribed from the efflux pump operon. In general,
most efflux pump machinery is expressed at low levels (Li et al.,
2002; Lin et al., 2014a). Overexpression is associated with low
antibiotic susceptibility, and is sometimes related to mutations
in regulator genes. Such mutations have been identified both in
vitro and in vivo (Alonso and Martinez, 2001; Cho et al., 2012;
Gould et al., 2013; García-León et al., 2015), supporting the idea
that in vitro evolution studies may be able predict mutations
appearing in vivo during the treatment of patients.

All the proteins of the efflux pumps SmeABC, SmeDEF and
SmeVWX, which belong to the RND family, are encoded in the
same operon following the typical genomic arrangement. The
roles of these efflux pumps in intrinsic and acquired resistance
have been extensively characterized (Alonso and Martinez, 2000;
Li et al., 2002; Chen et al., 2011). SmeABC is involved in acquired
resistance to β-lactams, aminoglycosides and quinolones, but
has no influence on intrinsic resistance. The deletion of the
smeC gene (porin) affects susceptibility to several antibiotics
(Li et al., 2002), suggesting its possible relationship with other
efflux pumps. SmeDEF is involved in both intrinsic and acquired
resistance to chloramphenicol, tetracycline and quinolones, as
well as acquired resistance to non-antibiotic compounds such as
triclosan (Sanchez et al., 2005; Hernandez et al., 2011). SmeVWX
has a role in acquired resistance to the same antibiotics (Alonso
and Martinez, 2001; Zhang et al., 2001; Chen et al., 2011; Garcia-
Leon et al., 2014b). In acquired resistance, the overexpression of
the SmeDEF and SmeVWX efflux pumps is related to mutations
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TABLE 1 | Summary of known antibiotic resistances genes in S. maltophilia, antibiotic resistance profile and their role in intrinsic and acquired resistance.

Gene(s) Product Antibiotic resistance phenotype Intrinsic/Acquired

antibiotic resistance

Reference

smeABC RND-type efflux pump Aminoglycosides, β-lactams, and quinolones No/Yes Li et al., 2002

smeDEF RND-type efflux pump Chloramphenicol, tetracycline and quinolones Yes/Yes Alonso and Martinez, 2000; Zhang et al., 2001

smeGH RND-type efflux pump Unknown ND/ND Crossman et al., 2008

smeIJK RND-type efflux pump Aminoglycosides, tetracycline and ciprofloxacin Yes/Yes Crossman et al., 2008; Gould et al., 2013

smeMN RND-type efflux pump Unknown ND/ND Crossman et al., 2008

smeOP RND-type efflux pump Aminoglycosides, nalidixic acid, doxycycline,

macrolides

Yes/No Lin et al., 2014a

smeVWX RND-type efflux pump Chloramphenicol and quinolones No/Yes Chen et al., 2011; Garcia-Leon et al., 2014b

smeYZ RND-type efflux pump Aminoglycosides Yes/yes Crossman et al., 2008; Gould et al., 2013

emrCABsm MFS-type efflux pump Nalidixic acid and CCCP No/Yes Huang et al., 2013a

smlt0032 MFS-type efflux pump Unknown ND/ND Crossman et al., 2008

smtcrA MFS-type efflux pump Tetracycline No/Yes Chang et al., 2011

smrA ABC-type efflux pump Fluoroquinolones, tetracycline, doxorubicin ND/Yes Al-Hamad et al., 2009

macABCsm ABC-type efflux pump Macrolides, aminoglycosides and polymyxins Yes/ND Lin et al., 2014b

L1 β-lactamase β-lactams Yes/Yes Hu et al., 2008; Okazaki and Avison, 2008

L2 β-lactamase β-lactams Yes/Yes Hu et al., 2008; Okazaki and Avison, 2008

aph (3′)-IIc Aminoglycoside

phosphotransferase

Aminoglycosides Yes/Yes Okazaki and Avison, 2007

aac (6′)-Iz N-Aminoglycoside

acetyltransferase

Aminoglycosides Yes/Yes Li et al., 2003

Smqnr Pentapeptide Repeat

Proteins

Quinolones Yes/Yes Sanchez and Martinez, 2010; Chang et al.,

2011

ND not determined

in the regulators SmeT and SmeRv, respectively (Sanchez et al.,
2002; Garcia-Leon et al., 2014b).

Other S. maltophilia efflux pumps have recently been studied,
including SmeIJK and SmeYZ, which also belong to the RND
family. Both have a role in intrinsic and acquired resistance,
SmeJK to aminoglycosides, tetracycline and ciprofloxacin, and
SmeZ to aminoglycosides (Crossman et al., 2008). In addition,
their overexpression provides resistance to levofloxacin (Gould
et al., 2013). Neither of these efflux pumps has a known
associated porin. The efflux pump SmeOP, another RND
family member, confers low susceptibility to aminoglycosides,
nalidixic acid, doxycycline, macrolides and certain not antibiotic
compounds, such as carbonyl cyanide 3-chlorophenylhydrazone
(CCCP), crystal violet, sodium dodecyl sulfate (SDS), and
tetrachlorosalicylanilide (TCS). In the acquired resistance setting,
however, it provides protection only against CCCP and TCS (Lin
et al., 2014a). The TolCsm porin has been associated with the
SmeOP efflux pump. The tolCsm gene is located upstream of
the smeOP operon, in another operon known as smeRo-pcm-
tolC. The 1tolCsm phenotype increases susceptibility to several
compounds (Huang et al., 2013b), although no correlation is
seen with the1smeOP phenotype. This suggests that the TolCsm
porin is not exclusive to the SmeOP efflux pump (Huang et al.,
2013b; Lin et al., 2014a).

Bioinformatic analyses have also identified two putative MFS-
type tripartite efflux transporters (Crossman et al., 2008). One
of these, emrCABsm, shows high homology with emrAB of E.

coli (Lomovskaya and Lewis, 1992). In S. maltophilia, this pump
is encoded by an operon of four genes that cover the three
efflux pump components and a MarR-type regulator, emrRsm,
which is expressed in the same direction. 1emrRsm mutants
show low susceptibility to nalidixic acid and CCCP due to the
overexpression of the efflux pump, indicating emrRsm to act as a
repressor (Huang et al., 2013a).

Although ABC-type transporters play a major role in Gram
positive bacteria, they have also been found in Gram negative
organisms, e.g., MsbA and MacAB in E. coli, VcaM in Vibrio
cholerae, MacAB in Neisseria gonorrhoeae, and SmdAB in
Serratia marcescens (Lin et al., 2014b). Two ABC efflux pumps,
SmrA andMacABCsm, have also been described in S. maltophilia
(Al-Hamad et al., 2009; Lin et al., 2014b). The SmrA pump has
only been studied in the heterologous microorganism E. coli, in
which it provides resistance to fluoroquinolones, tetracycline,
doxorubicin and multiple dyes; its role in S. maltophilia
remains unknown (Al-Hamad et al., 2009). The other ABC-
type efflux pump, MacABCsm, is associated with intrinsic
resistance to macrolides, aminoglycosides and polymyxins.
Interestingly, 1macCsm mutant bacteria show lower
susceptibility to polymyxins, aminoglycosides and macrolides
than 1macAB mutants, suggesting that the MacABCsm
efflux pump uses an alternative, still-unidentified porin (Lin
et al., 2014b). This efflux pump is constitutively expressed,
contributing toward oxidative and envelope stress tolerances
and biofilm formation. The original function of the MacABCsm
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efflux pump may therefore have seen it involved in metabolism
or adaptation to environmental changes (Lin et al., 2014b).

Bioinformatic analyses have predicted the existence of
additional pumps. For example, the SmtcrA gene, which codes
for a putative MFS pump, has been associated with tetracycline
resistance. Whether any other components are required to make
this pump work remains unknown (Chang et al., 2011).

The presence of active extrusion mechanisms cannot,
however, explain the low susceptibility of S. maltophilia
to all antibiotics, and indeed the S. maltophilia genome
codes for several modifying enzymes responsible for ß-
lactam and aminoglycoside resistance phenotypes. S. maltophilia
possesses two inducible ß-lactamases: L1, a Zn2+-dependent
metalloenzyme which can hydrolyze nearly all classes of β-
lactams (though not monobactams), and L2, a serine active-site
cephalosporinase (Avison et al., 2001). The expression of both
enzymes is regulated by ampR (a LysR type regulator located
upstream of the L2 gene), and induced by the presence of ß-
lactam antibiotics. AmpR acts as a weak repressor of the L2
gene in the absence of the inducer, and as an activator in its
presence.With respect to L1, AmpR is required both for basal and
induced expression (Lin et al., 2009). Other expression-regulating
mechanisms also influence one or the other of the two enzyme
genes, without affecting the regulated expression of the other.
However, the exact mechanism of this additional regulation
system remains to be elucidated (Avison et al., 2002; Okazaki
and Avison, 2008). Finally, the expression of these enzymes in S.
maltophilia is also subject to a complex regulation network. The
deletion of the ampN-ampG operon, which encodes a permease
transporter, prevents the induction of β-lactamases (Huang et al.,
2010), while the inactivation of mrcA, which is predicted to
encode penicillin-binding protein 1 (PBP1a), or of ampD1, which
encodes a cytoplasmic N-acetyl-muramyl-L-alanine amidase,
causes the hyperproduction of L1/L2 β-lactamase (Yang et al.,
2009; Lin et al., 2011).

S. maltophilia also encodes two aminoglycoside modifying
enzymes, conferring low susceptibility to aminoglycoside
antibiotics (with the exception of gentamicin). Gene aph
(3′)-IIc encodes an aminoglycoside phosphotransferase
(Okazaki and Avison, 2007), while aac (6′)-Iz codes for an
N-aminoglycoside acetyltransferase. The latter has three
alleles—aac(6′)-Iz, aac(6′)-Iaz and aac(6′)-Iam—that show
more than 80% similarity (Li et al., 2003; Tada et al., 2014). The
presence of other inactivating enzymes (2′N-acetyltransferase,
streptomycin 3′′phosphotransferase/kinase, spectinomycin
phosphotransferase, and chloramphenicol acetyltransferase)
might be responsible for the susceptibility phenotype of S.
maltophilia (Crossman et al., 2008). More studies are needed,
however, to confirm their function.

S. maltophilia shows low susceptibility to synthetic antibiotics
such as quinolones. Mutations in topoisomerases, the quinolone
target, have been related to the main quinolone resistant
mechanism in all bacteria. However, no topoisomerase mutations
have ever been identified in S. maltophilia (Ribera et al., 2002;
Valdezate et al., 2002; Garcia-Leon et al., 2014b). In contrast,
S. maltophilia quinolone resistance is owed to efflux pumps
(Alonso and Martinez, 2000; Li et al., 2002; Chen et al., 2011;

Garcia-Leon et al., 2014b) and to the quinolone resistance protein
SmQnr. This protein has been associated with both intrinsic
and acquired resistance in S. maltophilia by a still unknown
mechanism (Sanchez and Martinez, 2010; Chang et al., 2011).
Qnr forms a dimer with a structure similar to double stranded
DNA (Vetting et al., 2006; Xiong et al., 2011). Then, it has been
proposed that SmQnr would bind topoisomerases protecting
them, similarly to what was described for Qnr encoded in plasmid
(Tran and Jacoby, 2002; Tran et al., 2005).

There is limited information on the antibiotic resistance
mechanisms operating in clinical S. maltophilia strains. To
date, overexpression of efflux pumps SmeABC, SmeDEF and
SmeVWX, and the presence of class 1 integrons with antibiotic
resistance genes have been associated with low susceptibility in
clinical strains (Alonso andMartinez, 2001; Liaw et al., 2010; Cho
et al., 2012).

Phenotypic Resistance

In addition to the antibiotic resistance genes described,
microorganisms may possess a non-inheritable resistance
mechanism known as phenotypic resistance. Some (or indeed
all) of a bacterial population, may temporarily appear less
susceptible to an antibiotic, without the appearance of any
genomic differences. The factors responsible for phenotypic
resistance might be good targets for novel treatments. However,
our knowledge of the genes responsible for phenotypic resistance
remains limited.

Biofilms are complex structures composed of an
exopolysaccharide matrix, DNA and proteins, in which bacteria
lie. They often affect clinical equipment such as catheters and
other devices, from which they can be difficult to remove. The
reduction in susceptibility to antibiotics afforded by biofilms is
due to the difficulty of making the antibiotic come into contact
with the bacteria, and these bacteria having a metabolic status
different to that of their non-biofilm counterparts (a consequence
of differences in the availability of nutrients and oxygen, etc.).

Different factors involved in biofilm formation have been
studied in S. maltophilia. The deletion of different genes
related to the regulation and structure of flagella, and to
exopolysaccharide synthesis, affects biofilm formation (Huang
et al., 2006; Kang et al., 2015). Other biofilm components, such as
extracellular DNA, have been analyzed in microorganisms such
as P. aeruginosa and Salmonella enterica (Mulcahy et al., 2008;
Johnson et al., 2013), but the literature contains no information
for S. maltophilia.

Bacteria showing low susceptibility to antibiotics but which
are genetically identical to the susceptible strain can become
persistent. Different genes involved in E. coli persistence include
those coding for toxin/antitoxin systems and the PhoU regulator
(Olivares et al., 2013). Although S. maltophilia persistence
increases in chronic infections (Brooke, 2012), the mechanisms
responsible for this phenotype remain unknown.

Post-transcriptional and post-translational regulation or
modification can also alter antibiotic resistance. In S. maltophilia,
however, little is known about this kind of regulation. Non-
coding small RNAs (sRNA) and the RNA-binding Hfq protein
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have been related to post-transcriptional gene expression, and in
E. coli an sRNA and Hfq have been associated with antibiotic
susceptibility (Moon and Gottesman, 2009). In S. maltophilia,
60 sRNA candidates and a hfq gene have been identified, and
a 1hfq mutant has been associated with changes in antibiotic
susceptibility, biofilm production, motility and the expression of
several sRNAs (Roscetto et al., 2012). However, further studies are
needed to determine the role of sRNAs in antibiotic susceptibility.

Intrinsic Resistome

The study of the intrinsic resistome could provide novel
antibiotic targets and help predict events during treatment. The
intrinsic resistome has been studied in P. aeruginosa (Fajardo
et al., 2008) and E. coli (Tamae et al., 2008; Girgis et al., 2009;
Liu et al., 2010), and many genes whose deletion affects the
antibiotic susceptibility phenotype have been identified. Recently,
the screening of an S. maltophilia insertion mutant library
identified smeT, which codes for a well-known regulator of the
SmeDEF efflux pump, and mutS, which has a role in the DNA
mismatch repair system. Other genes, e.g., the 23S gene, with no
obvious role in antibiotic susceptibility may however influence
it (Bernardini, 2014). Further analyses are required to precisely
determine the role and mechanism of action of these genes in S.
maltophilia antibiotic resistance.

The presence of this great number of influencing genes and
antibiotic resistance mechanisms in S. maltophilia renders the
treatment of its infections complicated. Several antibiotics are
currently in use, including synthetic antibiotics and antibiotic
combinations, that help prevent the appearance of resistant
mutants. A trimethoprim/sulfamethoxazole (cotrimoxazole)
combination is used as a last treatment option. Cotrimoxazole
resistance in S. maltophilia has been associated with the genes
sul1 and sul2. These have been linked to the presence of class 1
integrons in plasmids in the main, but also in the chromosomal

genome (Barbolla et al., 2004; Toleman et al., 2007). The
presence of these genes, however, cannot explain all the cases of
cotrimoxazole resistance recorded. Porin TolCsm deletion also
increases cotrimoxazole susceptibility (Huang et al., 2013b), but
further studies are required to determine whether other porins or
efflux pumps are also involved.

How to avoid the antibiotic resistance? This has been a
problem since the beginning of antibiotics use. The search
of new antibiotics, inhibitors of efflux pumps (Leitner
et al., 2011), new targets among genes form intrinsic
resistome or use of combination of known antibiotics, as
trimethoprim/sulfamethoxazole (described above), are some of
the new strategies to avoid not only resistant strains but also the
appearance of resistant mutants.

In summary, S. maltophilia possesses a great many antibiotic
resistance mechanisms. Most of the genes involved were present
in S. maltophilia before any use of antibiotics. For example,
the efflux pump SmeDEF is associated with the ability of S.
maltophilia to colonize plants, and its regulator SmeT is induced
by plant-produced flavonoids (Garcia-Leon et al., 2014a); thus,
the main function of the genes encoding them is unlikely to
be the provision of antibiotic resistance. Other mechanisms

might appear in the future, depending on antibiotic pressure,
the emergence of mutations, and gene acquisition events. While
resistance may benefit bacteria in the presence of antibiotics, in
other situations it could impair growth, as has been described
for the overexpression of the efflux pump SmeDEF (Alonso
et al., 2004). Further, the fitness cost of acquired resistance
in S. maltophilia determines whether new mechanisms are
kept.
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