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Fungal microorganisms frequently lead to life-threatening infections. Within this group of
pathogens, the commensal Candida albicans and the filamentous fungus Aspergillus
fumigatus are by far the most important causes of invasive mycoses in Europe. A
key capability for host invasion and immune response evasion are specific molecular
interactions between the fungal pathogen and its human host. Experimentally validated
knowledge about these crucial interactions is rare in literature and even specialized host–
pathogen databases mainly focus on bacterial and viral interactions whereas information
on fungi is still sparse. To establish large-scale host–fungi interaction networks on
a systems biology scale, we develop an extended inference approach based on
protein orthology and data on gene functions. Using human and yeast intraspecies
networks as template, we derive a large network of pathogen–host interactions (PHI).
Rigorous filtering and refinement steps based on cellular localization and pathogenicity
information of predicted interactors yield a primary scaffold of fungi–human and
fungi–mouse interaction networks. Specific enrichment of known pathogenicity-relevant
genes indicates the biological relevance of the predicted PHI. A detailed inspection
of functionally relevant subnetworks reveals novel host–fungal interaction candidates
such as the Candida virulence factor PLB1 and the anti-fungal host protein APP. Our
results demonstrate the applicability of interolog-based prediction methods for host–
fungi interactions and underline the importance of filtering and refinement steps to attain
biologically more relevant interactions. This integrated network framework can serve as
a basis for future analyses of high-throughput host–fungi transcriptome and proteome
data.

Keywords: pathogen–host interaction (PHI), protein–protein interaction, interolog, Candida albicans, Aspergillus
fumigatus, network inference, pathogenicity, bioinformatics and computational biology

Introduction

Fungal pathogens infect hundreds of millions of people world-wide every year (Havlickova et al.,
2008). Although, the death toll of fungal diseases is comparable to that of malaria or tuberculosis
the global burden imposed by fungal pathogens still remains underestimated (Brown et al., 2012).
In general, infections caused by fungal pathogens can lead to a diverse range of diseases ranging
from superficial infections to invasivemycoses. The outcome of fungal infections is often associated
with the intactness of the patients’ immune system and therefore fungi pose an increasingly severe
threat to the growing numbers of immunocompromised patients in modern medicine, with high
mortality rates exceeding 50% for invasive fungal diseases (Brown et al., 2012).
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Among fungal pathogens the dimorphic yeast Candida
albicans and the filamentous fungus Aspergillus fumigatus are
the most important causes of life-threatening invasive mycoses
(Horn et al., 2012). C. albicans colonizes the skin and intestinal
mucosa of 30–70% of healthy individuals and invasive infection
almost exclusively begins endogenously starting from a usually
harmless surface colonization, frequently in the gastrointestinal
tract (Gow et al., 2012). In contrast to the endogenous pathway of
C. albicans, infections by A. fumigatus mainly occur exogenously
via the inhalation of fungal spores (conidia) causing chronic
pulmonary aspergillosis or invasive aspergillosis in patients with
a severely weakened immune system (Brown et al., 2012).
Despite these differences during the infection process, several
common strategies of pathogenesis are shared between both
fungi.

Host–fungi interactions have been described as
commensalism, symbiosis, or pathogenicity. Interestingly,
the mechanisms of symbiosis and pathogenicity share common
features and there is evidence for parallel trends in evolution
between host and pathogens (Ochman and Moran, 2001). The
transition from commensal to pathogen is often dependent
on small differences (Martin and Nehls, 2009) and the host–
pathogen relation can change by environmental conditions
(Hube, 2004). Strong adhesion of the fungi to the surface
forming a protective biofilm is important for invasive growth,
as invasion is driven by pressure on the solid substrate (de
Groot et al., 2013). In this sense host–fungal interaction can
be characterized by the formation of symbiotic or pathogenic
interfaces (Bonfante and Genre, 2010). This relates in particular
to processes of pathogen–host interaction (PHI) where both
fungi mainly need to overcome similar epithelial barriers and
develop skills for the evasion of the innate immune system,
capabilities which contribute to the aggressiveness of both
pathogens (Horn et al., 2012).

Therefore, a principal aim of systems biological research of
human–pathogenic fungi is to unravel the intricate network of
interactions between host and the fungal pathogen and elucidate
the complex pathogenesis processes of fungal infections. A major
quest in this field is the identification of physical or direct
interactions between fungus and host proteins during the
infection processes. Albeit the research of host–pathogen
interactions is becoming increasingly popular in experimental
as well as computational science, only a small number of
interactions between fungi and human have been reported
in literature so far. This leaves a large gap for novel
bioinformatical strategies for the prediction of PHI of pathogenic
fungi.

With the advent of large scale interaction detection methods
the experimental and computational analyses of protein–protein
interactions (PPIs) have established an important research field
in bioinformatics during the last decade. Still most efforts have
been dedicated to the investigation of intraspecies interactions
(i.e., interaction between proteins within one species). The
primary species in the focus of investigation so far have been
Homo sapiens and Saccharomyces cerevisiae. This is reflected
in the fact that the largest experimentally derived PPI datasets
available in databases primarily cover H. sapiens and S. cerevisiae

interactions. Currently, these two species constitute almost 74%
percent of all non-redundant physical interactions1 (H. sapiens:
50.7% and S. cerevisiae: 23.0%) in the BioGRID database
(Chatr-Aryamontri et al., 2013). The networks of most other
species are considerably smaller and for network analysis these
datasets are often extended by the inclusion of interolog based
predictions to obtain a larger search space, where interologs
are defined as PPIs that are conserved between orthologous
proteins in different species (Walhout et al., 2000). Nowadays the
interolog approach is commonly used for the classical prediction
intraspecies interactions and is particularly valuable for the
prediction of novel PPI in species where only a small number
of interactions have been experimentally detected. Conceptually,
the interactions are transferred from one species to another.
This means that if for a given pair of interacting proteins in
the source species, homologues for both interaction partners
exist in the target species an interaction between those two
homologs is inferred. The rational of this interaction transfer is
based on the assumption that if a pair of homologous proteins
originates from the same ancestral pair of interacting proteins,
it can be expected, that the inheritance of the amino acid
sequence translates into a related and similar protein structure,
and thereby the capability of mutual interaction is also inherited
from the ancestral interacting proteins (Walhout et al., 2000).
This approach has been extended to the prediction of interspecies
interactions and in particular to the prediction of PHIs (Zhou
et al., 2013a).

Recent studies investigated the interaction betweenH. sapiens
and Plasmodium falciparum (Dyer et al., 2007; Lee et al.,
2008; Wuchty, 2011), H. sapiens and Helicobacter pylori (Tyagi
et al., 2009), H. sapiens and E. coli (Krishnadev and Srinivasan,
2011), H. sapiens and Salmonella enterica (Krishnadev and
Srinivasan, 2011) and H. sapiens and Yersinia pestis (Krishnadev
and Srinivasan, 2011) as well as between H. sapiens and
Mycobacterium tuberculosis (Zhou et al., 2014). Apart from the
more frequently investigated protozoan P. falciparum, most of
these studies focus on the interaction with a bacterial pathogens.
Fungal infections have only rarely been researched. A recent
study examined the interaction between zebra fish and Candida
(Chen et al., 2013), however, a systemic investigation of direct
host–pathogen-PPI between the fungi either C. albicans or
A. fumigatus and the human host has to our knowledge not be
conducted so far.

Here we present an extended interolog-based method
for the prediction of fungal–host interactions. We focus
on the clinically most relevant fungi, the dimorphic yeast
C. albicans and the filamentous fungus A. fumigatus. In
addition to the human host, we also investigate interactions
between these fungi and Mus musculus, since it is the
most frequently used animal model in medical sciences. As
basic interolog prediction approaches for cross-species analysis
often produce large initial predictions sets, we develop and
establish an advanced filtering and selection strategy, to
reduce the initial set of raw predictions to a smaller refined
set of high quality predictions. To this end, we integrate

1wiki.thebiogrid.org/doku.php/statistics
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information on cellular localization of the predicted host
and pathogen interaction partners and focus on proteins
associated with cellular functions with relevance for the
infection process. The enrichment of established infection and
pathogenicity related genes during these subsequent refinement
steps emphasizes the biological relevance of the predicted
PHIs, from which we highlight and describe some promising
candidate interaction in more detail. By this, we demonstrate
the benefit of the interolog-based approach in combination with
advanced filtering and refinement steps for prediction fungal-
host interactions.

Materials and Methods

Template Intraspecies Interaction Networks
For the host–fungi interaction network inference, the intraspecies
interaction data of S. cerevisiae and H. sapiens were downloaded
from the following 14 active partners of the International
Molecular Exchange (IMEx) consortium (Orchard et al.,
2012):

DIP (Salwinski et al., 2004), IntAct (Orchard et al., 2014),
MBInfo2, MINT (Licata et al., 2012), MatrixDB (Chautard
et al., 2011), Molecular Connections3 , I2D (Brown and
Jurisica, 2007), InnateDB (Breuer et al., 2013), UCL-BHF
group, UCL London4, UniProt Swiss-Prot group, SIB (The
UniProt Consortium, 2014), BioGRID (Chatr-Aryamontri et al.,
2013), MPact (Pagel et al., 2005), BIND (Bader et al., 2001), and
MPIDB (Goll et al., 2008).

PSICQUIC queries (Aranda et al., 2011) were used to retrieve
human and yeast intraspecies interaction information from
this databases on 09/09/2014. Non-coding genes, interaction
loops of self-interacting proteins as well as interactions of the
interaction types “colocalization,” “additive genetic interaction
defined by inequality,” “suppressive genetic interaction defined
by inequality,” “synthetic genetic interaction defined by
inequality,” “genetic interaction,” “genetic inequality,” “genetic
interference,” and “self-interaction” were not used for the
template networks.

Orthology Information
Orthology information for C. albicans, S. cerevisiae, H. sapiens,
M. musculus, and A. fumigatus was downloaded from
InParanoid8 (Sonnhammer and Ostlund, 2014). Additionally,
orthology relations between A. fumigatus and S. cerevisiae were
retrieved from Aspergillus Genome Database (AspGD; Cerqueira
et al., 2014). Orthologies of the species pair A. fumigatus and
H. sapiens which was neither available from InParanoid8 nor
AspGD, were computed via the InParanoid version 4.15 using
parameters comparable to the parameters of similar species pairs
(H. sapiens – A. kawachii). Blast version 2.2.26 with the scoring
matrix Blosum62, a score-cutoff of 40 bits, a sequence overlap

2http://www.mechanobio.info/
3http://www.molecularconnections.com
4http://www.ucl.ac.uk/functional-gene-annotation/cardiovascular
5http://software.sbc.su.se/cgi-bin/request.cgi?project=inparanoid

of 0.5, a group merging cutoff 0.5 and a minimal score of 0.05
was used as InParanoid settings. The dataset for A. fumigatus
protein sequence was downloaded from AspGD, while the
protein sequences of H. sapiens originated from the InParanoid8
server.

Gene Ontology
Gene Ontology (GO) slim annotations, a subset of the GO
dataset (Ashburner et al., 2000) were used to categorize genes in
host–fungi interactions of the inferred networks regarding three
domains: biological process, molecular function and cellular
component. GO slim associations were retrieved from the
Candida Genome Database (CGD; Arnaud et al., 2005) and
the AspGD (Cerqueira et al., 2014) for both fungal pathogen
species. GO slim associations for the host species (H. sapiens and
M. musculus) were downloaded from EnsEmbl 76 (Flicek et al.,
2014).

Genes of the inferred fungi–host interaction networks were
categorized by GO slim cellular component annotation in likely
and unlikely host–fungal interactors under the assumption that
interacting host and fungal proteins have to be localized on
potential interface (e.g., cell surface or endosome membrane).
The GO slim cellular component terms for likely interspecies
interactions on the fungal and host side were listed in
Table 1.

Similar to the refinement step for protein localization, proteins
with pathogenicity-associated GO slim biological process terms
were selected to enrich for pathogenicity-relevant interaction
predictions (see Table 2). Only genes assigned to one of the
referenced cellular component and biological process GO terms
were used for further analyses.

Gene Ontology and Uniprot Tissue Enrichment
Interactors of subnetworks were tested for enriched GO
annotation level 2 terms of the domains “biological process,”
“cellular component,” “molecular function” (Ashburner et al.,
2000) versus the GO terms background frequencies of the
interactors in the full network. The functional enrichment
tests were performed via the DAVID Bioinformatics Resources
6.7 (Huang da et al., 2009a,b) using GO terms of all levels
and only reporting groups of the size of least two genes
and an EASE Score Threshold (for gene-enrichment analysis
modified Fisher Exact P-Value) of less than 0.1. The p-values
were adjusted for multiple testing (Hochberg and Benjamini,
1990). Similar to the GO enrichment, the tissue enrichment
analyses were performed on Uniprot tissue terms via the DAVID
Bioinformatics Resources 6.7.

Catalog of Pathogenicity-Relevant Genes
To get a set of genes of H. sapiens and M. musculus that
are known to be involved in host–pathogen interactions, the
PPI information were downloaded from the HPIDB version
5/22/2014 and the PATRIC database version Mar2013. Further,
all interspecies interactions that involved viral pathogens or the
interaction types which are not related to a direct PPI such
as annotated as “colocalization,” “additive genetic interaction
defined by inequality,” “suppressive genetic interaction defined by
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TABLE 1 | Numbers of genes in the primary predicted host–fungal PPI networks belonging to the cellular component GO filter terms.

(A) Filter terms for host side

GO slim cellular component terms Number of genes in Homo sapiens Number of genes in Mus musculus

Extracellular region 2,566 783

Plasma membrane 2,310 2,024

Extracellular space 631 419

Endosome 476 421

Lysosome 306 247

Cilium 138 202

Proteinaceous extracellular matrix 115 132

External encapsulating structure 3 5

Only other GO terms 6,531 7,645

No GO terms 902 361

(B) Filter terms for fungi side

GO slim cellular component terms Number of genes in Aspergillus fumigatus Number of genes in Candida albicans

Plasma membrane 270 236

Extracellular region 94 33

Cell wall 52 74

Only other GO terms 3214 3160

No GO terms 0 1114

(C) Sizes of host–fungi PPI networks after localization refinement

Host species Pathogen species Number of host–pathogen interactions Number of host interactors Number of pathogen interactors

H. sapiens A. fumigatus 17,853 (8.4%) 363 (10.2%) 2,393 (21.2%)

H. sapiens C. albicans 15,330 (4.3%) 301 (6.6%) 2,123 (19.2%)

M. musculus A. fumigatus 9,284 (4.5%) 337 (9.4%) 1,572 (14.9%)

M. musculus C. albicans 8,055 (2.4%) 282 (6.2%) 1,376 (13.3%)

inequality,” “synthetic genetic interaction defined by inequality,”
“genetic interaction,” or “genetic inequality” were removed from
the dataset.

Also, the Victors database of PHIDIAS (Xiang et al.,
2007), a database containing virulence factors originating from
literature curation and bioinformatics analyses and the PHI-
base (Winnenburg et al., 2008), a database containing expertly
curated molecular and biological information on pathogenic
genes experimentally verified to have an effect on the virulence
outcome were searched for genes of the fungal pathogens
A. fumigatus and C. albicans that are known as pathogenesis
associated.

Additionally the public available interaction databases mentha
(Calderone et al., 2013), HPIDB (Kumar and Nanduri, 2010),
APID (Prieto and De Las Rivas, 2006), PHISTO (Durmus
Tekir et al., 2013), PRIMOS (Rid et al., 2013), and the
databases of IMEx (Orchard et al., 2012) were scanned to
receive all already known interspecies interactions for human–
Candida, human–Aspergillus, mouse–Candida, and mouse–
Aspergillus.

To find already known human–Aspergillus, mouse–
Aspergillus, human–Candida, and mouse–Candida interactions
the public available interaction databases mentha, HPIDB, APID,
PHISTO, PRIMOS, and the databases of IMEx was searched.

Analysis of Dual RNA-Seq Data
For the comparison of predicted fungal–host interaction
networks, gene expression data of a previously published
time course of murine bone marrow derived dendritic cells
phagocytosing C. albicans SC5314 cells was used (Tierney et al.,
2012). The gene expression data constitutes of dual RNA-seq data
simultaneously measuring the transcripts of Candida and mouse
cells at 30, 60, 90, and 120 min post-infection. The sequenced
reads were downloaded from http://www.ebi.ac.uk/arrayexpress/
experiments/E-MTAB-595/. Contamination of poly-T at the
read start and poly-A at the read end was removed via cutadapt
version 1.6 (Martin, 2011). The curated reads were mapped on
a combined reference of the C. albicans SC5314 version A22
(Arnaud et al., 2005) and the M. musculus version GRCm38.75
(Flicek et al., 2014) genome, using the short read mapping tool
STAR version 2.4 (Dobin et al., 2013). For each gene of the
C. albicans and the M. musculus, the uniquely mapped reads
were counted with featureCounts version 1.4.3 (Liao et al., 2014).
Fungal and host genes were tested for differential expression
in the infection time course with DESeq2 version 1.6.2 (Love
et al., 2014). Genes were identified as differentially expressed
when they showed a significant (p-value <0.05) change in
read counts after multiple testing correction (Hochberg and
Benjamini, 1990).
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TABLE 2 | Numbers of genes in the primary predicted host–fungal PPI networks belonging to the biological process GO filter terms.

(A) Filter terms for host side

GO slim biological process terms Number of genes in H. sapiens Number of genes in M. musculus

Signal transduction 951 602

Immune system process 491 255

Symbiosis, encompassing mutualism through parasitism 260 0

Cell adhesion 151 127

Circulatory system process 50 53

Only Other Slim BP annotations 1,246 878

No GOSlim BP annotation 0 0

(B) Filter terms for fungi side

GO slim biological process terms Number of genes in A. fumigatus Number of genes in C. albicans

Pathogenesis 30 33

Cell adhesion 10 24

Biofilm formation 0 32

Interspecies interaction between organisms 0 30

Growth of unicellular organism as a thread of attached cells 0 2

Only Other Slim BP annotations 330 244

No GOSlim BP annotation 0 0

(C) Sizes of host-fungi networks after functional refinement

Host species Pathogen species Number of host–pathogen interactions Number of host interactors Number of pathogen interactors

H. sapiens A. fumigatus 1,137 (6.4%) 607 (25.4%) 33 (9.1%)

H. sapiens C. albicans 3,025 (19.7%) 840 (39.6%) 57 (18.9%)

M. musculus A. fumigatus 590 (6.4%) 355 (22.6%) 26 (7.7%)

M. musculus C. albicans 1,462 (18.2%) 461 (33.5%) 41 (14.5%)

Network Visualization
The networks were visualized by Cytoscape (Shannon et al.,
2003). The top 10% of fungal high degree interactors were
removed from the visualized networks to improve the readability.
The GO slim interaction network was based on grouping
genes in GO slim groups that are annotated by the respective
GO slim biological process terms. Improved readability of GO
slim networks was achieved by merging GO slim groups fully
contained in larger groups. Node size represents the number of
genes contained in each GO slim term. Edge width and color
depict number of interactions between two GO slim terms.

Results

Host–Fungi Interaction Data in Literature and
Public Databases is Sparse
The primary objective of our work is to establish a comprehensive
catalog of host–fungal interactions. A first literature search
revealed that overall not much detailed data concerning PHIs
for fungi is available so far. However, as PHIs have become an
important topic in the last years, several databases for PHIs have
been established. Up to date most of the interactions deposited in
these databases still relate to viral and bacterial pathogens and
almost no information concerning fungi is available at all. For

example, the current HPIDB (Kumar and Nanduri, 2010) covers
predominantly viral (74%: 29,942) and bacterial (22%: 8,992)
pathogens and only 4% (1,628) of the interactions involve fungal
species out of which over 92% (1,499) relate to Saccharomyces
spp. To obtain a comprehensive overview of all host–fungi
interaction data available so far, we first searched the content
of the most prominent host–pathogen interaction databases
[HPIDB, PHISTO (Durmus Tekir et al., 2013), and PRIMOS
(Rid et al., 2013)] for established host–fungal interactions
between human–Candida, human–Aspergillus, mouse–Candida,
and mouse–Aspergillus. Nevertheless, the search returned only
two distinct interactions between C. albicans and H. sapiens
and one more for mouse–Candida: (i) Candida ORC1 (Origin
recognition complex subunit 1) and humanCDC23 (Cell division
cycle protein 23), (ii)CandidaQ00308 and humanCD2BP2 (CD2
antigen cytoplasmic tail-binding protein 2). For the interaction
between mouse and Candida only one interaction between
the Candida CDC28 (Cyclin-dependent kinase 1) and murine
Cdkn1b (Cyclin-dependent kinase inhibitor 1B) could be found.
We could not find any interspecies interaction between human
and A. fumigatus or between mouse and A. fumigatus from
the above host–pathogen-databases. Therefore, we subsequently
scanned APID (Prieto and De Las Rivas, 2006), mentha
(Calderone et al., 2013) and all the 14 curated PPI databases
of the IMEx consortium (Orchard et al., 2012) for cross-species
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interactions involving A. fumigatus and C. albicans (see Catalog
of Pathogenicity-Relevant Genes section). This extended search
revealed only one additional interspecies interaction that was not
included in the PHI databases: Candida CDC42 (Cell division
control protein 42 homolog) and the murine Scd2 (Acyl-CoA
desaturase 2). No interactions for A. fumigatus have been found
in above databases for human or mouse.

Since information in databases about PPIs between the fungal
pathogens C. albicans and A. fumigatus and their hosts is sparse,
we propose a framework to infer PHIs and thus create hypotheses
for experimental validation.

Dual Template Interolog-Based Host–Fungi PPI
Network Inference Approach
The general approach applied in this study aims on the
identification of novel potential PPIs between the selected host
species H sapiens and M. musculus and the fungal pathogen
species C. albicans and A. fumigatus. To derive these PHIs,
we established an interolog-based inference method exploiting
known intraspecies interactions in H. sapiens and S. cerevisiae as
template networks combined with gene homology information
between the template species and the host as well as the fungal
species. Our approach comprises three steps which involve (i)

the establishment of a comprehensive dual-species PPI template
network, (ii) homology based inference of PHIs, and (iii)
the application of an extended filtering strategy on the raw
predictions to attain a core set of refined interaction predictions
(see Figure 1).

Comprehensive Dual-Species PPI Template Network
To establish a comprehensive intraspecies template network
for interspecies PHI interaction prediction we screened the
BioGRID database (Chatr-Aryamontri et al., 2013) and 13 PPI
databases associated with the Imex consortium for intraspecies
PPIs in H. sapiens and S. cerevisiae resulting in 170,774
human interactions with 15,509 interactors and 272,167 yeast
interactions with 5,824 interactors. As we primarily focus in this
study on direct PPIs, the template networks were curated from
PPIs detected by methods which are rather based on functional
associations (e.g., “genetic interference”). Furthermore, all self-
interactions were removed from this network. The resulting
human and yeast intraspecies PPI networks consisted of 147,760
human interactions with 15,240 interactors and 130,665 yeast
interactions with 5,789 interactors. Although the numbers of
human interactions were reduced by almost 14%, the number of
interactors barely decreased (1.7%). Since a large number of yeast

FIGURE 1 | Basic concept of the host–fungi PPI inference and
refinement steps. (A) Information of direct PPI from multiple public databases
were integrated for the two template networks Homo sapiens and
Saccharomyces cerevisiae. (B) These combined with orthology information
allowed to identify host–fungi interologs. (C) Primary inferred networks were

filtered for interactions which showed protein localizations pointing to possible
interfaces between host and fungi. Additionally, the networks were refined for
pathogenicity-related processes. (D) Evidence information of several
independent sources (e.g., transcriptome data) were exploited to evaluate the
refined host–fungi PPI networks.
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interaction were identified by functional association methods, the
number of interaction decreased by almost 52%, while similar to
the human network the number of interactors was just reduced
by less than 1% (see Supplementary Table S2).

Interolog-Based Prediction Yields Large Host Fungal
Interaction Networks
Host–fungal interactions for each host–fungi pair were
predicted based on the two template interaction networks.
Thus, in a second step, we integrated the template interaction
data with orthology information of the host, pathogen,
and template species. Orthology information between the
two template PPI networks of H. sapiens and S. cerevisiae
and the host species H. sapiens and M. musculus as well
as the fungal pathogens C. albicans and A. fumigatus was
downloaded from the InParanoid 8 database (Sonnhammer
and Ostlund, 2014), the species-specific genome databases
(Binkley et al., 2014; Cerqueira et al., 2014; Costanzo et al.,
2014) and missing species pairs complemented by orthology
identification by the stand-alone program InParanoid 4.1
(Ostlund et al., 2010). For H. sapiens as template species, 16,582
mouse genes were identified as orthologs to 16,417 human
genes, while 2,687 Candida genes were orthologs to 3,770
H. sapiens genes (2,808 Aspergillus and 4,277 H. sapiens
genes, respectively). Interestingly, we found more than
twice the number of Candida proteins being orthologs to
yeast than orthologous A. fumigatus proteins, while the
number between both fungi and human was comparable to
S. cerevisiae – A. fumigatus orthologs (see Supplementary
Table S1)

We searched for orthologs for both interactors of each
template interaction to predict potential direct PPIs between the
host species H. sapiens or M. musculus with the fungal pathogen
species C. albicans or A. fumigatus. Interologs are PPIs inferred
from one species to another by using orthology information
(Walhout et al., 2000). In our approach, we simultaneously
identified orthologs of one interactor in the host species and
one interactor in the fungal species for each template interaction.
The resulting cross-species interologs between the hosts and the
pathogens should consequently have the potential to perform
a PPI, given both interactors share the same location at one
point in time. For the human-Aspergillus infection 213,518
interologs with 11,279 human and 3,576 Aspergillus interactors
could be superimposed. Similar results were obtained for the
three other infection setups human–Candida, mouse–Aspergillus,
and mouse–Candida (see Supplementary Table S2).

Improving Primary Inferred Host–Fungi PPI Networks
Potential false predictions were reduced via refinement of the
primary inferred host–fungi PPI networks based on functional
data. Therefore, GO slim annotations of the cellular component
and biological process (The Gene Ontology, 2014) were exploited
in this filtering step. To enrich for likely interactions, only
host and pathogen interactors which showed GO slim cellular
component annotations pointing at locations associated to the
cell surface and intracellular compartments which can be in direct
host–fungi contact, were selected for the refined host–fungi PPI

networks. The GO slim cellular compartment terms which were
selected for filtering interactors based on their localization were
summarized for the hosts (see Table 1A) and the fungi (see
Table 1B). Only 902 human and 361 mouse genes showed no
GO slim cellular component annotation at all. On the fungal
side, this was the case for 1114 Candida, but none of Aspergillus
genes. Altogether, only very few genes were lost in this filtering
step due to missing localization information. The distribution of
filtered GO slim cellular component terms clearly shows that the
“extracellular region” is less abundant in the murine compared to
the human interactor set (783 and 2566), while the other terms
are similarly present between mouse and human. Surprisingly,
the term “extracellular region” also shows a strong difference in
distribution on the fungal side (94 Aspergillus interactors and 33
Candida interactors).

This filtering step reduced the interolog networks, e.g.,
human–Aspergilluswith 213,518 interologs to 17,853 interactions
with 2,393 human and 363 Aspergillus interactors. For all four
interolog networks, the refinement step reduced the number of
interactions to less than 9%, while the host interactors were
reduced to less than 11% and the fungal interactors to less than
22%, respectively (see Table 1C).

In concordance with the localization filtering, a functional
refinement utilizing representative biological process terms was
applied. To improve the quality of the predicted network
and increase the fraction of PPIs potentially associated to
pathogenicity-relevant processes, we selected five GO slim
biological process terms for filtering the host interactors (see
Table 2A) and five GO slim biological process terms on the
pathogen side (see Table 2B). All genes of the hosts and fungal
pathogens showed an annotation of GO slim biological process.

In the localization-refined PPI networks, GO slim biological
process annotations were available for each host and fungi
interactor. Nonetheless, the number of human interactors
assigned to the selected GO slim biological process terms was
higher than for mouse. Especially, the GO slim term “Symbiosis,
encompassing mutualism through parasitism” yielded the
strongest difference with a coverage of 260 human interactors
and 0 mouse interactors. For the fungal pathogens, the
results were similar with fewer A. fumigatus interactors than
C. albicans interactors assigned to selected GO biological process
terms.

This filtering step reduced the localization-refined networks,
e.g., mouse–Candida 8055 interactions with 1,376 mouse and
282 Candida interactors to 1,462 interactions with 461 mouse
and 41 Candida interactors. For all four host–fungi networks,
the refinement step reduced the number of interactions to less
than 20%, while the host interactors were reduced to less than
40% and the fungal interactors to less than 19%, respectively (see
Table 2C).

The Dual Template Approach Substantially
Enhances the Prediction Space for Host
Fungal Network Inference
To investigate the benefits of our dual-template approach for
the interolog-based network inference, we examined for each
host and fungal interactors the template network from which
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they were inferred. For this, we grouped the interactors of the
primary inferred PHI networks based on their original template
network (see Figure 2). On the host side, the human template
exclusively makes up for 67.5% of the human interactors in
the PHI networks, while over 10.2% of the human interactors
originated only from the yeast template (see Supplementary
Figure S1). About 22.3% of the human interactors were inferred
from both the human and the yeast template. Similarly, for
the mouse interactors, the human template solely makes up
for over 66.0% of the murine interactors in the PHI networks,
while more than 11.5% of the interactors originated only from
the yeast template. About 22.4% of the murine interactors
were inferred from both the human and the yeast template.
Even though no orthology information was required for the
inference of human interactors, we see similar distribution of
template origin between human and murine interactors. On
the fungal side, a substantially larger fraction of the Aspergillus
interactors (24.4%) was inferred from yeast template, while
the human template makes up for 42.4% of the Aspergillus
interactors originating from the human template. Over 33.1% of
the Aspergillus interactors were inferred from both the human
and the yeast template. In contrast, only less than 8.5% of the
Candida interactors were inferred from the human template,
while more than 43.0% originated from yeast interologs. The
largest fraction with more than 48.4% of the Candida interactors

FIGURE 2 | Influence of the template networks on the predicted
(A) mouse–Candida network (B) mouse–Aspergillus network. The color
of the circle denotes the template network from which the interactors
originated.

resulted from both human and yeast template. These numbers
represent substantial differences in the distribution between
both fungal pathogens, as could be expected by the smaller
evolutionary distance from S. cerevisiae to C. albicans than from
S. cerevisiae to A. fumigatus.

A GO enrichment analysis was performed for each group
of interactors originating from human, yeast, or both template
interaction networks compared to the whole set of interactors
(see Supplementary Tables S3 and S4). The GO enrichment
analyses showed that multiple GO categories related to
PHI were significantly enriched in the human interactor
subsets originating from the human template network (e.g.,
extracellular region part, cell adhesion, signal transducer
activity) and yeast template network (e.g., membrane part,
transmembrane transport, ion binding). Surprisingly, the subset
of human interactors inferred by both template networks
was enriched for GO categories of basic biological processes
(e.g., intracellular part, ribonucleoprotein complex, nucleotide
binding). Even with the overlap of subsets showing only few
interesting enriched GO categories, the integration of both
template networks complemented a large amount of significantly
enriched pathogenicity-relevant categories (see Supplementary
Table S3).

Similar to the host side, the GO enrichment analysis of the
Aspergillus interactors predicted based on the human template
network yielded significantly enriched pathogenicity-associated
GO terms (e.g., oxidation reduction, ion binding). For the
interactors originating from the yeast template network, a
different set of pathogen-relevant GO terms (e.g., membrane,
transferase activity) were enriched, while the Aspergillus
interactors inferred by both template networks mainly basic
biological processes were enriched (e.g., ribonucleoprotein
complex, cellular metabolic process, structural constituent of
ribosome; see Supplementary Table S4).

Localization Filtering and Functional
Refinement Improve Predicted Host–Fungi
Networks
Since data on experimentally validated PHIs for fungal pathogens
are rare and there is no golden standard for PHI network
inference available, we created a dataset of pathogenicity-
associated genes for validation of the refinement step. We
extracted functional data encompassing (1) human and murine
genes which have been reported to directly interact with
pathogenic proteins (Kumar and Nanduri, 2010), (2) virulence
and pathogenicity phenotypes induced by knock outs of
fungal genes (Xiang et al., 2007; Winnenburg et al., 2008)
and (3) infection responsive genes identified by analysis of a
data set of an infection time course experiment of murine
innate immune cells infected by C. albicans (Tierney et al.,
2012).

Infection-Regulated Genes are Enriched in Resulting
Host–Fungi Networks
Under the assumption, that deregulated genes over an infection
time course are more likely to be involved in host–fungi
interactions, exploiting transcriptomic or proteomic gene
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expression data can be used for the validation of the refinement
step. The recently published simultaneous transcriptome
sequencing of C. albicans and murine innate immune cells 0,
30, 60, 90, and 120 min post-infection uncover the temporal
dynamics of infection-regulated genes (Tierney et al., 2012).
For 21,251 mouse genes and 6,274 Candida genes, we found
at least one RNA-seq read matched and performed statistical
analyses of all time points compared to 0 min post-infection.
This revealed 413 significantly deregulated genes in the mouse
transcriptome and 1,068 significantly deregulated genes in the
fungal transcriptome. The number of deregulated mouse genes
was increasing from time point to time point: 45 genes after
30 min, 169 genes after 60 min, 239 genes after 90 min, and
300 genes after 120 min). Similar to mouse, the number of
significant Candida genes was also increasing with 314 genes
after 30 min, 316 genes after 60 min, 432 genes after 90 min,
and 744 genes after 120 min post-infection (see Figures 3A,B).
Interestingly, significantly deregulated genes in mouse were
mainly upregulated genes, at a ratio 5:1. In contrast, the

significant genes in Candida showed almost the same number of
up- and downregulated genes.

With the identified deregulated genes in C. albicans and
M. musculus, we generated a set of infection-associated genes
each for the fungal pathogen and the mammalian host. With
these sets as a positive list, deregulated genes were significantly
enriched in the final refined network compared to the primary
inferred mouse–Candida PPI network (see Figures 3C,D). For
the predicted mouse interactors, the localization-based filtering
step did not show a significant enrichment in contrast to the
functional refinement. Due to the small number of interactors
(12 of 41) in the refined network, the functional refinement
step did not show a significant enrichment for the predicted
Candida interactors. While the deregulated mouse genes were
significantly enriched by the interolog-based inference step,
the significant Candida genes were significantly depleted. This
showed that for a vast number of pathogen-related genes in
Candida, there were no interologous interactions found in the
template networks.

FIGURE 3 | Infection-regulated genes in predicted host and fungi
interactors. (A) Differentially expressed genes in murine innate immune cells
30, 60, 90, and 120 min post-infection with Candida albicans cells. Bars
above the x-axis show the number of significantly upregulated genes, while
bars below show the significantly downregulated genes. (B) Differentially
expressed genes in C. albicans 30, 60, 90, and 120 min post-infection of
murine innate immune cells. (C) Fraction of significantly deregulated genes in

the sets of protein-coding genes, the primary inferred, the localization-filtered,
and the functionally refined interactors of mouse. (D) Fraction of significantly
deregulated genes in the sets of protein-coding genes, the primary inferred,
the localization-filtered, and the biological process refined interactors of
C. albicans. A test for enrichment of infection-regulated genes in the
interactor sets after the primary inference, localization, and functional
refinement step (Fisher exact test, ∗∗∗p< 0.001).
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Pathogenicity-Associated Genes are Enriched in
Resulting Host–Fungi Networks
Since databases even specialized on PHI contained very few
PPI between human and fungal (mainly S. cerevisiae) pathogens
[e.g., HPIDB comprised 126 host–fungal PPIs], we extracted
all human genes interacting with Archaean (0.03%), protozoan
(0.3%), fungal (3.6%), or bacterial (96.1%) pathogen genes. Viral
interactions were not included in our dataset as these interactions
are mainly intracellular. This yielded pathogenicity-associations
for 3,419 of the 20,688 protein-coding human genes which
translates to a fraction of 16.5%. In contrast to the large number
of human interactors, there were only 32 PHI mouse genes in the
database. Because of the small number of mouse genes interacting
with different pathogens, we focused on human as host.

The network inference step with A. fumigatus as fungal
pathogen enriched the pathogenicity-associated genes
significantly to a fraction of 24.4% (see Figure 4A). Further,

the localization filtering for potential host–fungal interfaces
also enriched the pathogenicity-relevant genes significantly to
a fraction of 32.2%. At last, the refinement step for interactors
associated to pathogenicity-relevant processes enriched the
fraction to 39.5% (see Figure 4A). For human interactors with
C. albicans as pathogen, we observed a similar enrichment of
pathogenicity-associated genes from the protein-coding genes
(16.5%) over the inferred (24.4%) and the localization-filtered
(33.3%) to the pathogenicity-associated process refined (39.3%)
interactors (see Figure 4C).

Due to the lack of knowledge about C. albicans and
A. fumigatus PHIs, we exploited information of the databases
PHI-base (Winnenburg et al., 2008) and PHIDIAS (Xiang et al.,
2007) about experimentally validated virulence-associated genes.
For the fungal pathogenA. fumigatus,we found 39 pathogenicity-
associated genes in PHI-base and 29 genes in PHIDIAS (with an
overlap of 14 genes), while for C. albicans 128 genes were found

FIGURE 4 | Pathogenicity-associated genes in predicted host and
fungi interactors. Fraction of pathogenicity-associated genes in the sets of
protein-coding genes, the primary inferred, the localization-filtered and the
biological process refined interactors of (A) H. sapiens (B) Aspergillus

fumigatus (C) H. sapiens (D) C. albicans. A test for enrichment of
pathogenicity-associated genes in the interactor sets after the primary
inference, localization and functional refinement step (Fisher exact
test,∗p < 0.05; ∗∗∗p < 0.001).
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in PHI-base and 100 genes in PHIDIAS (with an overlap of 35
genes).

For the fungal pathogen A. fumigatus, the fraction of
pathogenicity-relevant genes (0.7%) interacting with human
genes was not significant for the interolog-based inference
step (0.7%), weakly significant for the localization filtering
step (1.7%) and strongly significant for the infection-relevant
process refinement step (12.1%), (see Figure 4B). Similarly, the
fraction of pathogenicity-associated genes (1.6%) did not increase
significantly via the interolog-based inference step (1.6%), but
strongly significant for the localization filtering step (5.6%) and
strongly significant for the infection-relevant process refinement
step (26.3%), (see Figure 4D).

Cells Involved in Immune Response and Tissues
Typically Infected by Fungal Pathogens in the
Resulting Host–Fungi PPI Networks
The tissue enrichment of refined H. sapiens interactors with
either C. albicans or A. fumigatus and the primary H. sapiens
interactors yielded several fungal infection relevant tissues (see
Supplementary Tables S5 and S6). For both pathogens the cell
type “Platelet” was most significantly enriched. This correlates
with an investigation that attachment of platelets to fungal
surfaces induced morphological changes in Candida spp., such
as loosening of discoid shape, generation of pseudopodia, and
flattened structure (Robert et al., 2000). Similar findings were
described for A. fumigatus showing that hyphal growth is likely
to induce platelet activation (Rodland et al., 2010). More in
particular, certain cell wall components of A. fumigatus, e.g.,
melanin and galactosaminogalactan were involved in platelet
activation while hydrophobin prevented recognition from the
host immune system (Rambach et al., 2015). Besides platelets, the
immune system-associated terms “B-cell lymphoma,” “T-cell,” “B-
cell,” “Leukemic T-cell,” and “Peripheral blood lymphocyte” were
significantly enriched. Furthermore, we observed significantly
enriched tissue terms of typical environments of Aspergillus and
Candida infections in the human body (“Lung,” “Epithelium,”
“Blood,” “Brain,” and “Skin”). Interestingly, the tissues “Urinary
bladder” and “Cervix” but also “Bone” were significantly enriched
(see Supplementary Table S6).

Exploring the Refined Host–Fungi PPI
Networks
To obtain an overview of the resulting refined networks, we
visualized the interactors grouped by the functional GO slim
biological process classes. Hence, the nodes represent GO slim
terms and edges depict interactions between host and fungal
genes belonging to the particular GO slim terms. Since the refined
networks were dominated by few fungal interactors showing very
high numbers of interactions, the top 10% of high degree fungal
interactors (C. albicans: HSP90, UBI4, SSB1, SSA2, CaJ7_0234;
A. fumigatus: glyceraldehyde-3-phosphate dehydrogenase GpdA,
molecular chaperone and allergen Mod-E/Hsp90/Hsp1, 14-
3-3 family protein ArtA) were removed from the network
visualizations to improve clearness and readability of the figures
(see Figure 5 and Supplementary Figure S2).

In the M. musculus (330 interactors) and C. albicans (37
interactors) network, “signal transduction,” “anatomical structure
development,” “cell differentiation,” “response to stress,” and
“transport” represent the host GO slim terms consisting of the
largest numbers of genes. For Candida, the terms comprising
of the most interactors were “pathogenesis,” “interspecies
interaction between organisms,” “filamentous growth,” “response
to stress,” and “carbohydrate metabolic process.” As expected,
large murine GO slim terms frequently interact with large
fungal GO slim terms (e.g., 795 interactions between “signal
transduction” and “regulation of biological process” or 767
between “signal transduction” and “interspecies interaction
between organisms”; see Figure 5).

In the refined PPI network with H. sapiens (317 interactors)
and A. fumigatus (30 interactors), “signal transduction,”
“transport,” “cellular nitrogen compound metabolic process,”
“response to stress,” and “catabolic process” represent the host
GO slim terms consisting of the largest numbers of genes. For
Aspergillus, the terms comprising of the most interactors were
“pathogenesis,” “response to stress,” “carbohydrate metabolic
process,” “response to chemical stimulus,” and “cell cycle.” Like
for the mouse–Candida PPI network, large host GO slim terms
frequently interact with large AspergillusGO slim terms (e.g., 381
interactions between “signal transduction” and “pathogenesis” or
298 between “transport” and “pathogenesis”; see Supplementary
Figure S2).

Mouse–Candida Subnetworks Contain Infection
Related Interaction Candidates
To investigate these networks in more detail, we focused on
the subnetwork between the pathogenicity-relevant GO slim
terms “symbiosis, encompassing mutualism through parasitism”
and “interspecies interaction between organisms” (see Figure 6).
This subnetwork consists of 37 interactions with 23 murine
interactors out of which one was infection regulated, and 12
C. albicans interactors of which three were infection regulated
and eight supported by PHIDIAS/PHI-base evidence. For several
interaction candidates, we found additional evidence in a
literature research.

ENO1 and Cd4
One of those is the Candida ENO1 (2-phospho-D-glycerate-
hydrolyase) interacting with the mouse Cd4 (CD4 antigen). The
Cd4 molecule is an important co-receptor of T-lymphocytes that
interacts with MHC Class II antigens. It is expressed in several
immune cell types and initiates or augments the early phase
of T-cell activation (Gibbings and Befus, 2009). The predicted
interaction partner on the pathogen side, ENO1, is not only
a key component of glycolysis (Sundstrom and Aliaga, 1992),
but is also an immunodominant antigen circulating in the
bloodstream of patients with disseminated Candida infections
(Sundstrom and Aliaga, 1992) and a highly immunogenic protein
in Candida-infected mice (Pitarch et al., 2001). Moreover, ENO1
was identified as an antigen that induced protective IgG2a
antibody isotype in the sera from vaccinated animals and is
thus considered a potential candidate for a vaccine (Fernandez-
Arenas et al., 2004). Although ENO1 is primarily a cytoplasmic
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FIGURE 5 | Mus musculus–C. albicans network of functional GO terms.
Nodes represent GO slim terms and edges depict interactions between host
and fungal genes belonging to the particular GO slim terms. The node size
denotes the number of genes in each GO slim term. The edge width and edge
color correspond to the number of interactions between the connected nodes

from thin/yellow to thick/red representing low to high interaction degrees. Fungal
GO slim terms are visualized by green nodes and murine GO slim terms by blue
nodes. The top 10% fungal pathogen interactors with the most interactions
were removed from the network visualization to improve readability of the figure.
The box shows the subnetworks that are evaluated in more detail.

FIGURE 6 | Host–pathogen PPI subnetwork between M. musculus and
C. albicans. This subnetwork comprises host interactors annotated as
“symbiosis, encompassing mutualism through parasitism” and pathogen
interactors annotated as “interspecies interaction between organisms.” Blue
nodes represent host interactors and green nodes fungal interactors. Nodes
with a red border showed evidence for virulence contribution (PHIDIAS,
PHI-base, and CGD). A triangular shape depicts infection-regulated genes of
the analyzed mouse–Candida RNA-seq data. Interactions highlighted by red
edges are described in more detail.

protein, it has also been discovered to be an integral cell wall
protein (Angiolella et al., 1996). Interestingly, another infection-
associated interaction partner in the refined PHI network is
plasminogen, the inactive precursor of plasmin which has been
described to facilitate the invasion of the host tissues (Jong et al.,
2003).

PLB1 and Alb
A further interesting candidate is the interaction between the
murine Alb (Albumin) and Candida PLB1 (Phospholipase B). It
has been described that the extracellular part of PLB1 is required
for wild-type virulence of Candida in a mouse model of systemic
infection (Ghannoum, 1998), possibly related to its secretion
from the hyphal tip during the infection process (Ghannoum,
2000). PLB1 can penetrate wild-type host cells by lysing the
plasma membrane (Park et al., 2013). Its interaction partner
on the host side, Albumin, was shown to bind to germ-tubes
(Page and Odds, 1988) and to inhibit the binding of PLB1 to its
substrate (Reisfeld et al., 1994). In the transcriptome data set of
murine innate immune cells infected by C. albicans, PLB1 was
significantly deregulated.

HSP70 and Tlr2
Heat shock proteins have been described to play a role during
fungal infection (Lopez-Ribot et al., 1996). Our results predict an
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interaction between the Candida HSP70 (Heat shock protein 70)
and the murine Tlr2 (Toll-like receptor 2). The Candida HSP70
was detected on the surface of both yeast form and hyphal form
cells (Urban et al., 2003) and is a member of a protein family
which represents highly conserved immunodominant antigens
(La Valle et al., 1995). In vitro studies showed that a Candida
HSP70 mutant caused less damage to endothelial cells and oral
epithelial cell lines (Sun et al., 2010). On the host side Tlr2 plays
an important role in the activation of the innate immunity: It
belongs to the family of pattern recognition receptors (PRRs)
which are involved in the recognition of pathogen-associated
molecular patterns (PAMPs), (Oliveira-Nascimento et al., 2012).
Interestingly, the transcripts of both interaction partners were
differentially upregulated during the infection process in the
mouse–Candida dual RNA-seq experiment.

The mouse–Candida subnetwork of the host GO slim term
“cell adhesion” and the fungal GO slim term “interspecies
interaction between organisms” consisted of 98 interactions with
54 murine interactors (two significantly deregulated) and 16
C. albicans interacting partners (4 significantly deregulated, 11
supported by PHIDIAS/PHI-base evidence; see Supplementary
Figure S3).

PLB1 and App
For the fungal PLB1 (Phospholipase B), we discovered a further
potential interaction to the murine App [amyloid beta (A4)
precursor protein]. APP is a cell surface receptor that mediates
cell–cell and cell-matrix adhesion (Stahl et al., 2014) and is
cleaved by secretases to form a number of peptides. Although, the
humanAPP is primarily known for its role in Alzheimer’s Disease
(Gorevic et al., 1986), some of the App peptides have antibiotic
activity against at least eight common and clinically relevant

microorganisms, i.e., Gram-negative, Gram-positive bacteria,
and the yeast C. albicans with the latter being the most sensitive
(Soscia et al., 2010).

CDC19 and Egfr
We also found evidence for a very interesting interaction between
the fungal CDC19 protein (Pyruvate kinase CDC19) and the
murine Egfr protein (epidermal growth factor receptor). The
fungal interactor CDC19, usually, an enzyme of the glycolysis,
was found to be present on the yeast-form cell surface of
C. albicans (Pitarch et al., 2002) and differentially expressed after
3-h co-culture with murine macrophages (Fernandez-Arenas
et al., 2007). Furthermore, it is an immunogenic protein that
is specifically recognized by antibodies in sera of vaccinated
and of systemically Candida-infected mice (Pitarch et al., 2001;
Thomas et al., 2006; Martinez-Lopez et al., 2008). A homozygous
null mutant showed decreased virulence and filamentous growth
(Binkley et al., 2014). Egfr is a transmembrane glycoprotein and
receptor of the epidermal growth factor family. Egfr was shown
to induce endocytosis of C. albicans by epithelial cells (Zhu
et al., 2012). Furthermore, there is evidence for the secreted agrA
(Accessory gene regulator protein A) of Staphylococcus aureus to
bind to Egfr and activate a signal pathway in a pathogenicity-
associated process (Gomez et al., 2007).

Examples for Interesting Human–Aspergillus PPIs in
the Resulting Host–Fungi Network
Since very little is known about human–Aspergillus interactions
in available databases up to date, we selected the infection-
relevant subnetwork of interactions between the host GO slim
term “symbiosis, encompassing mutualism through parasitism”
and the fungal GO slim term “pathogenesis.” To get a transparent

FIGURE 7 | Host–pathogen PPI subnetwork between H. sapiens and
A. fumigatus. This subnetwork comprises pathogenicity-associated (HPIDB)
host interactors annotated as “symbiosis, encompassing mutualism through
parasitism” and pathogen interactors annotated as “pathogenesis.” Blue nodes

represent host interactors and green nodes fungal interactors. Nodes with a red
border showed evidence for virulence contribution (PHIDIAS, PHI-base, and
AspGD) or other host–pathogen interactions (HPIDB). Interactions highlighted
by red edges were described in more detail.
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size, we visualized only host nodes pathogenicity-associated
based on HPIDB and removed the human interactor UBC
(ubiquitin C) due to the high number of interactions. This
subnetwork consists of 38 interactions with 23 human interactors
and 18 A. fumigatus interacting partners (three supported by
PHIDIAS/PHI-base evidence; see Figure 7).

RBE1 and CAV
The interesting interaction between the human CAV1 (caveolin
1) and theAspergillusAFUA_1G02040 (Uncharacterized protein)
in that subnetwork was inferred from the human template
CAV1 – GLIPR2 (GLI pathogenesis-related 2) detected by
affinity chromatography technology (Eberle et al., 2002). The
C. albicans ortholog of AFUA_1G02040, RBE1 (Repressed by
EFG1 protein 1), is a Pry family cell wall protein (Sohn et al.,
2003) and belongs to a group of plant pathogenesis-related
proteins (PR-1; Rohm et al., 2013). A homozygote null mutant
of RBE1 in Candida showed a decreased virulence and increased
sensitivity to attack by polymorphonuclear leucocytes (Rohm
et al., 2013). The human CAV1 is the major structural protein
in the caveolae of endothelial cells (Smart et al., 1999). It is also
involved in the costimulatory signal essential for T-cell receptor
(TCR)-mediated T-cell activation (Ohnuma et al., 2007) and can
act as a functional receptor for CD26 in antigen representing cells
(Ohnuma et al., 2004) which implies a cell surface localization.

CNH1 and YWHAE
In addition, we discovered another promising interaction,
namely between the human YWHAE (tyrosine 3-
monooxygenase/tryptophan 5-monooxygenase activation
protein) – AFUA_2G17170 (Uncharacterized protein) which is
an ortholog of the fungal-specific C. albicans Na+/H+ antiporter
CNH1 (Inglis et al., 2012). Homozygous null mutants of Candida
ortholog showed decreased virulence (Soong et al., 2000). The
human YWHAE, member of the 14-3-3 protein family was co-
immunoprecipitated with MHC II in B-cell exosomes (Buschow
et al., 2010) and thus implying an immune response relevant
function.

HEX1 and FYN
In the human–Aspergillus subnetwork, we predicted an
interaction between the human FYN (FYN Proto-oncogene) and
the Aspergillus AFUA_8G05020 (Uncharacterized protein). FYN
is a membrane-associated tyrosine kinase (Morford et al., 2002)
and localized in the endosome (Puertollano, 2005). Further,
it plays an important role in T-cell activation (Lancki et al.,
1995). The Aspergillus AFUA_8G05020 is a putative secreted
N-acetylhexosaminidase (Bruns et al., 2010; Sharma et al.,
2011) which is highly expressed in biofilm (Bruns et al., 2010).
Furthermore, the C. albicans ortholog HEX1 is required for
full virulence and these proteins may have a role in carbon or
nitrogen scavenging (Niimi et al., 1997).

Discussion

Even though fungal infections are clinically highly relevant
and impose a substantial disease burden worldwide (Brown

et al., 2012), not much data about interactions between fungal
pathogens and the human host on a molecular level are
currently available. In our study, a comprehensive search of
publically available PHIs (Kumar and Nanduri, 2010) yielded
only a small number of reported host–fungi PPIs. Also,
thorough searches of all major PPI databases for cross-species
interaction revealed only a few fungal candidates. This obvious
sparseness of established experimental data on molecular host–
fungal interactions generates an important and valuable research
challenge for novel PHI prediction approaches. While in silico
methods for the prediction of molecular interactions between
host and pathogenic organisms have been receiving growing
attention in the last years, the main focus still lays on viral and
bacterial pathogens (Zhou et al., 2013a), and fungal species have
only been sparsely investigated. To our knowledge, a thorough
systematic prediction and analysis of A. fumigatus and C. albicans
interactions with the human and murine host has not been
performed so far.

In this study, we developed and examined an interolog-
based method for the prediction of fungal–host interactions. We
focused our investigation on two of the most clinically relevant
fungi C. albicans and A. fumigatus. Since murine mouse models
have become an invaluable tool in medical research, we also
investigated interactions between these fungi and M. musculus
in addition to the human host. As the primary objective of our
study was to attain a comprehensive catalog of high quality PHI
predictions, we used an extended dual species template approach
which is based on human and yeast, the two best studied species
for PPI network. By this we effectively made use of the majority of
all publically available PPI data. Compared to simple approaches
relying on the yeast template only, we created a considerably
enhanced prediction space, in particular on the host side, which
increases the set of interactors for human and mouse by over
200%.

A potential limitation of interspecies interolog approaches
is the fact that the prediction space is confined to interactions
between proteins with orthologs counterparts in the source
network on either side. Hence, basing a prediction approach
exclusively on the yeast network could lead to a bias toward
ancient well conserved proteins and exclude less conserved
‘newer’ genes and pathways. These could include also host-
specific genes such as those involved in novel adaptive immune
responses. The inclusion of the human template network partially
alleviates those effects as, at least on the host side, no basal
orthology relationship is required. Our results suggest that a
large and in particular human based template network is a key
prerequisite for the prediction of functionally more relevant
interactions.

Nevertheless, homology based approaches are known to
be prone to produce overpredictions, since, in the first
step, pairwise interactions are inferred between all homologs
regardless of their cellular function or localization. Indeed,
the predicted interaction partners on either side may in fact
have little opportunity to physically interact with each other.
This applies in particular to proteins which are expressed
exclusively in the intracellular compartment and might thus have
little opportunity to interact with the predicted host/pathogen
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counterpart. Although we applied a rigorous filtering cascade to
exclude many (99.4%) of these potentially spurious interaction
predictions, we noted that many proteins are expressed in various
subcellular compartments. In particular, numerous intracellular
proteins can shuttle to the membrane compartment or even
be secreted. To narrow down this set of ‘potentially physically
possible’ predictions, we focused on interactors involved in
pathways which play important roles during cellular infection
processes.

Enrichment analyses using independent data (Xiang
et al., 2007; Winnenburg et al., 2008; Kumar and Nanduri,
2010) revealed a clearly increasing fraction of virulence and
pathogenicity-associated genes during the refinement process,
suggesting a large set of functionally relevant interactions
among the predictions. Moreover, on the host side we found
an enrichment of genes which are expressed in tissues that
are specifically affected by fungal infections, e.g., activation of
platelets by A. fumigatus (Rodland et al., 2010) and C. albicans
(Robert et al., 2000).

Our extended interolog-based approach assembled a large
catalog of PHIs. As this homology based approach is tied to the
template interaction network, it is confined to the set of reported
physical PPIs and thus also inherits the set false positives from
the template network. Therefore, an interesting complementary
approach would be the investigation of an approach based on
domain–domain interactions (Zhou et al., 2013b). This would
eliminate the necessity of homology for the predicted interactors,
as it only requires the presence of the interacting domains. Thus,
it can be expected to yield a complementary dataset. Similarly,
inference methods based on the correlated gene expression in

host and pathogen (e.g., measured over an infection time course),
are an interesting approach which could be further explored, in
combination with and in comparison to the interolog approach
(Wang et al., 2013; Weber et al., 2013; Schulze et al., 2015).
Certainly, the assembly of large PHI networks establishes an
ample hypotheses space as a basis which can be exploited by
advanced methods of integrative network analysis (Dittrich et al.,
2008; Beisser et al., 2012), for which a large number of approaches
have been established in the last years. Here, further development
is needed to extend these approaches to the simultaneous analysis
of the complex connected host and pathogen networks. Albeit,
technically not trivial, it is unquestionably a worthwhile task
as it holds the potential to link subcellular response pathways
between host and pathogen during the dynamics of the infection
process.
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