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Pseudomonas aeruginosa infections are becoming increasingly difficult to treat due
to intrinsic antibiotic resistance and the propensity of this pathogen to accumulate
diverse resistance mechanisms. Hyperexpression of efflux pumps of the Resistance-
Nodulation-Cell Division (RND)-type multidrug efflux pumps (e.g., MexAB-OprM),
chromosomally encoded by mexAB-oprM, mexCD-oprJ, mexEF-oprN, and mexXY
(-oprA) is often detected in clinical isolates and contributes to worrying multi-drug
resistance phenotypes. Not all antibiotics are affected to the same extent by the
aforementioned RND efflux pumps. The impact of efflux on antibiotic activity varies
not only between different classes of antibiotics but also between members of the
same family of antibiotics. Subtle differences in physicochemical features of compound-
pump and compound-solvent interactions largely determine how compounds are
affected by efflux activity. The combination of different high-resolution techniques
helps to gain insight into the functioning of these molecular machineries. This
review discusses substrate recognition patterns based on experimental evidence and
computer simulations with a focus on MexB, the pump subunit of the main RND
transporter in P. aeruginosa.

Keywords: efflux, multi-drug resistance, bacteria, RND, substrate recognition, Pseudomonas aeruginsoa,
antibiotic agents, efflux pump inhibitors

Introduction

Infectious diseases, including bacterial infections, are among the major causes of mortality
worldwide (Mason et al., 2003). Infections by multi-drug resistant (MDR) pathogens are especially
difficult to treat and are recognized as amajor threat (CDC, 2013; Denys and Relich, 2014; Martinez
and Baquero, 2014; ECDC, 2015).

The Gram-negative bacterium Pseudomonas aeruginosa is frequently involved in healthcare-
associated infections like pneumonia, bloodstream infections, urinary tract infections, and surgical
site infections (Hidron et al., 2008; Jones et al., 2009; Zhanel et al., 2010). About 8% of nosocomial
infections reported to the Centers for Disease Control and Prevention in the US are ascribed to
P. aeruginosa. 13% of the severe cases in the US are caused by MDR isolates and 14% of European
isolates reported between 2005 and 2013 had combined resistance to several antibiotics (CDC,
2013; ECDC, 2015). MDR phenotypes have been described for clinical isolates from various places
all over the world (Potron et al., 2015).MDR P. aeruginosa isolates are sometimes resistant to nearly
all classes of antibiotics and have lost susceptibility toward fluoroquinolones, aminoglycosides,
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cephalosporins, and carbapenems (Livermore, 2009; Riou et al.,
2010; Poole, 2011; Castanheira et al., 2014).

The outer membrane (OM) of Gram-negative bacteria has
an asymmetric structure including an outer leaflet made of
lipopolysaccharides (LPS), an inner phospholipid leaflet, and
porin channels (Kamio and Nikaido, 1976; Nikaido, 2003).
Small, hydrophilic compounds can pass the OM by diffusion
through the porin channels whereas large and/or hydrophobic
compounds have to go through the lipid bilayer (Hancock, 1997;
Delcour, 2009). In the Escherichia coli OM, there are trimeric
porins like OmpF and OmpC present that allow a relatively
rapid diffusion of small, hydrophilic substances (Nikaido and
Rosenberg, 1983; Cowan et al., 1992; Schulz, 1993). P. aeruginosa
does not make such trimeric porins but expresses the monomeric
porin OprF at a low number with a small opening that only allows
slow permeation (Angus et al., 1982; Yoshimura and Nikaido,
1982; Sugawara et al., 2006, 2010). P. aeruginosa has also specific
channels such as OprD for basic amino acids and peptides,
which is the main entry passage of carbapenem antibiotics
(Nikaido, 2003). The structure of the OM can be adapted by
P. aeruginosa to decrease the net negative charge of the LPS in
response to cationic peptides such as polymyxin B, which act
on the negatively charged LPS (Olaitan et al., 2014). Thus, the
OM of P. aeruginosa strongly reduces the permeability for most
antibiotics and provides an effective and adaptable protection
against antibacterial agents (Delcour, 2009; Page, 2012).

Many of the compounds that can pass through the OM
are actively transported out of the cell again by efflux pumps.
The low permeability of the OM combined with such efflux
pumps results in an effective protection against a wide variety of
substances including antibiotics (Kumar and Schweizer, 2005;
Fernandez and Hancock, 2012). P. aeruginosa PAO1 has 12
efflux systems of the Resistance-Nodulation-Cell Division (RND)
family (Poole, 2000, 2004, 2005, 2013; Webber and Piddock,
2003; Piddock, 2006; Zechini and Versace, 2009; Fernandez and
Hancock, 2012; Nikaido and Pages, 2012; Blair et al., 2014, 2015b;
Delmar et al., 2014; Sun et al., 2014), whereof a set of four RND
pumps contributes most significantly to antibiotic resistance:
MexAB-OprM, MexCD-OprJ, MexEF-OprN, and MexXY-OprM
(Fernandez and Hancock, 2012). MexB transports β-lactams
including β-lactamase inhibitors and carbapenems (not
imipenem), aminoglycosides, fluoroquinolones, tetracyclines,
tigecycline, macrolides, amphenicols, novobiocin, sulfonamides,
trimethoprim, cerulenin, thiolactomycin, some amphiphilic
molecules, disinfectants, dyes, solvents, detergents, and several
homoserine lactones involved in quorum sensing [detailed
lists of RND substrates are given in (Poole, 2005; Lister et al.,
2009) and in Table 1 for dyes described in this review]. MexD
recognizes fluoroquinolones, zwitterionic cephalosporins,
macrolides, chloramphenicol, trimethoprim, and tetracyclines.
MexF accepts fluoroquinolones, chloramphenicol, trimethoprim,
and tetracycline as substrates. MexY transports aminoglycosides,
fluoroquinolones, macrolides, tetracyclines, tigecycline, and
zwitterionic cephalosporins (Morita et al., 2012).

The expression of RND pumps is regulated as a response
to external stress factors such as reactive oxygen species
(MexAB-OprM, MexXY-OprM), reactive nitrogen species

(MexEF-OprN), and other agents imposing stress to the bacterial
cell like membrane damaging agents (MexCD-OprJ) or ribosome
blocking substances (MexXY-OprM), (Grkovic et al., 2002; Lister
et al., 2009; Morita et al., 2014; Poole, 2014). Thus, efflux pumps
may be part of a versatile protection mechanism against cellular
stress that works not only in response to naturally occurring
signals but also against antibiotics.

Increased pump expression can be linked to decreased porin
expression as for example in the nfxCmutants of P. aeruginosa. In
these mutants OprD expression is downregulated, which impairs
carbapenem uptake andMexEF-OprN expression is upregulated,
which affects fluoroquinolone export (Fukuda et al., 1990, 1995;
Davin-Regli et al., 2008; Nishino et al., 2009; Castanheira et al.,
2014).

One possibility to circumvent efflux is the development of
antibiotics that are not pump substrates, or are only poorly
affected by pump activity (e.g., Hayashi et al., 2014). Alternatively,
one may look for molecules that inhibit pumps and can be used
as adjuvants in combination with antibiotics (e.g., Olivares et al.,
2013). For both strategies it is crucial to understand the molecular
properties that define pump substrates. This review describes
experimental procedures that are sensitive to RND efflux pump
activity and allow conclusions on substrate recognition by
RND efflux pumps. The described methods include specifically
designed efflux assays but also assays which were developed for
other purposes than efflux studies but revealed substrates of efflux
pumps (e.g., probes for membrane integrity have been found to
be efflux pump substrates). Substrate recognition by MexB from
P. aeruginosa can often not (or not yet) be investigated with
the methods described for AcrB in E. coli but can be modeled
with in silico methods based on experimental data. Specific
data about substrate recognition by MexB from P. aeruginosa
are still limited. Therefore we discuss in detail results obtained
also for AcrB when they describe similarities between the two
RND transporters. It is paradigmatic that to date and to our
knowledge there is only a single computational study addressing
the molecular aspects of MexB-substrate interactions.

Impact of Efflux on Antibiotic Activity

A direct impact of efflux on antibiotic activity on P. aeruginosa
was shown for a core set of RND pumps by efflux-pump deletion
mutants and could be confirmed by mutants that overexpress
selected RND systems (Li et al., 1995; Lomovskaya et al., 1999;
Masuda et al., 2000a; Poole, 2000, 2004, 2005, 2013; Schweizer,
2003). Susceptibility of P. aeruginosa towards many antibiotics
has been restored when the four systems that are most relevant
for antibiotic resistance (MexAB-OprM, MexCD-OprJ, MexEF-
OprN, and MexXY-OprM) have been deleted (Morita et al.,
2001; Kumar et al., 2006). These P. aeruginosa RND pumps have
overlapping but not identical substrate ranges as mentioned in
the Section Introduction. RND efflux pumps have individual
substrate specificities that include amphiphilic molecules (e.g.,
MexB) but also hydrophobic solutes (e.g., MexB, MexD) and
the hydrophilic polycationic aminoglycosides (MexY), described
to enter cells by a self-promoted mechanism (Hancock, 1997).
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TABLE 1 | Properties of efflux-pump substrates and inhibitors.

Compound logP (o/w)a TPSA (Å2)b MW (Da)c PC+d PC−e Net PCf Properties

Inhibitors

D13-9001 0.85 210.8 693.8 9.96 −9.96 0 Not transported

PAßN 2.65 149.5 448.6 9.99 −7.99 2 Transported

Mefloquin 4.27 49.7 379.3 6.13 −5.13 1 Quinolone

Substrates acting as inhibitorg

Minocycline −0.28 164.6 457.5 7.11 −7.11 0 Antibiotic

Trimethoprim 0.94 106.8 291.3 5.27 −4.28 1 Antibiotic

Taurocholate 2.33 141.0 514.7 4.79 −5.79 −1 Bile acid

Erythromycin 2.76 195.1 734.9 9.73 −8.73 1 Antibiotic

Glycocholate 3.15 129.9 464.6 4.14 −5.14 −1 Bile acid

Substrates

Ceftobiprole −1.29 213.7 533.6 9.53 −10.5 −1 Antibiotic

Aztreonam −1.03 201.3 433.4 7.09 −9.10 −2 Antibiotic

Flomoxef −0.96 171.8 495.5 7.34 −8.34 −1 Antibiotic

Cefazolin −0.73 158.9 453.5 5.65 −6.65 −1 Antibiotic

Meropenem −0.47 117.6 383.5 6.09 −6.09 0 Antibiotic

FDG −0.40 234.3 656.6 10.38 −10.4 0 Intracellular conversion into a fluorescent product

Moxalactam −0.38 212.0 518.5 7.60 −9.60 −2 Antibiotic

Tigecycline −0.26 210.3 586.7 9.99 −8.99 1 Antibiotic

Cefamandole −0.18 153.4 461.5 6.47 −7.47 −1 Antibiotic

(+)-Cerulenin 0.10 72.7 223.3 3.39 −3.39 0 Antibiotic

Cefsulodine 0.21 187.7 531.5 9.08 −10.1 −1 Antibiotic

Gemifloxacin 0.36 125.8 389.4 6.80 −6.81 0 Antibiotic

Doxorubicin 0.51 207.7 544.5 8.89 −7.89 1 Anticancer drug, quenched intracellular fluorescence

Cephalotin 0.58 115.8 395.4 5.48 −6.48 −1 Antibiotic

Sulbenicillin 0.59 140.8 412.4 5.97 −7.97 −2 Antibiotic

Dodecyl- α-D-maltoside 0.70 178.5 510.6 7.00 −7.00 0 Detergent

Levofloxacin 0.80 76.15 360.4 4.57 −5.58 −1 Antibiotic

Norfloxacin 0.85 80.3 319.3 5.46 −5.46 0 Antibiotic

Nalidixic acid 0.88 73.3 231.2 3.14 −4.15 −1 Antibiotic

Chloramphenicol 1.10 115.4 323.1 5.02 −5.02 0 Antibiotic

Ciprofloxacin 1.16 80.3 331.3 5.66 −5.66 0 Antibiotic

Oxolinic acid 1.19 78.9 260.2 3.25 −4.25 −1 Antibiotic

Carbenicillin 1.23 129.7 376.4 5.32 −7.32 −2 Antibiotic

Ceftazidime 1.35 194.1 545.6 8.68 −9.68 −1 Antibiotic

Resazurin 1.79 75.3 229.2 2.80 −2.81 0 Intracellular conversion into a fluorescent product

Ala-NAP 1.88 56.7 215.3 4.02 −3.02 1 Intracellular conversion into a fluorescent product

Cefaloridine 1.96 93.4 415.5 6.14 −6.14 0 Antibiotic

Moxifloxacin 2.01 89.5 401.4 5.87 −5.87 0 Antibiotic

Thiolactomycin 2.41 34.1 210.3 2.39 −2.39 0 Antibiotic

Cloxacillin 2.67 115.6 434.9 4.96 −5.96 −1 Antibiotic

Proflavin 2.80 66.2 210.3 4.03 −3.03 1 Fluorescent probe

Pyronin Y 2.98 15.5 267.4 3.14 −2.14 1 Fluorescent Probe, quenched intracellular fluorescence

Nitrocefin 3.02 181.2 515.5 7.20 −8.20 −1 Antibiotic

Clarithromycin 3.12 184.1 749.0 9.61 −8.61 1 Antibiotic

Acriflavine 3.19 55.9 224.3 4.06 −3.06 1 Fluorescent Probe, quenched intracellular fluorescence

Leu-NAP 3.29 56.7 257.4 4.02 −3.02 1 Intracellular conversion into a fluorescent product

Novobiocin 3.30 198.9 611.6 8.03 −9.04 −1 Antibiotic

ANS 3.35 63.2 298.3 3.71 −4.71 −1 Fluorescent Probe, enhanced intracellular fluorescence

Nile red 3.71 41.9 318.4 3.38 −3.38 0 Fluorescent Probe, enhanced intracellular fluorescence

Telithromycin 3.84 173.1 813.0 9.91 −8.91 1 Antibiotic

Fluorescein 4.13 76.0 332.3 4.16 −4.16 0 Fluorescent probe

DASPEI 4.38 7.12 253.4 3.45 −2.45 1 Fluorescent Probe, enhanced intracellular fluorescence

(Continued)

Frontiers in Microbiology | www.frontiersin.org 3 July 2015 | Volume 6 | Article 660

http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/
http://www.frontiersin.org/Microbiology/archive


Dreier and Ruggerone Substrate recognition by RND efflux pumps

TABLE 1 | Continued

Compound logP (o/w)a TPSA (Å2)b MW (Da)c PC+d PC−e Net PCf Properties

Hoechst H33342 4.47 74.3 453.6 6.09 −5.09 1 Fluorescent Probe, enhanced intracellular fluorescence

NPN 4.51 12.0 219.3 2.40 −2.40 0 Fluorescent Probe, enhanced intracellular fluorescence

Rifampicin 4.56 221.4 824.0 11.1 −10.1 1 Antibiotic

Ethidium 5.20 55.9 314.4 4.66 −3.66 1 Fluorescent Probe, enhanced intracellular fluorescence

TMA-DPH 5.39 0.0 290.4 4.18 −3.18 1 Fluorescent Probe, enhanced intracellular fluorescence

Rhodamine 6G 5.76 59.9 442.6 4.23 −4.24 0 Fluorescent probe

1,2′-dinaphthylamine 5.77 12.0 269.3 2.70 −2.70 0 Fluorescent Probe, enhanced intracellular fluorescence

DiOC2 (3) 6.06 29.5 333.4 3.79 −2.79 1 Fluorescent Probe, enhanced intracellular fluorescence

Other

Imipenem −0.69 118.3 299.4 5.50 −5.50 0 Antibiotic, not a substrate

Resorufin 1.49 58.9 213.2 2.75 −2.75 0 Fluorescent probe

Optochin 3.75 46.8 341.5 4.36 −3.37 1 Quinolone

Descriptors were calculated for pH 7 using Molecular Operating Environment (MOE), 2013.08; Chemical Computing Group Inc., 1010 Sherbooke St. West, Suite #910,
Montreal, QC, Canada, H3A 2R7, 2014.
aLogarithm of partition coefficient between n -octanol and water (o/w); bTotal Polar Surface Area; cMolecular Weight; dPartial positive charge; ePartial negagtive Charge;
fnet Partial Charge.
gExamples for which efflux inhibition was shown are listed. Other substrates may act as inhibitors too.

Note that most antibiotics are amphiphilic compounds with
hydrophobic parts that are required to partition into a membrane
but that there are considerable differences with regard to the
impact of efflux on activity even within classes of antibiotics
(Hancock, 1997; Nikaido, 2003; Delcour, 2009; Brown et al.,
2014).

An effort to make tetracyclines that are not substrates of
tetracycline-specific pumps of the major facilitator superfamily
(MFS), led to the development of tigecycline (Chopra, 2002).
However, tigecycline was still a substrate of the RND pumps
MexY, MexB, and MexD in P. aeruginosa (Dean et al., 2003;
Visalli et al., 2003; Chollet et al., 2004). This observation
illustrates the flexibility of RND efflux pumps but it does not
mean that a given RND transporter would accept all antibiotics of
the same class. The macrolides erythromycin and clarithromycin
have been found to be better substrates of AcrB of E. coli and
of Enterobacter aerogenes than the ketolide telithromycin (Dean
et al., 2003; Visalli et al., 2003; Chollet et al., 2004). RND pumps
in P. aeruginosa have been shown by in vitro susceptibility studies
to transport substrates of the quinolone family with differential
preference (Li et al., 1995; Kohler et al., 1997; Lomovskaya et al.,
1999; Masuda et al., 2000a; Griffith et al., 2006; Dunham et al.,
2010; Morita et al., 2015). Fluoroquinolones like levofloxacin,
ciprofloxacin, norfloxacin, and others, have been reported to
be most efficiently exported by MexEF-OprN and MexCD-OprJ
and with less efficiency by MexAB-OprM and MexXY-OprM
(or OprA). Non-fluorinated quinolones (e.g., nalidixic acid,
piromidic acid, pipemidic acid, cinoxacin, oxolinic acid, and
flumequine) have been shown to be preferentially transported
by MexEF-OprN, less efficiently by MexCD-OprJ and MexAB-
OprM, and least efficiently by MexXY-OprM (Kohler et al.,
1997; Masuda et al., 2000b). It has been concluded from these
results that fluoroquinolones with a positive charge and an
electronegative fluorine atom are predominantly recognized by
MexCD-OprJ, whereas quinolones without the fluorine atom
are preferred substrates of MexEF-OprN. This result was in

agreement with earlier work, suggesting that MexCD-OprJ expels
amphiphilic substrates with a positive charge that can partition
into a membrane (Masuda et al., 1996; Nikaido, 1996).

Studies on β-lactam efflux by AcrB in Salmonella enterica
serovar Typhimurium have indicated that RND efflux pumps
somehow recognize the hydrophobicity of a substrate (Nikaido
et al., 1998; Ferreira and Kiralj, 2004). The studies showed that
efflux efficiency varied with the lipophilicity of the β-lactam side
chain and that molecules with more hydrophobic side chains
were preferred substrates. Further work with β-lactams shed light
on substrate specificity among RND pumps in P. aeruginosa.
MexB transported a broad spectrum of β-lactams including
penicillins, cephems, and carbapenems but not imipenem
(Masuda et al., 2000b, 2001; Baum et al., 2009). MexD had a
slightly narrower spectrum, which excluded the MexB substrates
carbenicillin, sulbenicillin, ceftazidime, andmoxalactam (Li et al.,
1994; Masuda et al., 2000b). MexY had a yet narrower spectrum,
which further excluded cefsulodin, flomoxef, and aztreonam
(Masuda et al., 2000b; Hocquet et al., 2006). As carbenicillin and
sulbenicillin have a negative charge that the other β-lactams in
theses studies do not have, it seems that MexB accepts substrates
with negative charges that MexD and MexY do not recognize.
The finding that certain variants of MexD had altered substrate
specificity has suggested that the recognition likely takes place
via electrostatic interactions. MexD Q45K and MexD E89K
with additional positively charged lysine residues have conferred
resistance to the negatively charged carbenicillin, aztreonam, and
ceftazidime (Mao et al., 2002). A role of charged residues in
substrate recognition has been shown for AcrD too based on
the fact that the binding pocket of AcrD contains an arginine
residue (R625) not found in the mostly hydrophobic pocket
of AcrB. Resistance to negatively charged β-lactams increased
significantly when an arginine residue was introduced at the
corresponding place in AcrB (I626R). Removal of a glutamic
acid residue from the AcrB pocket (E673G), a residue not
present at this position in AcrD, further enhanced the protective
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effect and helped to explain the specificity of AcrD for small
hydrophilic substrates such as the anionic β-lactams carbenicillin,
aztreonam, and sulbenicillin (Wehmeier et al., 2009; Kobayashi
et al., 2014).

Carbapenem activity was not uniformly affected by efflux
pumps either. Meropenem was sensitive to overexpression
of MexAB-OprM, MexCD-OprJ, or MexXY-OprM, whereas
imipenem was not significantly affected (Masuda et al., 2000b;
Ong et al., 2007; Riera et al., 2011; Castanheira et al., 2014).
Efflux-pump expression levels in clinical isolates of P. aeruginosa
indicated that MexAB-OprM and MexXY-OprM were most
relevant for meropenem activity, followed by MexEF-OprN and
with the lowest impact by MexCD-OprJ (Pai et al., 2001; Giske
et al., 2005; Riera et al., 2011). A computer simulation of
imipenem and meropenem transport by MexB suggested that
the hydrophobicity and the flexibility of the side chains were
probably responsible for efflux sensitivity (Collu et al., 2012b).
The study indicated that the more rigid and hydrophobic tail
of meropenem made strong interactions with the hydrophobic
lining of the distal binding pocket in MexB (see Figure 1 for the
structure of the transporter with two affinity sites) whereas the
flexible and more hydrophilic tail of imipenem prevented this
interaction (a detailed description of the extrusion pathway is
given in the Section Computational Study). The computational
results have further suggested that imipenem had no pronounced
affinity for any particular site in MexB.

The anti-MRSA cephalosporin ceftobiprole is another
β-lactam that is poorly recognized by MexB, MexD, and MexF in
P. aeruginosa (Baum et al., 2009). Overexpression of these efflux
pumps had only the marginal effect on the activity of ceftobiprole
of a twofold increase of the minimum inhibitory concentration
(MIC). Overexpression of MexXY caused a fourfold to eightfold
increase of the MIC. The data have indicated that ceftobiprole
was more efficiently transported by MexY than by MexB (Baum
et al., 2009).

It should be pointed out that not all efflux substrates can be
reliably detected by MIC. MIC may be a misleading indicator
for efflux for any antibacterial that is effective at a concentration
below the concentration required to reachmaximal efflux velocity
Vmax. For example, AcrB had only a minor effect on the activity
of cefaloridine (Nikaido et al., 1998; Mazzariol et al., 2000).
Cefaloridine was later shown to be strongly effluxed by AcrB
only at concentrations higher than those required to kill bacteria
(Nagano and Nikaido, 2009). The discrepancy was explained
by the finding that cefaloridine was effluxed with a high Vmax
but also with a strong positive cooperativity. The cefaloridine
concentration required to reach half-maximal velocity (288 μM)
was much higher than the effective antibacterial dose (Nikaido
and Normark, 1987; Nagano and Nikaido, 2009). Note that
cefaloridine may not be an exception because other drugs
(cephalotin, cefamandole) were also transported in a cooperative
manner (Nagano and Nikaido, 2009). The situation may be

FIGURE 1 | Binding pockets of MexB [PDB code: 2V50 (Sennhauser
et al., 2009)]. The monomers L, T, and O are in tube representation and colored
in blue, red, and green, respectively. In (A,B) side and top views of MexB with
the distal binding pocket depicted as surface, in (C,D) the access binding

pocket is highlighted as surface. In (E,F) the side and top views of L monomer
are shown with access and distal binding pocket colored as blue and yellow
surfaces, respectively. All the atomic-level figures were rendered using Visual
Molecular Dynamics (VMD; Humphrey et al., 1996).
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different in P. aeruginosa because its OMhas a lower permeability
for β-lactams than the OM of E. coli (as explained before). This
lower permeability leads to higher MIC and to a stronger impact
of efflux than in E. coli and thus, less discrepancy between efflux
studies and MIC data may be expected.

MIC tests in the presence of the model efflux-pump inhibitor
(EPI) phenylalanine-arginine β-naphthylamide (PAβN) are often
done as a quick check for efflux effects (e.g., Mesaros et al.,
2007; Pages et al., 2009; Castanheira et al., 2014). Increased
antimicrobial activity (i.e., lower MIC) of an antibiotic in
the presence of PAβN is taken as an indication that the test
compound is an efflux substrate. However, detailed studies
with PAβN nicely illustrated the complexity of effects that can
influence whole cell assays such as MIC determinations. It has
already been mentioned in the original publication of PAβN
that this agent does not only inhibit efflux pumps but also
permeabilizes the OM of Gram-negative bacteria (Lomovskaya
et al., 2001). This permeabilization property has been confirmed
later in separate studies (Iino et al., 2012b; Lamers et al.,
2013). Permeabilization of the OM may be mistaken as pump
inhibition because facilitated entry of test compounds leads to
increased intracellular levels. Pump inhibition and membrane
permeabilization by PAβN have been shown to be dose-
dependent, separable activities in E. coli because AcrB and
AcrF have been specifically inhibited at low doses of PAβN,
whereas membrane destabilization has been observed at higher
concentrations of PAβN (Misra et al., 2015).

The protonophore carbonyl cyanide m-chlorophenylhy-
drazone (CCCP) is often used in a similar way as PAβN to
probe for efflux phenomena. RND pumps belong to the class of
secondary transporters, which are driven by a transmembrane
electrochemical potential of protons (reviewed in Borges-
Walmsley et al., 2003; Poole, 2005; Dreier, 2007). CCCP indirectly
inhibits secondary efflux pumps by dissipating the proton
gradient across the inner membrane (Rosen and Kashket, 1978;
Levy, 1992). It should be clear that whole cell assays require
thorough controls to avoid confusion of pump inhibition with
other effects. Susceptibility tests are useful to investigate general
substrate recognition patterns whereas elucidation of detailed
efflux mechanisms requires specifically designed assays.

Efflux Assays

Transport studies generally require at least two compartments
and a method to measure concentration changes of a
tracer substance. Entire RND efflux systems require three
compartments (cytosol, periplasm, and cell exterior), which
makes whole bacteria an obvious choice for efflux assays. In
principle, cells can be incubated with any pump substrate and
efflux can be measured by following the change of substrate
concentration inside or outside of the bacteria [e.g., (Kohler
et al., 1997; Pumbwe and Piddock, 2000)]. Such a generic method
may require the separation of intracellular from extracellular
substrate, usually achieved by filtration or centrifugation. Cell
lysis may be necessary too before a versatile detection method
like liquid chromatography–mass spectrometry (LC–MS) or

high performance liquid chromatography (HPLC) can be applied
(e.g., Schumacher et al., 2007; Cai et al., 2009). Homogeneous
assays use methods that allow substrate quantification without
a separation step, which simplifies applications like time-course
transport studies or high-throughput tests. Fluorescence was
selected as the method of choice to assess fluoroquinolone
accumulation in Gram-negative bacteria based on a comparison
of various methods (Mortimer and Piddock, 1991). The study
showed that steady-state concentrations and times to reach the
steady-state condition varied in a substrate-specific manner
within the quinolone family.

Many protocols use molecules whose fluorescent properties
are sensitive to their environment and change upon entry into a
cell (Figures 2A,B). A prominent example is ethidium bromide
(EtBr) since the quantum yield of the fluorescence increases
when ethidium intercalates into DNA (LePecq and Paoletti,
1967; Mine et al., 1999; Morita et al., 2001; Li et al., 2003).
Active efflux causes reduced intracellular levels of EtBr and as
a consequence a decrease of fluorescence whereas inhibition of
efflux pumps is recorded as a signal increase (Figure 2A). The
same assay principle (Figure 2A) applies to 1-anilinonaphtalene-
8-sulphonate (ANS) accumulation because the fluorescence
quantum yield increases when ANS binds to hydrophobic
structures (e.g., proteins, membranes) in the cell. ANS is a
substrate of MexD and has been used to study this transporter
in P. aeruginosa (Walmsley et al., 1994; Mao et al., 2002;
Kamal et al., 2013). Another example is 1,2′-dinaphthylamine
which has been used to measure AcrB efflux in E. coli because
it is a substrate of AcrB and becomes strongly fluorescent
when it partitions into a phospholipid bilayer (Bohnert et al.,
2011a).

A widely used fluorophore with increased intracellular
fluorescence is the bis-benzamide dye Hoechst H33342 which
becomes more fluorescent upon binding to DNA (Loontiens
et al., 1990). H33342 was successfully used for accumulation
studies with several Gram-positive bacteria, Enterobacteriaceae,
and Acinetobacter baumannii (van den Berg van Saparoea
et al., 2005; Garvey and Piddock, 2008; Richmond et al., 2013).
Transport of H33342 by intact P. aeruginosa has been difficult
to measure because of the low OM permeability for such
hydrophobic dyes (Loh et al., 1984; Ocaktan et al., 1997; Germ
et al., 1999). However, MexB readily transported H33342 when it
was expressed in an E. coli host (Welch et al., 2010; Ohene-Agyei
et al., 2012). This example shows that whole cell assays reflect
a sum of events, which often need to be dissected to identify
unambiguously substrates of a given efflux pump.

Another group of efflux probes allows efflux measurements
based on a signal decrease upon intracellular accumulation
(Figure 2B; e.g., Mao et al., 2002; Nakashima et al., 2013).
Examples are the anthracycline cancer drug doxorubicin, whose
fluorescence is quenched when the drug is internalized, Pyronin
Y, whose intracellular fluorescence is quenched because of
binding to RNA (Nishino and Yamaguchi, 2002; Nakashima et al.,
2013), and acriflavine, whose fluorescence intensity decreases
when it is bound to DNA (Chen et al., 2002). Pyronin Y
has been successfully used for transport studies with MexD in
P. aeruginosa (Mao et al., 2002).
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FIGURE 2 | Schematic representation of efflux assay formats.
(A) Increase of fluorescence intensity upon internalization of a probe.
A probe with low fluorescence intensity in the medium surrounding the
cells (open circles) is taken up by cells (double arrow). The fluorescence
intensity of the probe increases when the probe is internalized (black
circles) and interacts with cellular structures such as DNA, proteins, or
membranes. Efflux of the probe (arrow through the box to the outside)
causes a decrease of the total fluorescence and efflux inhibition causes
an increase of the total fluorescence. (B) Quenching of fluorescence
intensity upon internalization of a probe. A fluorescent probe (black
circles) is added to the medium surrounding the cells. The fluorescence
intensity of the probe decreases when the probe is taken up by the cells

(open circles) and interacts with cellular structures (e.g., DNA and RNA).
Efflux of the probe causes an increase of the total fluorescence and
efflux inhibition causes a decrease of the total fluorescence.
(C) Intracellular conversion of a probe into a fluorescent product.
A non-fluorescent probe (rectangles with a hatched box) is added to the
medium surrounding the cells. The probe can penetrate into the cells
where it is enzymatically converted (e.g., cleaved or reduced) into a
fluorescent product (black squares). The conversion rate of the intact
probe into the fluorescent product depends on the intracellular
concentration of the intact probe. Efflux of the intact probe slows down
the production of the fluorescent product and efflux inhibition increases
the rate of fluorescent product generation.

Intracellular conversion of a substrate into a traceable
entity is another elegant way to develop homogeneous efflux
assays (Figure 2C). The non-fluorescent, blue-colored resazurin
(sold under the trade name Alamar Blue R©) is reduced
to the fluorescent, pink-colored resorufin in live cells by
oxidoreductases (Gonzalez and Tarloff, 2001; Rampersad, 2012).
The conversion is an indicator mainly for the presence of NADH
but also for NADPH and FADH and is routinely used to detect
living cells. Resazurin can be used to monitor bacterial growth
because conversion rates depend on cell density. However, the
method does not work equally well with all microorganisms
and is not recommended for P. aeruginosa. It was shown that
resazurin is a substrate of MexB in P. aeruginosa and of AcrB
in E. coli and it was suggested that efflux pump activity in
P. aeruginosa may account for the difficulties encountered with
resazurin (Vidal-Aroca et al., 2009). Vidal-Aroca et al. (2009)
showed that under conditions where Pseudomonas do not grow
(i.e., in phosphate buffered saline), resazurin can be used to
measure efflux pump activity. The assay was useful to identify
mefloquine as an inhibitor of MexB and AcrB and to show that
optochin, another quinoline derivative, was not an inhibitor of
these pumps.

The non-fluorescent alanine-β-naphthylamide (Ala-NAP)
and leucine-β-naphthylamide (Leu-NAP) are enzymatically
converted to the highly fluorescent β-naphthylamide by cellular
aminopeptidases (Marks et al., 1981; Butler et al., 1993). Assays
for RND efflux were developed with Ala-NAP and Leu-NAP and
used for the development of peptidomimetic EPI including the
model EPI PAβN (Lomovskaya et al., 2001; Mao et al., 2002).

Fluorescein-di-β-D-galactopyranoside (FDG) is hydrolyzed in
the cytoplasm of E. coli by β-galacotsidase to produce fluorescein
(Russo-Marie et al., 1993; Fieldler and Hinz, 1994; Yang and
Hu, 2004). Both FDG and fluorescein were shown to be efflux-
pump substrates and could be used to develop transport assays

with E. coli cells expressing the pseudomonal MexAB-OprM
and MexXY-OprM efflux systems (Matsumoto et al., 2011).
Intracellular conversion of FDG into fluorescein could even be
followed in single-cell mode with a microfluidic device using
E. coli (Matsumoto et al., 2011; Iino et al., 2012b). FDG cannot be
hydrolyzed by P. aeruginosa but FDG was useful to study MexB
and MexY when they were expressed in an E. coli host (Iino et al.,
2013). Another approach made use of femtoliter droplet arrays to
monitor FDG based efflux in single E. coli cells (Iino et al., 2012a,
2013).

The following paragraphs describe fluorescent dyes, which
were used as probes for membrane integrity or membrane
potential and were later found to be substrates of efflux
pumps. The physicochemical properties of these fluorescent dyes
provide information on substrate recognition by efflux pumps
irrespective of the original use of the probe.

The lipophilic membrane partitioning dye N-phenyl-1-
naphthylamine (NPN) is useful as a probe for membrane
integrity because the amount of NPN that can partition into
the phospholipid membrane and hence the fluorescence signal
increases when the structure of the OM is disturbed (Loh et al.,
1984; Vaara, 1992; Lomovskaya et al., 2001). NPN was shown to
be a substrate of AcrB in E. coli and of MexB in P. aeruginosa
(Sedgwick and Bragg, 1996; Ocaktan et al., 1997; Lomovskaya
et al., 2001; Murakami et al., 2004; Cai et al., 2009).

Fluorescent potentiometric probes such as the anionic
oxonols and the cationic carbocyanines and rhodamines are
useful to measure changes of bacterial membrane potentials
(Shapiro, 2000). The overall fluorescence signal of these so
called slow-response dyes depends on the transmembrane
distribution, which is sensitive to changes of the electrochemical
potential across the membrane. Rhodamine measurements in
P. aeruginosa were sensitive to the expression of the RND pumps
MexAB-OprM, MexCD-OprJ, and MexHI-OpmD (Morita et al.,
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2001; Sekiya et al., 2003). The physicochemical features of
these fluorophores, required to partition into a membrane, are
apparently recognized by RND efflux-pumps. Indeed, efflux
assays were reported in various systems with dyes like the
uncharged NPN (MexB of P. aeruginosa, AcrB of E. coli) or
the cationic 1-(4-trimethylammoniumphenyl)-6-phenyl-1,3,5-
hexatriene (TMA-DPH, MexB of P. aeruginosa) and 2-(4-
dimethylamino)styryl-N-ethylpyridinium iodide (DASPEI, AcrB
of E. coli, MexB of P. aeruginosa), (Sedgwick and Bragg, 1996;
Ocaktan et al., 1997; Lomovskaya et al., 2001; Murakami et al.,
2004; Cai et al., 2009). The properties of the dyes that have been
identified as substrates of MexB are listed in Table 1.

Substrate export can be directly followed from pre-loaded
cells. Alternatively, pump activity can be deduced from
intracellular accumulation of externally added substrates, which
requires less preparation but reflects efflux in an indirect manner
only and includes the hurdle of cellular uptake. Direct efflux
measurements require pre-loading of cells with substrate. This
extra complication pays off because efflux-related effects can
be distinguished from permeation phenomena. The lipophilic
dye Nile Red is basically non-fluorescent in aqueous solutions
but becomes fluorescent in intracellular, non-polar environments
(Greenspan and Fowler, 1985). Nile Red was used for efflux
measurements of AcrAB/TolC in E. coli (Greenspan and
Fowler, 1985; Bohnert et al., 2010, 2011b). When E. coli cells
were concomitantly loaded with substrate and inhibitor for
competition studies, the strongest inhibition was seen with
doxorubicin and minocycline, comparable to the effect of PAβN.
Many other antibiotics caused slower Nile Red efflux, which
is indicative of competitive transport. These results provided
further evidence for specific substrate-pump interactions and
corroborated the notion of substrate-specific inhibitor efficacy.
Adaptation of the Nile Red assay for the use with P. aeruginosa
would most likely not be straight forward because Nile Red was
shown to stain extracelluar rhamnolipids made by P. aeruginosa
(Morris et al., 2011). Strains with deletions of rhamnolipid
synthesis genes (rhlAB) may be helpful even if the swarming
motility patterns influenced by rhamnolipids would be changed
(Deziel et al., 2003; Caiazza et al., 2005). However, pre-loading of
P. aeruginosa has been achieved with TMA-DPH (Ocaktan et al.,
1997). Several other dyes (doxorubicin, rhodamin for YhiUV,
NPN, 1,2′-dinaphthylamine and DASPEI for AcrB) have been
used to load E. coli for efflux assays (Lomovskaya et al., 2001;
Nishino and Yamaguchi, 2002; Bohnert et al., 2011a).

Quantitative measurement of substrate transport is crucial
for the characterization of efflux pumps. Kinetic analysis of
EtBr transport in E. coli has shown that uptake rates increased
and efflux rates decreased when AcrB was deleted (Xu et al.,
2003; Viveiros et al., 2008; Paixao et al., 2009). EtBr transport
by MexB has been shown in whole P. aeruginosa and an
impressive turnover rate of 500 s−1 has been determined
for MexB in EtBr efflux assays when the number of pumps
was estimated by immunoblotting methods (Ocaktan et al.,
1997; Narita et al., 2003). A link of MexCD-OprJ expression
with EtBr efflux from P. aeruginosa has been demonstrated
by Morita et al. (2001, 2003) when they showed that
significant EtBr efflux was only measurable after induction

of MexCD-OprJ. MexCD-OprJ expression was inducible with
tetraphenyl phosphonium, EtBr, rhodamine 6G, acriflavine,
benzalkonium chloride, and chlorhexidine gluconate but not
with various antibiotics including substrates of MexD (i.e.,
norfloxacin, tetracycline, chloramphenicol, streptomycin, or
erythromycin).

A thorough quantitative analysis of efflux was achieved
with β-lactams and intact E. coli cells (Nagano and Nikaido,
2009). The method relies on the hydrolysis of β-lactams by
periplasmatic β-lactamases and would probably not be directly
applicable to P. aeruginosa because of the about 10–100 times
lower permeability of the OM for β-lactams (Angus et al., 1982;
Yoshimura and Nikaido, 1982; Parr et al., 1987). Under these
circumstances it would be very difficult to saturate the efflux
pumps and the method may be restricted to a few suitable
β-lactams. Hydrolysis rates of β-lactams were measured in
intact cells to calculate the periplasmic antibiotic concentration
based on known kinetic parameters of β-lactamases. Maximal
velocity and dose–response curves depended on the nature of the
substrate. Positive cooperativity was detected with cefamandole,
cephalotin, and cefaloridin but not with nitrocefin (Nagano and
Nikaido, 2009). Cooperativity agrees with the current model of
the functional complex of AcrAB-TolC where multiple substrate
binding sites reside within three AcrB monomers that adopt
different structural conformations in a concerted way during
substrate transport (Seeger et al., 2006; Murakami et al., 2006;
Sennhauser et al., 2007). Nitrocefin transport was the slowest in
the series, which could be explained by the rather strong binding
of nitrocefin with its two aromatic rings to AcrB (Km of 5 μM).
No significant efflux could be measured with cefazolin, which has
two hydrophilic substituents. Previous work has shown that MIC
of cloxacilin, which has a lipophilic side, chain dropped from 256
to 2 mg/L in S. enterica serovar Typhimurium and from 512 to
2 mg/L in E. coli upon inactivation of AcrB whereas no change
was observed for the MIC of the hydrophilic cefazolin (Nikaido
et al., 1998; Mazzariol et al., 2000). MIC values and efflux studies
strongly suggested that AcrB from E. coli and S. enterica serovar
Typhimurium have a preference for hydrophobic β-lactams.

Specific mode-of-action studies ask for less complex
assay systems than entire bacterial cells. The activity of
different bacterial membrane transporters could be studied with
membrane vesicles. Vesicles proved to be very valuable tools
for the study of tetracycline-specific pumps (e.g., Yamaguchi
et al., 1990). Tetracycline-specific pumps belong to the MFS
class of transporters spanning a single cell membrane (Chopra
and Roberts, 2001), whereas RND pumps are multi-subunit
complexes made of pump subunits (e.g., MexB), an OM channel
(e.g., OprM), and an adaptor subunit (e.g., MexA). The pump
is formed by three monomers placed in the inner membrane
and protrudes into the periplasm (Murakami et al., 2002, 2006;
Seeger et al., 2006; Sennhauser et al., 2007, 2009). The OM
channel, formed by three monomers, passes the OM linking
the periplasmic space with the outside of the cell (Koronakis
et al., 2000; Akama et al., 2004a; Phan et al., 2010). The third
subunit is an adaptor protein that is required for the assembly
of the functional complex which spans the inner membrane,
the periplasmic space, and the OM. The stoichiometry of the
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subunits (MexB:MexA:OprM or AcrB:AcrA:TolC) is currently
discussed with evidence for 3:6:3 (Du et al., 2014, 2015; Kim et al.,
2015) or for 3:3:3 (Symmons et al., 2009; Trepout et al., 2010).
The models are based on electron microscopy data at resolutions
around 20 Å and on docking calculations. A higher-resolution
crystal structure of the assembled efflux systems will likely
provide a clear-cut response to the controversy regarding the
stoichiometry and the construction of the tripartite complex.

The isolated pump subunits AcrB and AcrD from E. coli
and MexB from P. aeruginosa were reconstituted in vesicles
(Zgurskaya andNikaido, 1999; Aires andNikaido, 2005; Verchère
et al., 2014, 2015) but reconstitution of a functional tripartite
RND pump complex for in vitro transport studies is a truly
difficult task that has been achieved only recently (Ntsogo-
Enguene et al., 2015; Verchère et al., 2015). Competition
studies with AcrB-containing vesicles have indicated that the
bile salts taurocholate and glycocholate inhibited transport of a
fluorescent phospholipid more efficiently than erythromycin or
cloxacillin did (Zgurskaya and Nikaido, 1999). Chloramphenicol
was identified in the same study as a substrate that did
not inhibit phospholipid efflux. These results suggested that
known AcrB substrates were transported with different efficiency
reflecting specific substrate recognition patterns. Functional
MexAB-OprM complexes have been assembled in vitro in a
liposome system combining proteoliposomes with OprM and
proteoliposomes with MexAB in a way that MexAB-OprM was
able to transport EtBr driven by a proton gradient (Ntsogo-
Enguene et al., 2015). A related approach used vesicles with
MexB and bacteriorhodopsin, a light activated proton pump from
Halobacterium salinarium (Verchère et al., 2014). Light activation
caused bacteriorhodopsin to build up a proton gradient as the
energy source for MexB. A change of pH was then taken as
indication for substrate transport. The system confirmed that
H33342 is a substrate of MexB and suggested that MexA was
required for proton-coupled transport.

Efflux Inhibitors

Many chemically diverse EPI have been reported and their
selectivity for pumps can provide insight into specific inhibitor–
pump interactions (reviewed in Zechini and Versace, 2009;
Van Bambeke et al., 2010). Inhibitors have been derived from
natural products, antibiotics, drugs originating from other
therapeutic areas or have been newly developed. PAβN and
more advanced peptidomimetics of the same series are among
the best studied examples (Lomovskaya et al., 2001; Mao et al.,
2001; Renau and Lemoine, 2001; Renau et al., 2002; Watkins
et al., 2003; Kriengkauykiat et al., 2005). Selectivity for pumps
indicated specific inhibitor–pump interactions. For example,
PAβN was broadly active against MexAB-OprM, MexEF-OprN,
MexCD-OprJ, and MexXY-OprM in P. aeruginosa as well as
against AcrAB-TolC in several species of the Enterobacteriaceae
family while the pyridopyrimidine efflux inhibitor D13-9001
had a much narrower spectrum with specificity for AcrB and
MexB (Nakashima et al., 2013). PAβN has been shown to
have synergistic activity with levofloxacin against wild-type

P. aeruginosa or against P. aeruginosa strains overexpressing
any of MexAB-OprM, MexCD-OprJ, MexEF-OprM, or MexXY
(Lomovskaya et al., 2001). On the other hand, PAβN had no
significant effect on carbenicillin or EtBr, which are substrates
of MexB too, suggesting multiple binding sites for different
substrates. An antagonistic effect of PAβN with aminoglycosides
has been observed in the presence of MexXY-OprM, which was
explained by the induction of this efflux pump by PAβN (Mao
et al., 2001). PAβN was shown to be an efflux substrate likely
to act by competition with other substrates for transport (Pages
et al., 2005; Lomovskaya and Bostian, 2006; Mahamoud et al.,
2007). D13-9001 was hardly transported but was shown to inhibit
efflux by high affinity binding to a specific site (Nakashima
et al., 2013). Many substances cannot be unambiguously classified
as substrates or as inhibitors because there seems to be a
gradual transition of properties and many molecules have
both characteristics. Minocycline is a substrate of several RND
pumps such as AcrB from E. coli, Proteus mirabilis, Morganella
morganii, MexB, MexD, and MexY in P. aeruginosa, or AdeB
and AdeJ in A. baumannii (Dean et al., 2003; Visalli et al.,
2003; Hirata et al., 2004; Ruzin et al., 2005; Damier-Piolle
et al., 2008) but it also acted as an inhibitor of nitrocefin
efflux by AcrB (Takatsuka et al., 2010). Trimethoprim, an
antibiotic that has been shown to be transported by several RND
efflux pumps (i.e., MexB, MexD, and MexF in P. aeruginosa,
AdeB, AdeJ, AdeG in A. baumannii, and BpeF in Burckholderia
pseudomallei), inhibited the efflux of H33342 by AcrB in
S. enterica serovar Typhimurium (Kohler et al., 1996; Maseda
et al., 2000; Magnet et al., 2001; Coyne et al., 2010; Piddock
et al., 2010; Amin et al., 2013; Podnecky et al., 2013). In
fact, antibiotics could be modified to become efflux inhibitors
as described in the case of fluoroquinolones, tetracyclines, or
aminoglycosides (reviewed in Van Bambeke et al., 2010). In
general, EPI have aromatic moieties and contain ionizable
groups, which are structural features that are reminiscent of
substrate characteristics deduced from antibiotic susceptibility
tests (Poole, 2004, 2005).

Transport measurements are useful to identify molecules that
interact with efflux pumps but investigation of interactions at a
molecular level and precise mode-of-action studies require more
refined methods.

Binding Studies and Crystal Structures

Binding of fluorescent substrates to purified AcrB in detergent
solution could be measured by fluorescence polarization (Su and
Yu, 2007). AcrB bound rhodamine 6G, ethidium, and proflavin,
with similar strength (KD of 5.5, 8.7, and 14.5 μM, respectively).
Binding of ciprofloxacin was significantly weaker with a KD
of 74.1 μM. Competition studies have indicated that different
binding sites may exist for different antibiotics. Experiments
with purified AcrB which was immobilized to a surface, yielded
KD values of 530 μM for novobiocin and of 110 μM for
the EPI MC-207,110 (PAβN; Tikhonova et al., 2011). Binding
studies confirmed specific interaction of substrates or inhibitors
with the pump subunit and revealed substrate-specific variation
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of binding strength (Vargiu and Nikaido, 2012; Vargiu et al.,
2014).

Many molecules have been described to be efflux substrates
or inhibitors but only a small subset thereof could be
crystallized in complex with RND pumps (Ruggerone et al.,
2013a). Nevertheless, X-ray structures have provided detailed
information on substrate-pump interactions (Murakami et al.,
2006; Seeger et al., 2006; Sennhauser et al., 2007, 2009; Nakashima
et al., 2011; Eicher et al., 2012). A detailed description of the
structures is provided in the next section where computational
simulation approaches are discussed. The porter domain of
the inner membrane transporter protrudes into the periplasmic
space (Figure 1) and mediates substrate specificity as predicted
from genetic studies with AcrB, AcrD, MexB, MexD and MexY
(Nikaido, 2011). Gene segments coding for the periplasmatic
loops of the pump subunit were swapped between AcrB and
AcrD of E. coli, between MexB and MexY of P. aeruginosa,
and between AcrB of E. coli and MexB of P. aeruginosa (Elkins
and Nikaido, 2002; Tikhonova et al., 2002; Eda et al., 2003).
Altered substrate specificities of the new constructs suggested
that substrate recognition was predominantly determined by
the periplasmic region of the pump. Site directed mutagenesis
in P. aeruginosa confirmed substrate recognition sites in the
periplasmatic loops of MexB and MexD (Mao et al., 2002;
Middlemiss and Poole, 2004; Wehmeier et al., 2009). Q34K,
E89K, and N67K mutations in MexD have led to the transport
of negatively charged β-lactams that are not recognized by the
wild type transporter (as discussed in the Section Impact of
Efflux on Antibiotic Activity; Mao et al., 2002). A direct substrate
contact for macrolide recognition was proposed for an asparagine
residue in a phenylalanine-rich distal binding pocket in MexB
(Wehmeier et al., 2009).

The high molecular weight substrates rifampicin,
erythromycin, and doxorubicin dimers bound to an access
(or proximal) binding pocket (AP) shown in Figures 1A,B,
which is located close to the protein/periplasm interface
(Nakashima et al., 2011; Eicher et al., 2012). The low molecular
weight substrates minocycline, dodecyl-α-D-maltoside and
doxorubicin have been found in a distal (or deep) binding
pocket (DP) displayed in Figures 1C,D. AP and DP have also
been proposed as two successive locations visited by a substrate
during the translocation cycle. The two pockets are separated by
a flexible loop (G-loop or switch loop) with two phenylalanine
residues (Nakashima et al., 2011; Eicher et al., 2012). Substrate
recognition is governed by a phenylalanine-rich hydrophobic
region in the distal pocket. Minocycline, rifampicin, and
erythromycin, made direct contact with phenylalanine residues
(Murakami et al., 2006; Nakashima et al., 2011; Eicher et al.,
2012). The MexB-specific pyridopyrimidine efflux inhibitor
D13-9001 bound to a narrow pit in the phenylalanine cluster of
the distal pocket making π-π-stacking interactions (Nakashima
et al., 2013). The hydrophilic part of the inhibitor interacted
with hydrophilic and ionic residues close to the binding site
of minocycline and doxorubicin (Nakashima et al., 2013).
Binding to MexY was sterically hindered by a tryptophan in
agreement with the phenotypic specificity for MexB over MexY
(Nakayama et al., 2003; Yoshida et al., 2007). The binding pocket

of AcrD contains several oxygens in contrast to the mostly
hydrophobic pocket of AcrB, which could explain the specificity
of AcrD for small basic, hydrophilic substrates such as the
anionic β-lactams carbenicillin, aztreonam, and sulbenicillin
(Kobayashi et al., 2014). Domain swapping experiments have
shown that the specificity of MexB for anionic β-lactams, which
are not recognized by MexY, is determined by the periplasmatic
domain of the pump subunit (Eda et al., 2003). Although, the
complexity of substrate recognition by RND efflux systems has
hindered the establishment of a straightforward criterion for the
definition of good and poor substrates, it is possible that MexY,
as shown for MexD and described before (Mao et al., 2002), does
not have the required binding places (i.e., positively charged
amino acid residues) in the substrate binding sites to accept
negatively charged β-lactams. It cannot be excluded that other,
subtle differences in the RND transporter-compound interaction
patterns might affect the recognition and the transport at
different extrusion stages and positions in the transporters (see
Figure 1 where the different affinity sites are shown). Examples
for such subtle but crucial interactions are imipenem and
meropenem interacting with MexB (see Section Computational
Study).

Mutagenesis of D133 in MexY of P. aeruginosa (D113A and
D133S) has compromised resistance to several aminoglycosides
but not to spectinomycin (Lau et al., 2014). The mutation of
Y613A in the same protein affected resistance to aminoglycosides
but not to erythromycin. This finding supported the view that
substrate recognition is governed by binding to specific sites on
the extrusion pathway because D133 and Y613 are located in
a region of MexY that structurally corresponds to the proximal
binding pocket of AcrB.

The experimental data discussed in this review, have provided
evidence that hydrophobic moieties are a key property recognized
by RND pumps and that hydrophilic parts of a substrate fit
into mainly hydrophilic cavities adjacent to a phenylalanine-rich,
hydrophobic pocket. Substrates of MexB, which are discussed in
this review, are listed in Table 1.

Computational Study

Simulations have reached an impressive maturity as reflected by
the increasing number of publications in the field. In particular,
a range of simulation techniques have been developed and
successfully applied to describe diverse biological systems. Highly
precise quantum mechanical techniques (for example see the
reviews of Dal Peraro et al., 2007; Zhou et al., 2010; Sgrignani and
Magistrato, 2013; Steinbrecher and Elstner, 2013), the classical
force-field-based approaches (Kollman et al., 2000), hybrid
methods combining appropriate quantum mechanical and
classical descriptions (Senn and Thiel, 2009; Steinbrecher et al.,
2012) and multi-scale and statistical mechanical methodologies
(Kamerlin et al., 2011; Karplus, 2014) are examples of such
computational methods.

Although they have been successfully applied to several
systems and used to tackle biology-inspired questions, these in
silico techniques have been barely used to investigate bacterial
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efflux systems, in particular members of the RND family.
Probably hampered by the lack of crystal structures of the
whole systems (the single components have been crystallized)
and by the complexity of the machineries (they are tripartite
systems), computational studies have addressed RND efflux
systems only recently (Collu and Cascella, 2013; Ruggerone
et al., 2013a,b). Classical molecular dynamics (MD) simulations
represent a particularly promising technique to cast a glimpse
on the dynamic behavior of a protein and its immediate
micro-environment. MD simulations offer insight into molecular
behavior at a temporal and structural accuracy not reached by any
other experimental technique today. Continuous improvement
of the techniques is pushing the limits of the simulation
processes toward longer simulations and thus to a description
of increasingly larger biological systems. Extension of the
simulation times has improved the quality of the predictions
and allowed more robust evaluation of key features such as
free energy of binding, interaction patterns, solvent interactions,
and interaction lifetimes. Surely, limitations are still present due
to the size of many systems and the length of processes of
interest, but specific techniques to overcome these drawbacks
are under continuous development. As an example of methods
used to bridge the time gap between simulated and real processes
involving RND efflux systems, we can quote targeted MD
simulations (Schlitter et al., 1993), which allows induction
of conformational changes between two known states, and
metadynamics (Laio et al., 2005; Laio and Gervasio, 2008;
Biarnés et al., 2011), which is used to simulate rare events and
provides free energy profiles associated with possible processes.
Advantages and drawbacks of these biased techniques have
been extensively discussed in several publications, to which
the interested reader is referred (e.g., Chipot, 2008; Laio and
Gervasio, 2008; Markwick and McCammon, 2011; Ovchinnikov
and Karplus, 2012 and references therein).

Resistance-Nodulation-Cell Division efflux systems of
Gram-negative bacteria form tripartite complexes. The inner-
membrane RND transporter and a membrane fusion (adaptor)
protein (MFP) connect to a channel that traverses the OM called
the outer membrane factor or channel (OMF; Ma et al., 1993;
Thanassi et al., 1997; Zgurskaya and Nikaido, 1999; Murakami
et al., 2002). Some OMFs such as TolC in E. coli are highly
versatile and involved in the efflux of both antibiotics and
proteins as part of different efflux systems (Akama et al., 2004a;
Koronakis et al., 2004; Pietras et al., 2008; Phan et al., 2010;
Hinchliffe et al., 2013; Krishnamoorthy et al., 2013). The MFP
is suggested to stabilize the assembly of the pump, to contribute
to the transfer of efflux-coupled conformational transitions
from the RND transporter to the OMF and to affect substrate
recognition (Ma et al., 1993; Akama et al., 2004b; Mikolosko
et al., 2006). X-ray structures of the individual components
of AcrAB-TolC and MexAB-OprM (the two main RND efflux
systems of E. coli and P. aeruginosa, respectively) have been
solved by X-ray crystallography, and also computational studies
addressing structural and dynamical aspects of these components
have been reported in the literature (Vaccaro et al., 2006, 2008;
Schulz and Kleinekathöfer, 2009; Schulz et al., 2010, 2011, 2015;
Fischer and Kandt, 2011, 2012; Vargiu et al., 2011; Raunest and

Kandt, 2012; Wang et al., 2012; Eicher et al., 2014; Fischer et al.,
2014; Blair et al., 2015a). Still open are crucial questions about
structure and stoichiometry of the functional assembly (Bavro
et al., 2008; Krishnamoorthy et al., 2008; Misra and Bavro, 2009;
Symmons et al., 2009; Tikhonova et al., 2011; Xu et al., 2011;
Ferrandez et al., 2012; Hinchliffe et al., 2013; Du et al., 2014),
and also computational studies on the assembly are still in their
infancy and limited to static aspects, not least because of the
size and complexity of the whole systems (Symmons et al., 2009;
Phillips and Gnanakaran, 2015).

The RND inner-membrane transporter subunit is integral to
the function of the system. The transporter subunit of the RND-
type tripartite complex functions as a proton/drug homotrimeric
antiporter and is key for energy transduction and substrate
specificity of the entire three-component complex (Murakami,
2008). Structural data have mainly been collected for AcrB, of
E. coli, and to a lesser extent for MexB, the homolog of AcrB
in P. aeruginosa (for a recent review, see Ruggerone et al.,
2013a). According to crystallographic results, the shape of the
protein resembles that of a jellyfish. Viewed orthogonally to
the membrane plane, each protomer elongates for ∼120 Å,
comprising a TM region of ∼50 Å composed of 12 α-helices
(TM1 to TM12), and a periplasmic headpiece of about 70 Å, the
latter being divided into a pore (porter) region and an upper
region close to the lower part of the OMF (Murakami, 2008;
Eicher et al., 2009).

After the first symmetric structure was solved (Murakami
et al., 2002) other crystal structures of AcrB revealed asymmetric
conformations of the three monomers in the trimer (Murakami
et al., 2006; Seeger et al., 2006; Sennhauser et al., 2007). The three
conformations were proposed to represent three consecutive
states in a three-step peristaltic mechanism of the substrate
translocation [called functional rotation (Murakami et al., 2006)
or peristaltic motion (Seeger et al., 2006)]. The postulated
functional rotation starts with recognition of substrate at a
low affinity site on the L monomer, namely the AP. Global
conformational transition converts the L to a T conformation,
accompanied by tight binding of the substrate in a designated
high-affinity binding pocket, i.e., the DP. Successively, a second
peristaltic motion leads to a switch from the T to an O
conformation, resulting in the release of the substrate toward
the OMF. After substrate release, the O conformation relaxes
back to the L conformation restarting the cyclic event. The
conversion from the T to the O conformation is suggested to
be the major energy-requiring step and should be accompanied
by proton binding at the proton translocation site in the TM
region. Proton release may occur during conversion from O
to L. Computational studies based on targeted MD simulations
supported this mechanism and the zipper-like closure of the DP
(Schulz et al., 2010).

A 3.0 Å crystal structure of MexB showed the same overall
fold as its close homolog AcrB did (Sennhauser et al., 2009).
The three monomers constituting MexB assumed an asymmetric
conformation supporting the general transport model for this
family of multi-drug transporters derived from the AcrB
structures (Murakami et al., 2006; Seeger et al., 2006; Sennhauser
et al., 2007). However, the conformation of monomer L in MexB
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showed significant differences at the periplasmic portal to AcrB.
In particular, no access to the binding cavity was observed in this
subunit. A clear rationale for this structural difference is missing
to date. Sennhauser et al. (2009) proposed, among other things,
that the differences might be attributed to the L monomer being
trapped in an intermediate conformational state between the
extrusion and the binding of the substrates. Alternatively, specific
resting states of MexB and of AcrB may account for the observed
differences. Recently, Nakashima et al. (2013) solved the structure
of MexB in complex with a pyridopyrimidine derivative. This
work provided the first structural information onMexB-inhibitor
interactions. The authors also crystallized free MexB and found
a structure largely similar to that described by Sennhauser et al.
(2009). The binding geometry of the pyridopyrimidine derivative
to AcrB was also resolved, and showed relevant variations in the
conformation of the ligand. These findings highlighted that subtle
differences in the mechanisms of drug binding and translocation
are relevant for the two pumps.

Several key features of the MexB structure, in particular the
AP and DP sites, could be mapped onto the structure of AcrB
(Murakami et al., 2006; Nakashima et al., 2011; Eicher et al.,
2012). The first and until now the only computational study
of antibiotic-MexB interactions was based on these data (Collu
et al., 2012b). Collu et al. (2012b) investigated the behavior of
two carbapenems, meropenem and imipenem, in the AP and
the DP. The two structurally related compounds are differently
affected by the RND efflux pumps. The activity of meropenem is
significantly reduced byMexAB-OprM effluxwhereas the activity
of imipenem is not (Masuda and Ohya, 1992; Pai et al., 2001;
Pournaras et al., 2005; Walsh and Amyes, 2007). The different
sensitivities to RND efflux make imipenem and meropenem
attractive candidates for a comparative study of carbapenem-
efflux-pump interactions.

Lacking a crystal structure of MexB in complex with
the two molecules, the starting configurations for all-atom
MD simulations were extracted from docking runs with the
ATTRACT package (May and Zacharias, 2008; May et al.,
2008; de Vries and Zacharias, 2012). The systems obtained
after solvation and equilibration were simulated for 50 ns.
A stronger preference of meropenem for the DP than for the AP
resulted from the simulations (binding free energies of −8.1 and
2.4 kcal mol−1, respectively). Imipenem had nearly the same low
affinity for both pockets (0.6 and 0.4 kcal mol−1, respectively).
This result agreed with microbiological data showing a fourfold
to eightfold increase of the MIC of meropenem but no significant
change of the imipenem MIC upon overexpression of MexB in
P. aeruginosa (Eguchi et al., 2007; Ong et al., 2007; Livermore,
2009; Riera et al., 2011). The contacts between meropenem
and the DP extracted from the trajectories were qualitatively
consistent with the recently determined structure of a MexB-
inhibitor complex (Nakashima et al., 2013), suggesting a reliable
prediction of the binding structures by the computational
protocol of Collu et al. (2012b).

The AP is probably the first internal site to be occupied by
compounds during the binding process. At the AP, imipenem and
meropenem pointed their β-lactam rings toward the periplasmic
region and the entrance to the DP, respectively. These could

be considered as fingerprints of the different behavior of the
two compounds. Meropenem tended to move toward the DP,
following the plausible extrusion route, while imipenem had a
propensity to reach regions close to the periplasm. Interactions
with solvent molecules can be extracted and quantified from the
trajectories as a further interesting detail in support of this picture
(Sterpone et al., 2001; Collu et al., 2012a). Collu et al. (2012a)
found that imipenem, unlike meropenem, formed long-lifetime
interactions with water molecules inside of MexB.

The docking poses of two compounds in the DP were similar
but the 50 ns-long simulations led to different equilibrium
binding modes. Meropenem moved in the DP of MexB toward
the external channel, assuming a location suitable for extrusion.
Imipenem slid away from the entrance to the channel connecting
the DP to the extrusion mouth and into a position similar to
that assumed by doxorubicin in MD simulations of mutated
AcrB F610A (Vargiu et al., 2011). Indeed, Vargiu et al. (2011)
found that doxorubicin moved deeper into the DP of a F610A
mutant and was not extruded by the induced functional rotation.
This was in accordance with reduced doxorubicin MIC (i.e.,
increased activity) against the F610A variant of AcrB (Bohnert
et al., 2008).

The calculated pump interaction patterns have been associated
with the different physicochemical properties of the ligand
molecules. With its bulky and hydrophobic tail, meropenem
established a strong interaction pattern to the aromatic-
hydrophobic environment of the DP. Conversely, the more
flexible and hydrophilic tail of imipenem had a lower affinity for
the DP. Solvent interactions played a major role in the different
transport properties of the two carbapenems as well. In fact, the
compounds remained highly solvated at all explored binding sites
(Collu et al., 2012b). Nonetheless, the water dynamics around
meropenemwere significantly different in the DP than in the bulk
solvent. On the other hand, imipenem showed the same solvent
interactions in the DP as in the bulk solvent.

Paths for Substrate Entry

Substrate uptake by RND pumps is still largely unexplored and
to our knowledge, only one computational study has addressed
this issue (Yao et al., 2013). The entry of substrates into AcrB
was studied by a combination of in silico tools and site-
directed mutagenesis. The study indicated that uptake pathways
of minocycline, acriflavine, and novobiocin differed significantly.
Novobiocin is the largest and acriflavin the smallest among the
three compounds while minocycline is more hydrophilic than
the nearly equally hydrophobic novobiocin and acriflavin. All
three molecules are typical substrates of AcrB but they vary in
molecular size and hydrophobicity. A ligand-dependent drug
uptake mechanism was proposed based on the analysis of the
free energy associated with drug movement along AcrB tunnels.
Strongly hydrophobic and lipophilic drugs of similar size were
preferentially taken up via the vestibule path (the entrance of
the vestibule path is shown in Figures 3A,B). This path starts
close to the membrane surface at a region between two protomers
and goes via the AP to the DP. Other drugs were translocated
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FIGURE 3 | Main entrances of paths for compounds. The structure used
in the figure corresponds to the PDB code 2V50 (Sennhauser et al., 2009).
MexB monomers are colored in blue, red, and green, respectively. The distal
binding pocket in the T monomer is represented as orange surface. The
entrance of the vestibule is highlighted as gray surface in (A) and shown with
the atomic details (in licorice colored by atom type) in (B), that of the cleft as
gray surface in (C), and its atomic details in (D). All the atomic-level figures
were rendered using VMD (Humphrey et al., 1996).

through the cleft path starting at a large external indentation
of the periplasmic domain, formed by the subdomains PC1 and
PC2 of a single AcrB protomer. The cleft path, whose entrance is
shown in Figures 3C,D, directly connects the periplasm to the DP
(Husain and Nikaido, 2010). Smaller drugs were found to favor
the vestibule path, while larger compounds preferentially took the
cleft path.

The direct simulations identified a novel alternative uptake
path, which is not visible in the crystal structure. This third
path goes along the bottom of the porter domain toward PC1
and could be validated by site-directed mutagenesis of AcrB in
E. coli. Mutations of residues located along the path significantly
impaired the efflux efficiency. The work of Yao et al. (2013) is of
great interest because it combined different techniques to gain
insight into an important step of the efflux process. However, it
has to be noted that the authors made several approximations.
As in all the computational studies described in this review, the
partners of the RND transporter (i.e., AcrA and TolC in the
present case) were missing. It was also assumed that the drug
uptake was mainly driven by hydrophobic interactions. Finally,
some of the physicochemical properties such as the ordering of

amphiphilic drugs in the lipid bilayer and the conformational
flexibility of drugs with rotatable bonds were neglected. Despite
of the necessary approximations, the work of Yao et al. (2013)
was an important contribution to the understanding of drug
RND efflux. The structures of the L monomers and ligand
conformations in co-crystals suggest interesting mechanistic
differences between MexB and AcrB (Sennhauser et al., 2009;
Nakashima et al., 2013). Thus, a similar study on MexB would be
of great interest.

Conclusion

Much progress has been made in the understanding of
the transport mechanism of RND efflux pumps since they
were discovered. Genetic and biochemical investigations have
provided a good survey of the substrate specificity of different
pump complexes in various bacteria. It has become accepted that
RND pumps evolved as a first line of bacterial defense against
exogenous substances, allowing the development of additional
defense strategies (Olivares et al., 2013). Molecules that are able to
penetrate the OM are potentially problematic for Gram-negative
bacteria. Many sophisticated studies have supported this view as
they have indicated that amphiphilic molecules (such as many
antibiotics), which are able to pass the OM, are good substrates
for export systems (Nikaido, 2011; Nikaido and Pages, 2012).
X-ray crystallography has provided highly detailed structural
information on binding interactions between pump subunits and
substrates (Ruggerone et al., 2013a). It is intriguing that only a
handful of a large number of known efflux substrates could be co-
crystallized with efflux pumps. Although X-ray structures provide
snap-shots of a complex transport mechanism, they have been
crucial for the setup of a transport model. Concerning specific
experiments aiming at a more direct investigation of efflux
dynamics, studies with whole bacteria have been performed.
Whole cell efflux assays require thorough controls to rule out
non-specific effects that interfere with transport measurements.
Such control measurements include the use of membrane-
interacting probes to monitor effects on membrane integrity or
on the electrochemical potential across the inner membrane. The
finding that many of the membrane-interacting probes are efflux
substrates too, has confirmed the concept of recognition and
export of membrane-active compounds. Based on experimental
data, new in silico tools have been developed and brought to
a point where they can reliably describe or even predict the
dynamics of compound extrusion by RND pump subunits.

Substrate recognition by RND efflux pumps is a multi-
factorial process that can be measured by different methods as
described in this article. MexB, for example, has a broad substrate
spectrum including large (e.g., erythromycin) and charged (e.g.,
aztreonam, PAβN) molecules (see Table 1). MexB transports
hydrophobic dyes, many of which have been primarily used to
study membrane properties, which indicates a preference of this
pump for hydrophobic substrates. This is in agreement with the
finding that the activity of the hydrophilic antibiotic ceftobiprole
is not significantly affected by MexB. Crystal structures and MD
simulations of MexB strongly suggested that the DP, lined with
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hydrophobic amino acid residues, is the main structural element
for the recognition of hydrophobic elements (Collu et al., 2012b;
Nakashima et al., 2013). However, hydrophobicity alone is not
sufficient to explain substrate recognition by MexB. Imipenem
and meropenem have a similar size and hydrophobicity (Table 1)
but only meropenem is transported by MexB. A computational
study revealed that imipenem, unlike meropenem, made no high
affinity contacts to the AP or to the DP but instead made long-life
interactions with solvent molecules inside MexB and eventually
did not enter MexB (Collu et al., 2012b).

The challenge for future studies will be to combine the
precision of X-ray structures with the functional relevance
of whole cell studies. MD simulations based on experimental
data provide a promising tool to complement, integrate and
rationalize these data and to shed some light onto this
problem.

Despite the advances outlined in the review, dissecting the
molecular and conformational steps that regulate transport
of substrates by RND pumps is still a very challenging and
intriguing task and requires a very efficient interplay between
techniques and approaches coming from different fields. The
fate of a compound, governed by the action of an RND
transporter (i.e., efficiently or poorly transported), is determined
by the subtle balance of different molecular contributions that
are not necessary large. The interaction of meropenem and
imipenem with MexB described in the Section Computational
Study is a good example: small differences in flexibility and
hydrophobicity are suggested to make the former a good
substrate and the latter a poor one. Computational methods
can offer insight at a level of accuracy that is not reachable
by a single experimental technique but they need a continuous
feedback from experiments. Further crystallographic studies of
RND pumps in complex with substrates and more accurate
modeling techniques with extended simulation times for large
proteins are needed in order to achieve full atomic pictures of the

entire tripartite complexes. Efflux kinetics might be affected by
several factors that have to be included in the simulations but are
not known a priori (Kinana et al., 2013). Computer simulations
can integrate data from experiments on the molecular level and
help to interpret data from whole cell assays (i.e., functional efflux
pump ensembles).

The development of novel antibiotics that can bypass the
effects of MDR pumps or the development of clinically useful
EPI is still a challenging task. Understanding the mechanistic
details and the structure-function relationship of bacterial efflux
systems, as well as their regulation and the synergistic interactions
between the pumps and other resistance mechanisms, is not only
scientifically rewarding but can also stimulate applied research
for effective new antibacterial drugs.

Addendum in Proof

While our manuscript was under review two comprehensive
review articles by Li et al. (2015) and by Yamaguchi et al. (2015)
were published that cover many aspects discussed in our article.
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