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The origins of Molecular Biology and Bacterial Physiology are reviewed, from our
personal standpoints, emphasizing the coupling between bacterial growth, chromosome
replication and cell division, dimensions and shape. Current knowledge is discussed
with historical perspective, summarizing past and present achievements and enlightening
ideas for future studies. An interactive simulation program of the bacterial cell division
cycle (BCD), described as “The Central Dogma in Bacteriology,” is briefly represented.
The coupled process of transcription/translation of genes encoding membrane proteins
and insertion into the membrane (so-called transertion) is invoked as the functional
relationship between the only two unique macromolecules in the cell, DNA and
peptidoglycan embodying the nucleoid and the sacculus respectively. We envision
that the total amount of DNA associated with the replication terminus, so called
“nucleoid complexity,” is directly related to cell size and shape through the transertion
process. Accordingly, the primary signal for cell division transmitted by DNA dynamics
(replication, transcription and segregation) to the peptidoglycan biosynthetic machinery
is of a physico-chemical nature, e.g., stress in the plasma membrane, relieving nucleoid
occlusion in the cell’s center hence enabling the divisome to assemble and function
between segregated daughter nucleoids.

Keywords: bacterial cell division cycle, nucleoid complexity and segregation, size and shape determination,
transertion, peptidoglycan biosynthesis

Bacteriology and the Molecular Biology Revolution

Bacteriology was conceived by the Dutch Scientist Antony van Leeuwenhoek in the 17th Century
(Porter, 1976), but considered “The Last Stronghold of Lamarckism” until 1943, when the ingenious
Fluctuation Test was performed (Luria and Delbrück, 1943). The Phage Group of reductionists
led by Max Delbrück (Cairns et al., 1966) revolutionized Basic Genetics to explain the flow of
genetic information from Mendelian genes to proteins in molecular terms. This transformation was
preceded by the era of protein biochemistry that could not easily pass the concept hurdle of enzyme-
cannot-make-enzyme paradox (Stent and Calendar, 1978). Pure logic supported by simple, clear-cut
experiments forced them to conclude that the long, seemingly monotonous DNA macromolecule is
the storehouse of genetic information.

Molecular Biology developed quickly by clarifying that the transforming principle (Avery
et al., 1944) was DNA: its structure was deciphered (Watson and Crick, 1953), semi-conservative
replication demonstrated (Measelson and Stahl, 1958), functions in transcription/translation into
proteins disclosed (Nirenberg, 2004), andmanipulations crossed species barriers (Balbás et al., 1986).
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Two mutually-exclusive groups that hardly exchanged informa-
tion were responsible for the revolution: those mentioned
above led by Physicist Max Delbrück and Chemists led by
Arthur Kornberg (Kornberg and Baker, 1992). Exposing the
DNA’s symmetrical beauty and crucial role required seminal
studies by persistent scientists such as Erwin Chargaff and
Rosalind Franklin, who were in the frontier’s cutting edge but
individualistic and less lucky (Watson, 1996).

There were unavoidable diversions: some excellent scientists
considered penicillin resistance to be an adaptive response,
others described enzyme induction in terms of kinetics, still
others thought of bacterial conjugation as zygote formation, but
these and many more failed attempts were indispensable for the
main thrust of advance. Furthermore, the absolute acceptance
of the operon model (Jacob and Monod, 1961) for example,
misled others to consider lon mutants as regulatory (Markovitz,
1964).

Merging molecular biology with general bacteriology,
basic genetics and sophisticated microscopic and physical
techniques discovered the sexuality and circularity of the
bacterial chromosome (Jacob and Wollman, 1956; Cairns, 1963;
Hayes, 1968), its replication schedule (Helmstetter et al., 1968),
and the nucleoid structure (Kellenberger et al., 1958; Woldringh
and Odijk, 1999).

The Origins of Bacterial Physiology

Until the late 1920’s, bacterial cultures were thought to be
composed of cells that constantly change size, form and structure
in a meaningless fashion. In his book, Henrici (1928) noted
that these changes during a single growth cycle “occur with
great regularity and are governed by simple laws which,. . . may
probably be very precisely formulated.” It took 30 years to achieve
this goal in descriptive terms, and additional decades to begin
deciphering the fundamental laws anticipated by Henrici (1928)
in robust, molecular terms. The multitude of forms and sizes in a
random, single-species pure culture could only be explained when
age distribution (Powell, 1956) and balanced growth (Campbell,
1957) were defined, and the Copenhagen School (Maalϕe and
Kjeldgaard, 1966; Schaechter, 2006) described how cell size and
composition change with the medium (Schaechter et al., 1958)
and during transitions between growth rates (Kjeldgaard et al.,
1958).

Ole Maalϕe was working at The State Serum Institute
(Cooper, 1993) until he was named a Professor and started,
late in 1958, The Institute of Microbiology. It seems to some
of us that Ole entertained the idea to imitate Niels Bohr’s
Physics Institute, likely because he held Bohr in the highest
admiration and was a good friend of his son Aage, also a
Nobel laureate in Physics. This Institute and Ole’s strong
personality influenced dramatically several generations of
scientists involved in investigating physiological aspects of
the bacterial cell, nicknaming it The Copenhagen School.
The numerous scientists who passed through it during their
careers (Anderson et al., 2006), mostly young, promising
and subsequently influential, demonstrate that it was a
success.

The seminal series of experiments with Salmonella
typhimurium published in 1958 in two back-to-back articles
(Kjeldgaard et al., 1958; Schaechter et al., 1958), established the
field of Bacterial Physiology and turned into its main hallmark.
The stream of articles stemming from the Institute became a
flood of crucial information published in the most prestigious
periodicals of the time. One major motto of Ole in understanding
the cell was “Look–Do Not Touch” hence studies were performed
with minimal perturbations of the so-called steady-state of
exponential growth (Fishov et al., 1995). After physiological
manipulations were seemingly exhausted, the use of drugs
and mutants became common when the mechanisms of their
actions were, or thought to be deciphered. The multi-faceted
phenotypes exerted by these (lack of specificity and pleiotropism,
respectively) occasionally remind us to stick to this rule-of-thumb
in order to keep interpretations of results as crystal-clear as
possible.

This first leg of the journey to understand the logic behind
the duplication of a bacterial cell, which took place in the
1950s, is described in this collection by Schaechter (2015),
and the other two, partially overlapping legs in the 1960s–by
Hanawalt (2015) and Helmstetter (2015). Phil studied the
phenomenon of thymineless-death (TLD) in thymine-starved
populations of thyAmutants (Cohen andBarner, 1954) employing
it to better understand the connection between chromosome
replication and cell growth and viability (Hanawalt et al., 1961),
and Charles exploited the neat, so-called “baby-machine” that
he devised (Helmstetter and Cummings, 1964) to derive the
temporal aspects of the bacterial cell cycle (Helmstetter et al.,
1968).

Being students during the early 1970’s, here we try to fill-in the
development in a perspective of half a century and in line with
our view-points. To this effect, we acknowledge with admiration
the ingenuity of Noboru Sueoka and Hirosho Yoshikawa, whose
results with Bacillus subtilis (Yoshikawa and Sueoka, 1963)
revealed Ole’s prediction (Maalϕe, 1961) that replication initiates
from a single point (later defined as oriC) and is sequential and
multi-forked at fast growth rates (Oishi et al., 1964). Thinking
rigorously, they derived marker frequency equations (Sueoka and
Yoshikawa, 1965) that survived the test of time. Bidirectionality
of the replication has later been demonstrated by various genetic,
physiological and microscopic means (e.g., Masters and Broda,
1971; Bird et al., 1972; Prescott and Kuempel, 1972; Wake,
1972).

Experiments that investigated the fractional increase of DNA
(∆G) in amino acids-starved cultures of Escherichia coli 15T−

(so-called “runout”) using dense and radioactive isotopes of
thymine (Lark et al., 1963) led to the discovery of the so-called
premature initiation (Pritchard and Lark, 1964), distinguishing
between the two independent processes of replication, initiation
and elongation. This distinction had clearly been indicated
by Phil’s classical experiments (Hanawalt et al., 1961), and
was later supported by isolating two groups of conditional-
lethal replication mutants (Hirota et al., 1968) that either
stopped replication immediately upon transfer to the restrictive
temperature (elongation) or allowed completion of the ongoing
cycle but not new initiations.
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Growth, Chromosome Replication and Cell
Division; the BCD

Two essential, unique macromolecules (structures) exist in a
bacterium: DNA (nucleoid) that stores the genetic information,
and the shape-maintaining peptidoglycan (sacculus), which also
protects the cell from rupture by its osmotic pressure (turgor).
To survive, the cell must divide after its genome doubles and in
a plane between the two emerging sets, hence duplications of the
two are coupled, temporally and spatially.Much effort is expended
to discover the mechanism responsible for this coupling, which
raises the efficacy of competition among species. To study this
coupling, reproducible steady-state conditions and well-defined
perturbations (Maalϕe andKjeldgaard, 1966) have been exploited.

Wild-type E. coli can synthesize all of its component
macromolecules necessary for duplication from aqueous
salts solution. Multiplication rate is carbon source-dependent, the
most efficient of which is glucose, supporting doubling time τ of
about 40min at 37ºC. Slower rates are obtained on poorer sources,
whereas adding organic building blocks result in faster rates, the
maximum achievable being about 3 h−1 (i.e., τmin ≈ 20 min).
Irrespectively, the time C taken to duplicate the chromosome (of
∼4.6 Mb) is constant, ca. 40 min (Helmstetter et al., 1968). A cell
divides into twomorphologically-identical daughters (Trueba and
Woldringh, 1980) about 20 min (designated D) after termination
of replication hence division follows replication-initiation by
about 1 h. This model was experimentally confirmed for cells
growing at τ ranging 20–70 min (growth rate µ of 3–0.9 h−1,
respectively). Situations with τ < C are achieved by initiating
new replication rounds before completing the previous ones.
Under slow growth rates, on the other hand, the cycle includes
a period B [ = τ − (C+D)] in which cells have not initiated yet
hence they continue to grow—much like in the G1 period of
the eukaryotic cell division cycle. This (B, C, D, τ ) model has
survived over 40 years with minor modifications of parameter
values (e.g., Bipatnath et al., 1998; Michelsen et al., 2003), and
many of its conclusions have been confirmed in other eubacteria
(Helmstetter, 1996; Toro and Shapiro, 2010). It can thus be
termed (Zaritsky et al., 2011, 2012) as “The Central Dogma of
The Bacterial Cell Division Cycle” (two meanings for BCD). A cell
cycle is divided in 3 (or 4) periods by two major events between
successive fissions, initiation and termination of replication that
can occur in reverse order depending on the values of C, D, and
τ (Jiménez Sánchez, 2015).

Combining the noted constancy ofC andD values (Helmstetter
et al., 1968) with the way mean cell mass change with τ

(Schaechter et al., 1958) resulted in an important insight: cell
mass Mi at the time of replication-initiation is roughly constant
per replication origin oriC (Donachie, 1968; Pritchard, 1968;
Pritchard et al., 1969). The molecular mechanism regulating
initiation of replication, occurring synchronously from all existing
oriC copies and once per cell cycle, is under investigation (e.g.,
Leonard and Grimwade, 2010), but the apparent constancy of the
Mi/oriC ratio is very useful, conferring a quantitative description
of the bacterial cell. The cycle ends C+D min after initiation,
when cell mass reachesMi × 2(C+D)/τ . The changing exponential
rate of mass growth in different media is not matched by

the linear, constant DNA elongation rate (1/C), but the faster
increase of cell mass in richer media leads to increased initiation
frequency as prescribed by the constant Mi/oriC. BCD thus
explains changes in cell composition and size with τ and predicts
the consequences of perturbations such as nutritional shifts
(Kjeldgaard et al., 1958). These basic features and other examples
are illustrated and can be followed by the user-friendly Cell Cycle
Simulation program (CCSim) at https://sils.fnwi.uva.nl/bcb/ that
was partially described before (Zaritsky et al., 2006, 2007, 2011,
2012) and will be re-mentioned below. It must be noted that
the values of these constants do change slightly with τ—more so
at longer values, can be manipulated experimentally by various
means (e.g.,Meacock and Pritchard, 1975; Zaritsky and Zabrovitz,
1981; Wold et al., 1994; Bipatnath et al., 1998), and inserted in the
CCSim program to confirm or reject working hypotheses.

Dissociating Rates of Replication and
Growth

Capitalizing on Helmstetter’s “baby machine” (Helmstetter and
Cummings, 1964) and just before the description of BCD
(Helmstetter et al., 1968), Clark and Maalϕe (1967) demonstrated
a constant rate of replication along the chromosome, with distinct
discontinuities in DNA synthesis rate during the cell cycle
interpreted as occurring due to initiation and completion of
replication cycles. Chromosomes with multiple replication forks
(also termed dichotomously replicating) is the reason for bigger
∆G added DNA in amino acids-starved, faster growing cells
(Schaechter, 1961). This was the current knowledge at the end of
1968, upon the arrival of one of us (AZ) at Leicester University
for graduate studies, supervised by Robert Pritchard, who had
established the Genetics Department theremerely 4 years earlier1.

Digressing to some personal involvements, one of us (AZ) was
very lucky to enter the atmosphere inspired by Bob and at the
right time to be assigned a project in the just-opened BCD field,
about which I had no clue. During 6-years of previous studies
(1962–1968) at the Hebrew University of Jerusalem, my M.Sc.
(with distinction but no publication) in Bacterial Genetics was
supervised by Amiram Ronen, I finished 4 full years of Pre-
Medical studies and attended several courses in Mathematics
(my ever-lasting love). The latter was helpful to sharpen rigorous
thinking, to derive the equation relating DNA concentration
to the number of replication positions (Sueoka and Yoshikawa,
1965) n ( = C/τ ) irrespective of the value of D (Pritchard and
Zaritsky, 1970; Zaritsky, 1971) and to program the huge computer
at Leicester University (using card-punching). It may have been
important for my active participation in developing CCSim,
as described below. Bob and his large team of students were
instrumental for my learning both, proper English and the BCD,
mainly in the tea/coffee/seminar room that was inhabited during
many hours, days and nights.

Simultaneously, the other (CLW) extended his biological and
microscopic skills at the University of Amsterdam. There are at
least three at that time commonly-accepted ideas that I ruled out

1http://www2.le.ac.uk/news/blog/2014-archive-1/october/50th-anniversary-
of-department-of-genetics-celebrates-world-changing-research-1
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during my Ph.D. studies and beyond namely, existence of direct
DNA-membrane attachments (Woldringh, 1974), of peri-septal
annuli (Woldringh, 1994) and rapid nucleoid displacement (van
Helvoort and Woldringh, 1994), all has meanwhile disappeared
from our knowledge-base, justifiably so.My close associationwith
Nanne Nanninga (e.g., Woldringh and Nanninga, 1985), who in
the late 1960’s demonstrated the artifactual origin of mesosomes
(Nanninga, 1971), enabled the establishment of a department
that attracted distinguished students and scientists from all over
the world, microbiologists as well as physicists and engineers. In
their search to define the structural changes occurring during
fixation and dehydration necessary for visualizing the bacterial
nucleoid in the electron microscope, the possibilities to study live
cells were improved with the reinvention and development of the
confocal scanning light microscope (CSLM) by Brakenhoff (see
Valkenburg et al., 1985).

Back to the main subject, at Leicester, Bob realized existence
of literature-recorded contradictory results, the common feature
of most is that they were obtained in thymine-requiring strains.
These observations (e.g., Maalϕe and Rasmussen, 1963; Friesen
and Maaloe, 1965; Lark and Lark, 1965; Beacham et al., 1968) led
him to hypothesize that the replication time of the chromosome
in thyA strains depends on the external concentration of thymine
[T] present in their growth medium (Pritchard, 1974). This
hypothesis could explain all discrepancies and is consistent with
lack of active thymine-transport, in E. coli (Itsko and Schaaper,
2011) and other bacterial species (Carmody and Herriott, 1970;
Reinhart and Copeland, 1973). It was strongly confirmed by four
physiological methods, more or less independent of each other
(Pritchard andZaritsky, 1970; Zaritsky, 1971), and later supported
by various means in other laboratories (reviewed in Zaritsky et al.,
2006).

Thus, the dissociation between syntheses rates of mass and
DNA, originally observed by changing the former alone
(Helmstetter et al., 1968), was confirmed by exclusively
manipulating C by limiting [T] in thyA strains (Pritchard
and Zaritsky, 1970), affected through the intracellular [dTTP]
(Beacham et al., 1971). This method is more amenable to analysis
than nutritional shifts because modulating [dTTP] by changing
[T] occurs abruptly, without affecting the multitude of metabolic
pathways and interactions between them that accompany
nutritional shifts (Scott and Hwa, 2011).

Dissociating Cell Growth and Division; the
Eclipse

In a steady-state exponentially growing culture, concentrations
of all cell components increase in parallel to each other and
in pace with divisions (Campbell, 1957; Fishov et al., 1995).
The puzzling phenomenon of division rate-maintenance after
a nutritional shift-up (Kjeldgaard et al., 1958) was instantly
explained by the BCD model (Helmstetter et al., 1968): a cell
divides a constant time, C+Dmin after initiation of chromosome
replication, which in turn follows mass growth. The division-
rate therefore changes C+D (ca. 65) min after the change
in growth rate is affected by enriching the medium. Most
perturbations, by chemical/physical agents or under restrictive

conditions of ts mutants, cause immediate block of division
(Slater and Schaechter, 1974)—one that is usually restored upon
transfer back to permissive conditions. Specific inhibition of
protein or DNA synthesis, however, allows divisions to continue
during the D period; these so-called residual divisions cause a
decrease in average cell length (cf. entry into stationary phase)
and enable estimation of theD period (Dix andHelmstetter, 1973;
Kubitschek, 1974; Woldringh et al., 1977).

Determination of C and D periods for batch cultures of E.
coli cells have also been performed by flow cytometry (Michelsen
et al., 2003) or by image cytometry (cf. Huls et al., 1999). From
these studies it becomes clear how these cell cycle periods can vary
with different strains and growth conditions. The measurements
indicate that theD period is especially variable, making it difficult
to generalize the E. coli cell cycle.

When thymine-limited thyA mutants grow at fast growth
rates, another puzzling phenomenon appears, namely dissociation
between growth and division that is related to replication. Under
these conditions, the inter-division time is longer than mass
doubling time (i.e., τ d > τm) thus cell size increases continuously
(Zaritsky and Pritchard, 1973), and seemingly indefinitely. The
40 years-old observation (Zaritsky, 1975a) that indicated existence
of a minimal possible distance lmin between two successive
replisomes, promptly explains this phenomenon (Zaritsky et al.,
2007). The questionwhether themechanism involved is structural
(replisome size; Norris et al., 2007) or chemical (sequestration of
membrane-attached hemi-methylated DNA; Olsson et al., 2002)
remains moot, but breaching this distance would extend the inter-
initiation time I ( = τ i) beyond the mass doubling time (τm)
thus delay initiations, and cumulatively so (Zaritsky et al., 2007).
Such a breach can be achieved by enhanced initiation frequency
(Simmons et al., 2004) or slowed replication rate (Zaritsky and
Pritchard, 1973). This distance is estimated to be about half of the
chromosome length (lchr), termed the Eclipse (lmin/lchr) and can
be expressed in units of time depending on the rate of replication
(lmin/lchr) × C (e.g., how long it takes to reach this fraction of
chromosome at a given, constant rate C−1). Release from this
situation by restoring the permissive conditions causes a transient
increase in the frequency of divisions (Zaritsky et al., 2011) thus
substantiating this concept and facilitating its investigation.

The Cell Cycle Simulation Program

Our fortuitous encounter at the Luntern Conference in November
1974 was very fortunate. We had apparently met 3 years earlier in
a previous meeting there, but being students it hadn’t engendered
significant mutual impressions. In 1974, both of us had already
acquired results related to morphometric variations of E. coli
cells under different growth conditions, theoretical (Zaritsky,
1975b) and experimental (Woldringh, 1974), and ideas about
joint research sprang in the air during a long night of extensive
discussions. It was just 7 months later that EMBO financed a
3-month visit for CLW in Be’er-Sheva (Figure 1), followed by
another short-term fellowship for AZ to visit Amsterdam a
couple of years later. These and follow-up visits culminated in
detailed descriptions of cell dimensional rearrangements during
nutritional shift-up experiments (Grover et al., 1980; Woldringh
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FIGURE 1 | Conrad (R) and Arieh (L) at the unique “Chezi” 30 mm-film
projector, manually measuring cell dimensions and constrictions,
Be’er-Sheva, Summer 1976. This primitive, bulky “machine” was designed
and constructed by the Workshop of the Natural Sciences Faculty at
Ben-Gurion University, led by Mr. Yechezkel Tahori in the “pre-history” of
computer visualization, initiated in the University of Amsterdam by (Trueba and
Woldringh, 1980) and developed further into a versatile measuring plugin
“ObjectL,” which runs under ImageJ (see Vischer et al., 2015).

et al., 1980; Zaritsky et al., 1982), organization of two EMBO
Workshops on Duplication of Bacteria (1980 in Holland; 1984
in Israel2), and 40 years of continuous cooperation. One notable
outcome of our interactions was implementation of an interactive
simulation program (Zaritsky et al., 2011) that integrates all
quantitative knowledge about the BCD (Helmstetter et al.,
1968), including the anticipated behavior of various existing and
prospective mutants. This program implementation was enabled
by the recruitment of Norbert Vischer, a computer engineer,
by the Amsterdam department chair and faculty dean Nanne
Nanninga. The lab in Swammerdam Institute is thus frequently
referred to as The Amsterdam School (à la the Copenhagen
School mentioned above).

All considerations described so far and by the CCSim
(Figure 2) do not relate to cell dimensions and shape nor to
nucleoid segregation. Future versions of CCSim may be extended
to incorporate these aspects.

Cell Size and Dimensions

An exponentially growing bacillary cell elongates with
unnoticeable change in width, and divides evenly at a
perpendicular plane (Trueba and Woldringh, 1980). The
seminal observation (Schaechter et al., 1958) that larger cells at

2http://ariehz.weebly.com/uploads/2/9/6/1/29618953/emboworkshop1984.pdf

faster growth rates in richer media are both longer and wider
led to the proposal (Zaritsky and Pritchard, 1973; Pritchard,
1974; Zaritsky, 1975b) that cell dimensions and cell shape
could be directly coupled to the process of DNA replication
and segregation. It was initially interpreted to involve active
regulation of length L (Grover et al., 1977) or surface area S
(Rosenberger et al., 1978a,b) extension, and passive response of
width W to the changes of volume V and L (or S), the so-called
linear/log model. Cell elongation was assumed to proceed at a
constant rate (either dependent on µ or not) that is proportional
to the number of oriCs, terCs (replication termini) or replisomes
(Zaritsky and Pritchard, 1973). This view was later abandoned
when peptidoglycan synthesis was demonstrated to be diffuse
throughout the cylindrical periphery and only localized during
the division process (Woldringh et al., 1987).

With such models in mind, we measured (Figure 1) the
dimensions of E. coli cells cultured under steady-state of
exponential growth in different media supporting various rates,
prepared for electron microscopy by the agar filtration method
(Woldringh et al., 1977; Figure 3), and compared the results
with the various models (Zaritsky et al., 1982). Our nutritional-
upshift experiment (Woldringh et al., 1980) revealed that the
increase in cell diameter was slow and occurred mainly during
the division process in the vicinity of the deepening constriction
site, forming transiently tapered cells (Figure 4). Consequent to
this slow adaptation and almost immediate change in the rate
of mass synthesis, cell length overshoots, but the mechanism
governing this diameter change is still enigmatic. A diameter
increase during the constriction process has also been implied
in populations growing in steady state where the cells showed a
diameter decrease during elongation (see Figure 4 in Trueba and
Woldringh, 1980). It should be noted that in all these preparations
the cells had been fixed with osmium tetroxide andwere air-dried,
causing their flattening (Vardi and Grover, 1993). Nevertheless,
the measurements compared well with those obtained from
hydrated cells with phase-contrast microscopy (cf. Table 3 in
Trueba and Woldringh, 1980).

Associated with cell widening, the nucleoids (bright areas in
Figure 4) start replicating in planes tilted to the long cell axis
(Figure 4), rather than parallel to it as during slow growth
conditions. The differences in cell dimensions and nucleoids
replication-planes are pronounced when thyA cells grow under
identical conditions but with limiting [T] that impose slow
replication rate (compare, e.g., panels A and B of Figure 6 of
Zaritsky et al., 2006; and see Figure 1 in Woldringh et al., 1994).

Homeostasis of Cell Size and Shape

In the 1970’s, the period of DNA replication during a division
cycle was determined by pulse-labeling cells with 3[H]-thymidine
and measuring size distributions of cells prepared for radio-
autographic electron microscopy (Koppes et al., 1978). These
studies clarified that individual cells elongate exponentially (i.e.,
at a rate proportional to their length) and provided information
about length variations at different events in the cycle as well
as size and time correlations between these events (Koppes and
Nanninga, 1980). The results led Koppes et al. (1978) in The
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FIGURE 2 | Example of a work window of the Cell Cycle Simulation program (CCSim) for a nutritional shift-up from a doubling time τ 1 = 60 min to
τ 2 = 25 min. The interactive program can be downloaded from: https://sils.fnwi.uva.nl/bcb/.

FIGURE 3 | Electron micrograph of a mixture of two E. coli B/r
cultures prepared by agar filtration. The big cells were grown in trypton
broth with a doubling time of 22 min; the small cells were grown in

synthetic alanine-medium with a doubling time of 150 min. Compare with a
similar preparation of mixed populations in Figure 2 of Nanninga and
Woldringh (1985).

Amsterdam School to propose that cells initiate constriction after
a constant length increment ∆L following initiation of DNA
replication (Figure 5) thus establishing a correlation between
cell sizes at replication initiation and at initiation of visible
constriction C min later. This model of constant ∆L was recently

revived (Amir, 2014) and supported by measurements of live
cells (Campos et al., 2014; Iyer-Biswas et al., 2014; Taheri-Araghi
et al., 2015) confirming that a growing bacteriummaintains stable
size by adding a constant incremental length ∆L each generation
irrespective of its size at birth. This automatically leads to size
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FIGURE 4 | Escherichia coli B/r cells prepared for electron microscopy
by agar filtration, 60 min after a nutritional shift-up from τ 1 = 72 to
τ 2 = 24 min (cf. Figure 3 in Nanninga and Woldringh, 1985). The nucleoids

show up as electron-transparent regions in the air-dried cells, flattened by
surface tension (cf. Woldringh et al., 1977). Red arrows indicate constriction
sites, blue arrows, tapered tips.

FIGURE 5 | Semi-log plot of cell length as a function of cell age (cf.
Figure 6 in Koppes et al., 1978). Irrespective of newborn cell size (vertical,
red bar; Lb ± SD) cells elongate exponentially (same specific elongation rate).
According to the “timer” model (red triangles), newborn cells divide (at age 1)
after a constant period; according to the “sizer” model (blue circles, Ld),
newborn cells divide after reaching a critical size (at length 2); according to the
“adder” model (black crosses) newborn cells divide after elongating with a
constant length increment ∆L.

homeostasis that is valid at all growth rates obtained in different
media, and since faster growing cells are longer, ∆L changes
accordingly.

Jun and colleagues (Jun and Taheri-Araghi, 2014; Taheri-
Araghi et al., 2015) proposed that the molecular mechanism
underlying the size homeostasis by the so-called “adder” model
(Figure 5) is related to the P-sector proteins of the E. coli proteome
of which the total number per cell is relatively constant at different

growth conditions. According to this hypothesis, accumulation
of these proteins to a fixed threshold each generation would
serve as a trigger for cell division. This proposal, however,
does not relate mass growth to the DNA replication cycle, as
suggested four decades ago (Zaritsky, 1975b). If P-sector proteins
are at a fixed number per cell, then they would become diluted
during the interdivision time (molecules fixed, but cell volume
increases). Therefore, it is not clear how it could result in
their accumulation to trigger division. Other aspects of this
idea have recently been rebutted in more details (Zaritsky,
2015).

Coupling between DNA replication and cell elongation could
be obtained by the nucleoid occlusion mechanism that is being
relieved when daughter nucleoids are segregating apart (Mulder
and Woldringh, 1989; Nanninga et al., 1990; Woldringh et al.,
1990). This would require that newborn cells contain nucleoids
with the same amount of DNA (G/terC) irrespective of their size
at birth and that the state of nucleoid segregation parallels the
cell’s length increase. In other words, a length increment of the
nucleoid would be sensed rather than a length increment of the
cell. That DNA replication and segregation go hand in hand with
cell elongation is supported by observations on the movement
of duplicated oriC’s (Elmore et al., 2005) and of segregating
chromosome arms (cf. Youngren et al., 2014; Woldringh et al.,
2015). However, while during slow growth all newborn cells
can be assumed to contain nucleoids with the same amount
of DNA, this will not hold for fast growth showing multifork
replication. Here, stochastic premature or postponed division
of mother cells will produce small and large daughter cells,
respectively, with different amounts ofDNAper nucleoid and thus
different stages of segregation. Such cells will not signal division
after a constant length increment as predicted by the “adder”
model.

Another proposal (Ho and Amir, 2015; see also Robert, 2015)
couples DNA replication and cell elongation to the time of
initiation of DNA replication. Here, sensing of a constant length
increment is starting at the last initiation of DNA replication.
How a size increment rather than a critical size is monitored
and whether nucleoid segregation is involved in such a model
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remains to be seen. Presently, information is lacking on the size
of the nucleoids in newborn cells at different growth rates at the
individual cell level. Better DNA staining techniques are required
to observe nucleoid growth and segregation in individual cells
growing in microfluidic systems.

Whatever property a cell is sensing to enable it to divide after
a constant size increment irrespective of its size at birth, some
communication will be necessary between the dynamics of DNA
(transcription, replication and segregation) and the biosynthetic
activities of peptidoglycan (elongation and constriction at
perpendicular angles). It has been proposed (Rabinovitch
et al., 2003) that DNA could exert stress on the membrane
through the transertion mechanism (Woldringh, 2002): coupled
transcription/translation of genes encoding membrane proteins
and inserting these proteins into the membrane. The strength
of this interaction varies along cell length with a minimum in
between the segregating nucleoids. By a yet-unknownmechanism,
this stress-change signal that is relayed to initiate division is
proposed to be sensed by the peptidoglycan-synthetic machinery.
As described by Typas et al. (2012), this may involve stretching
of the peptidoglycan network hence influencing the activity of
outer membrane-anchored lipoproteins. These proteins reach
through the pores of the peptidoglycan network to interact
with peptidoglycan synthases (penicillin binding proteins) as
required for constriction (Woldringh et al., 1987). Proteins
interfering with FtsZ-ring formation were recently also related
to the NO phenomenon (reviewed by Wu and Errington,
2012).

The notion that a functional relationship exists between
DNA dynamics and peptidoglycan biosynthesis is supported by
the high correlations found between cell dimensions and the
amount of DNA per nucleoid (G/terC) over a wide range of
conditions (Zaritsky, 2015). Moreover, the constant aspect ratio
(cell length/width ratio) supports the view that the expansion of
the nucleoid during replication and segregation (and cell mass
growth) occurs equally in three dimensions.

Concluding Remarks

It is well known that the formulas describing cell mass and DNA
content, as well as nucleoid complexity (amount of DNA per
nucleoid), can only be applied in populations that grow under
steady-state conditions (Campbell, 1957; Fishov et al., 1995).
However, confirmation of steady state is seldom mentioned or
documented. In many studies, bacterial batch cultures growing

in rich media are used after a 100- to 1000-fold dilution of
an overnight culture. In such populations the steady state has
probably not been reached as it requires unperturbed, exponential
growth at the same rate for some 20 generations (e.g., Maalϕe and
Kjeldgaard, 1966).

How do single-cell growth studies in microfluidic channels
measure up to the requirements for steady state growth? It appears
that constancy of growth rate and length distributions of newborn
cells dividing in the channels can accurately be monitored (Wang
et al., 2010; Campos et al., 2014; Osella et al., 2014; Taheri-
Araghi et al., 2015). If in addition the growth experiments could
include observations on nucleoid extension and segregation after
labeling with, for instance, fluorescent DNA binding proteins
(e.g., Männik et al., 2012; Pelletier et al., 2012), it would be
possible to test the present proposal, that DNA replication and cell
growth are coupled via a segregation signal for cell division. If the
presumed segregation signal could be related to forces exerted by
the nucleoid on the plasma membrane (Rabinovitch et al., 2003)
and on the peptidoglycan network (Typas et al., 2012), it would
support a belief expressed by Bob Pritchard more than 50 years
ago: “...that an understanding of the determination of cell size and
shape will not be possible without taking into account the physical
forces to which the cell boundary is exposed.” (Pritchard, 1974).
We believe that the task of Physicists in expanding and deepening
understanding of Cell Biology, bacteria included of course, is as
critical as it was for Molecular Biology during the last Century,
and similar, tight cooperation with Biologists is as crucial. The
novel technologies continuously developed to enhance this end,
as exemplified in the whole series of articles of this Research Topic,
facilitate the study on both levels, single cells and single molecules
in real-time.

In this memoir-style review, we try to bridge between past
achievements and future prospects in the relatively-young field
of Bacterial Physiology through present knowledge; scientists and
students who are involved can exploit the information, which
by no means is exhaustive, for the benefit of their current
investigations, in the never-ending endeavor to understand
Nature.
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