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Antibiotic resistant bacteria are ubiquitous in the natural environment. The introduction
of effluent derived antibiotic resistance genes (ARGs) into aquatic environments is
of concern in the spreading of genetic risk. This study showed the prevalence of
sulfonamide and tetracycline resistance genes, sul1, sul2, sul3, and tet(M), in the total
bacterial assemblage and colony forming bacterial assemblage in river and estuarine
water and sewage treatment plants (STP) in South Africa. There was no correlation
between antibiotic concentrations and ARGs, suggesting the targeted ARGs are spread
in a wide area without connection to selection pressure. Among sul genes, sul1 and
sul2 were major genes in the total (over 10−2 copies/16S) and colony forming bacteria
assemblages (∼10−1 copies/16S). In urban waters, the sul3 gene was mostly not
detectable in total and culturable assemblages, suggesting sul3 is not abundant. tet(M)
was found in natural assemblages with 10−3 copies/16S level in STP, but was not
detected in colony forming bacteria, suggesting the non-culturable (yet-to-be cultured)
bacterial community in urban surface waters and STP effluent possess the tet(M) gene.
Sulfamethoxazole (SMX) resistant (SMXr) and oxytetracycline (OTC) resistant (OTCr)
bacterial communities in urban waters possessed not only sul1 and sul2 but also sul3
and tet(M) genes. These genes are widely distributed in SMXr and OTCr bacteria. In
conclusion, urban river and estuarine water and STP effluent in the Durban area were
highly contaminated with ARGs, and the yet-to-be cultured bacterial community may
act as a non-visible ARG reservoir in certain situations.

Keywords: antibiotic resistance, sul, tet(M), yet-to-be cultured, South Africa, sewage treatment plant

Introduction

Antibiotic resistance genes (ARGs) are found not only in the clinical but also the natural
environment, which can eventually produce antibiotic resistant bacteria (ARB). Antibiotics and
ARB are released to the environment from hospitals, livestock facilities, and sewage treatment
plants (STP) (Pruden et al., 2013). Although antibiotics are decomposed and diluted in the aquatic
environment water, even at low concentrations they may act as signaling molecules in microbes
(Fajardo andMartinez, 2008). Selection of ARGmutation by very low concentrations of antibiotics
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is reported (Gullberg et al., 2011). It is, therefore, critical to
understand the fate of released antibiotics, ARB and ARGs in
the environment, and whether residual ARGs in the environment
pose a risk to humans. The aim of this study was to assess the
status of antibiotics and ARGs in anthropogenically impacted
surface waters in one area of South Africa.

The status of antibiotic use and STP operation differs between
countries. Consequently, the status of antibiotic contamination
and presence of ARBs and ARGs in aquatic ecosystems must
be established on a case by case basis. In previous monitoring
we showed the status of antibiotic contamination (Shimizu
et al., 2013) and ARGs (Suzuki et al., 2013) in numerous
Asian countries. In many tropical Asian countries an integrated
system of agriculture is followed, which includes animal
husbandry, aquaculture, and crop farming (Suzuki and Hoa,
2012). In this system the major antibiotic used for animals is
sulfonamides. Tetracyclines are also used in aquaculture. STPs
receive wastewater and excreta from humans and livestock
facilities, which intimates the mixing of waters containing
various antibiotics, ARB and ARGs. The main purpose of
conventional STPs is to prevent the spread of infectious diseases
and reduce solid and nutrient loads from excreta entering
surface waters, not to decompose pharmaceuticals and genes.
Although advanced disinfection technologies can greatly reduce
the danger of waterborne diseases (United States Environmental
Protection and Agency, 2004), antibiotics and ARGs are not
completely decomposed in the STP process and are released
into the environment (Rizzo et al., 2013; Berkner et al.,
2014).

The populations and economies of African countries are
developing. Although South Africa has a relatively well developed
economy by African standards, many STPs are not functioning
efficiently and are overloaded and has been identified as a serious
cause for concern (Snyman et al., 2006; Water Research and
Commission, 2006). Furthermore, most South African cities are
characterized by large informal settlements where sanitation
facilities are poor and in some cases essentially non-existent, with
pit latrines and mobile toilets usually the only form of sanitation.
This might result in the introduction of antibiotics, ARB and
ARGs into the aquatic environment. Omulo et al. (2015) reviewed
many articles on ARB research from EasternAfrica, whichmainly
studied on human and animal bacteria. Environmental ARB
needs to be studied further.

It is well known that the majority of bacteria in aquatic
environments are non-culturable or yet-to-be cultured bacteria
(Bloomfield et al., 1988; Amann et al., 1995; Takami et al.,
2009). In recent monitoring in the Philippines we showed
that the total bacterial community in seawater possessed minor
sulfonamide resistance gene sul3, which was not detected in
colony forming bacteria (Suzuki et al., 2013). This suggests that
the abundant non-culturable or yet-to-be cultured bacteria in
aquatic environments are a reservoir of ARGs, but these are
not detectable by culture methods. The sul3 gene was detected
in human and non-human isolates of Salmonella in Portuguese
waters, although sul3 was a minor contributor compared to sul1
and sul2 genes (Antunes et al., 2005). In Denmark, Escherichia
coli isolated from pork and pigs possessed sul3, but this gene

was not found in human isolates (Hammerum et al., 2006). In
Germany, sul3 was not found in E. coli of human isolates, but
was found in cattle, pig, and poultry isolates (Guerra et al.,
2003). These studies suggest that sul3 is spreading widely amongst
animals but not amongst humans, possibly due to the use
of sulfonamide for animal husbandry but not in humans in
developed countries, and that sul3 is transferred by a different
gene cassette to sul1 and sul2 (Antunes et al., 2005). Although
recent advances in metagenomics can detect total resistome,
quantitative estimation of ARGs in the microbial community is
not yet possible. An understanding of the reservoir of culturable-
and non-culturable bacteria in the environment might thus be
useful in assessing whether environmental ARGs are posing a
risk.

The aim of this study was to assess the abundance of sul1,
sul2, sul3, and tet(M) genes in total- and colony forming-bacterial
assemblages in surface waters and STP effluent in the eThekwini
area of South Africa. As far as we are aware, no information in
this context is available for this area, or indeed for other areas
in South Africa. Sulfonamides and tetracyclines have a long use
as human and animal therapeutic agents and animal growth
promoters. Sulfonamide resistance occurs mainly by mutation
of the dihydropteroate synthase (DHPS) gene, although other
mechanisms are known (Radstrom and Swedberg, 1988; Huang
et al., 2004). As to tetracycline resistance, 45 tet genes are known
at this time (Roberts et al., 2012). Among the tet genes, tet(M),
a ribosomal protection protein gene is suspected of having the
broadest host range (Roberts et al., 2012) and its origin is reported
to be ancient (Kobayashi et al., 2007). Additionally, tet(M) shows
high genetic diversity (Rizzotti et al., 2009) and wide distribution
in the natural environment (D’Costa et al., 2011). Therefore, we
focused on the sul genes and tet(M) as monitoring targets. We
hypothesized that effluent from inefficient STPs or wastewater
derived from poor sanitary conditions should contain high
concentrations of ARGs from human bacteria. The comparison
of ARGs using culture-dependent and independent methods
should, therefore, provide an understanding on whether bacterial
communities of natural or human origin are the major reservoir
of ARGs in aquatic ecosystems.

Materials and Methods

Sampling of Water
Samples were collected with an ethanol rinsed stainless
steel bucket between September 3 and 5 in 2012, in the
eThekwini Metropolitan Municipality area in the province of
KwaZulu-Natal, on the subtropical northeast cost of South
Africa (Figure 1). Characteristics of the sampling sites are
summarized in Supplementary Table S1. The municipality has
a population size of about 3,400,000 (Statistics South Africa,
http://www.statssa.gov.za/?page_id=1021&id=ethekwini-munic
ipality). The city of Durban and a number of smaller towns fall
in the municipal area. Rainfall in the eThekwini area is seasonal,
falling predominantly in summer. Although it was not raining at
the times that samples were collected, about 31 mm of rain was
recorded at rain monitoring gage in Durban during the sampling
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FIGURE 1 | Map of sampling sites. Sites 01–03 are rural river sites, Sites 04–16 are urban river sites, and STP1-4 are sewage treatment plants (STPs).

period. Because samples were collected at a single point in time
we recognize this study does not provide an understanding on
the temporal variability of ARBs and ARGs in surface waters and
STP effluents in the study area.

Surface water samples were taken at three sites (Sites 01–03) in
the estuarine parts of rivers situated in rural locations. Thirteen
sites (Sites 04–16) were sampled in the riverine and estuarine
parts of rivers with urbanized and industrialized catchments in
the greater Durban area, and effluent was collected from four
STPs (STP1–4). The water and effluent was filtered through
50 µm mesh plankton net to remove large debris, and stored on
ice for a few hours until analysis. Further detail on the condition
of surface waters at the river and estuarine sites is provided in
Segura et al. (2015). Water samples indicate present status of
contamination (Takasu et al., 2011).

Antibiotic Concentration
Sulfonamides and tetracyclines were analyzed using a liquid
chromatograph (Accela, Thermo Scientific) equipped with a
tandem mass spectrometer (LC-MS/MS; Quantum Access,
Thermo Scientific) after extraction using a solid-phase cartridge
(Oasis HLB resin, Waters). The analytical process was the same
as that provided in Segura et al. (2015).

Bacterial Count
Total bacterial cell number was counted by DAPI staining
according to Sato-Takabe et al. (2015). Total viable count and
sulfamethoxazole resistant (SMXr) and oxytetracycline resistant
(OTCr) bacterial numbers were enumerated on nutrient agar
plates (LB plus 1.5% agar) incubated at 30◦C for 24 h. To
estimate SMXr and OTCr bacteria, 60 µg/mL of each drug was
supplemented to the medium (Hoa et al., 2011). All plate counts
were performed in duplicate.

Quantitative Analysis of Antibiotic Resistance
Genes (ARGs)
The sulfonamide resistance genes, sul1, sul2, and sul3, and
tetracycline resistance gene, tet(M), were quantified by
quantitative PCR (qPCR) from total assemblage using total
DNA trapped on 0.2 µm pore filter. For the culturable bacterial
assemblage, all colonies on agar plates were mixed and used
for qPCR. DNA extraction from the filter and mixtures of
colonies was previously reported (Suzuki et al., 2013). DNA
from filters and colonies were obtained from triplicate biological
samples. qPCR was performed using a CFX 96 Real-Time system
(BioRad, Laboratories, Hercules, CA, USA) to detect an increase
of double-stranded DNA with an increase in fluorescence

Frontiers in Microbiology | www.frontiersin.org 3 August 2015 | Volume 6 | Article 796

http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/
http://www.frontiersin.org/Microbiology/archive


Suzuki et al. ARGs in South Africa

according to Suzuki et al. (2013). PCR amplifications were
performed in a 20 µl reaction volume containing 1 X Sso Fast
EvaGreen Supermix (Bio-Rad), 500 nM of each primer and
1 µl of sample DNA. qPCR was performed using previously
designed primers; bacterial 16S rRNA genes (Suzuki et al., 2000),
sul1 (Heuer and Smalla, 2007), sul2 (Heuer et al., 2008), sul3
(Pei et al., 2006), and tet(M) (Tamminen et al., 2011). Serial
1:10 dilutions of plasmids constructed from the pGEM-T Easy
vector (Promega, Madison, WI, USA) and 16S rRNA gene from
E. coli K12, sul1 from plasmid R388, sul2 from plasmid RSF1010,
sul3 from plasmid pUVP4401 (Heuer and Smalla, 2007), and
tet(M) from pFD310 fragments (Smith et al., 1992) were used
as standards for quantification. The qPCR program consisted
of an initial denaturation of 30 s at 95◦C and 40 cycles of 5 s
at 95◦C and 10 s at 50◦C for 16S rRNA gene and 10 s at 51◦C
for sul1 and sul2 and 20 s at 60◦C for sul3, and 20 s at 57◦C
for tet(M), respectively. Melting curves for the amplicons were
measured by raising the temperature slowly from 60◦C and 65◦C
to 95◦C for 16S rRNA gene, sul1, sul2, sul3, tet(M), and sul3,
respectively, while monitoring fluorescence. Each sample was
measured in triplicate. The copy numbers of sul1, sul2, sul3, and
tet(M) were normalized by dividing by the 16S rRNA gene copy
number at the respective time points to take into account any
temporal variation in bacterial cell numbers. Unit of the copy
number is described as copies/16S in the text. The results were
analyzed using a Big Dye terminator kit on a 3130 ABI Prism
sequencer (Applied Biosystems, Foster City, CA, USA). PCR
products were sequenced to confirm they were not non-specific
products.

Results and Discussion

Drug Contamination
The distribution of antibiotic concentrations in surface waters
and STP effluent showed that SMX was a major contaminant
along with trimethoprim, which is a combination drug. The SMX
concentrations were: rural surface waters - 48.2 ± 71.2 ng/L
(n = 3), urban surface waters - 2561 ± 51.3 ng/L (n = 13), STP
effluent - 3612 ± 1733.4 ng/L (n = 4). High SMX concentrations
in urban surface waters and STP effluent indicate its frequent
use in human chemotherapy. It is also reported that SMX is
frequently used in African countries to control bacteria and
protozoan infections in HIV patients (Zachariah et al., 2007).
Recently report in Ghana, Mozambique, Kenya, and South Africa
showed that the SMX is the highest concentration among selected
18 antibiotics in all countries (Segura et al., 2015). Data from
STP in the present study showed high concentration compared
to these. Tetracyclines were mostly not detectable in surface
waters and STP effluent (maximum 18 ng/L, and mostly below
detection limit). At one STP (STP4), however, 291 ng/L of OTC
was detected, indicating real time use of the drug. The results
suggest that SMX is used frequently in the Durban area. The
concentration over 1000 ng/L was similar to a pig farm in
Vietnam (Hoa et al., 2011; Shimizu et al., 2013), and double
that of STP effluent in Michigan, U. S. (Gao et al., 2012b).
Erythromycin (1194 ng/L) was also present in STP4 effluent,

but was not particularly prevalent in surface water samples,
suggesting the antibiotics originated from human medicines.
The high contamination of surface waters and STP effluents by
antibiotics suggests that ARGs in hospitals are also likely entering
the environment (Pruden, 2014).

Bacterial Numbers
The counts of bacteria in different surface water and STP effluent
samples are shown in Table 1, as enumerated by DAPI count
(total number), plate count (colony forming number), and SMXr

and OTCr bacterial counts. Total cell number was almost the
same in the rural and urban surface waters, with 106 cells/ml,
but an order of magnitude higher in STP effluents. The colony
forming number was two orders of magnitude lower than the
total cell number. The contribution of culturable bacteria to the
total cell number was 1.0–1.5% in surface waters and 6.8% in STP
effluents, a statistically significant difference (p < 0.05, t-test).
The culturable bacterial contribution to the total cell number
in freshwater is reported to be approximately 0.25% (Amann
et al., 1995), indicating that the number of culturable bacteria was
higher in surface waters and STP effluents in Durban. Dominance
rate of viable number was higher in urban surface waters
and STP effluent compared to rural surface waters, suggesting
contamination of culturable bacteria is derived from human
sources. Iweriebor et al. (2015) reported in South Africa that
resistance rate of Enterococcus from hospital and STP effluents
was 67–100%. The contribution of ARB in STP effluent was
higher than in surface waters in our study (SMXr, p < 0.05
and OTCr, p < 0.01). Culturable bacteria in STP effluent should
include enteric bacteria, which form colonies on agar plates with
a contribution of 15% (Langendijk et al., 1995) compared to 0.1%
in seawater (Amann et al., 1995; Fuhrman and Hagström, 2008).
Abundances of SMXr and OTCr bacteria were not positively
correlated to antibiotic concentrations. It is reported that drug
concentrations and occurrence of ARB are not correlated to
fluoroquinolones in environment (Takasu et al., 2011). Although
the reason why sulfonamide- and tetracycline-resistance are
frequently found in non-contaminated environments is not
known, the heavy use of sulfonamides and tetracyclines in the
20th century could be one of the reasons for the selection of
SMXr - and OTCr -genes in bacterial communities. Sediment
stores sul and tet genes for a long time in non-contaminated
areas (Tamminen et al., 2011; Muziasari et al., 2014), whereas
water samples indicate present status. The abundance of ARB
in surface waters suggests their continuous input into the
environment. The ARGs for these drugs should be distributed
in various environmental bacteria around the world. There are
factors other than antibiotics, such as metals (Knapp et al.,
2011), that may select for ARB and ARGs in natural bacterial
assemblages.

The sul and tet(M) Genes in Total- and
Culturable-Assemblages
Among sul genes, sul1 and sul2 were detected at a similar
copy number in total assemblages in all categories of water
(Figure 2A), and also in colony forming bacteria (Figure 2B).
This indicates that sul1 and sul2 are ubiquitous in bacterial
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TABLE 1 | Bacterial number in three categorized sites.

Site Total cell count
(cells/ml)

Colony count (CFU/ml)
(% of total)

Sulfamethoxazole resistant
(SMXr; CFU/ml) (% of colony
count)

Oxytetracycline resistant
(OTCr; CFU/ml) (% of
colony count)

Rural river (n = 3) (1.1 ± 0.47) × 106 (1.1 ± 1.4) × 104 (1.0%) (1.8 ± 3.0) × 103 (16.8%) (5.0 ± 7.0) × 102 (4.7%)

Urban and industrial river (n = 13) (2.7 ± 2.7) × 106 (4.1 ± 4.8) × 104 (1.5) (8.1 ± 7.7) × 103 (20.0) (4.8 ± 6.9) × 103 (11.9)

Sewage treatment plant (STP) (n = 4) (1.0 ± 1.0) × 107 (7.0 ± 11) × 105 (6.8) (2.1 ± 3.0) × 105 (30.4) (4.8 ± 5.1) × 104 (6.9)

FIGURE 2 | Abundance of sul1, sul2, sul3, and tet(M) genes in total (A) and culturable bacterial assemblages (B).

communities, including yet-to-be cultured and culturable
bacteria in aquatic environments in the Durban area. At most
urban river and estuarine and STP sites, sul1 and sul2 were
present at copy numbers of 10−2–10−1/16S. These values are
higher than at rural sites in the Durban area, and in the
Philippines (Suzuki et al., 2013) and in Finnish sediment

(Muziasari et al., 2014), but are comparable to values reported
for suspended solids in lagoon waters (McKinney et al., 2010).

Profiles for sul3 and tet(M) were different from sul1 and
sul2 between total assemblage and culturable bacteria. The sul3
gene was not detected or was at a very low abundance in
the total assemblage at most sites, although two sites showed
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10−5–10−4/16S. In the case of the Philippines, sul3 was not
detected in natural assemblages or colony forming bacteria in
freshwater lakes and rivers, whereas a high copy number was
detected in seawater assemblages (Suzuki et al., 2013). The fact
that sul3 was not at a high copy number in culturable bacteria
(Figure 2B) suggests this gene is not abundant in the Durban
area. Gao et al. (2012a) reported similar results in freshwater.

In the case of tet(M), the total assemblage in urban surface
waters and STP effluents possessed approximately 10−3/16S,
whereas culturable bacteria did not. This suggests the yet-to-
be cultured community possesses tet(M). Since the yet-to-be

cultured bacteria comprise the major component of the bacterial
community, the gene pool of tet(M) in environment should be
large. A risk assessment for ARGs amongst this silent majority is
required.

The copy numbers of the targeted ARGs were measured in
a pooled colony from SMXr and OTCr bacteria (Figure 3). The
sul1 and sul2 were higher than 10−1/16S at urban and STP
sites, with sul3 around 10−3∼10−2/16S (Figure 3A). The rural
sites also showed high copies of sul1 and sul2, but sul3 was
detected at only one site at a low concentration. This indicates
that colony forming SMXr bacteria possess sul genes, which were

FIGURE 3 | Abundance of sul1, sul2, sul3, and tet(M) genes in sulfamethoxazole resistant (SMXr) colonies mix (A) and in oxytetracycline resistant
(OTCr) colonies mix (B). (B) Asterisk shows sites where resistant isolate was not obtained. Symbols are the same to Figure 2.
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selected on SMX-containing agar plate. The sul genes in the
OTCr assemblage also showed a high copy number of sul genes
(Figure 3B). It is reported that sul and tet genes are sometimes
coded on the same plasmid of aquatic bacteria (Kim et al.,
2008; Nonaka et al., 2012), and SMXr and OTCr phenotypes are
frequently linked (Hu et al., 2008). The present study supports
the findings in terms of gene copy numbers in assemblages by
cross checking with SMXr and OTCr bacteria. On the other hand,
tet(M) copy number was less than 10−2 in SMXr and OTCr

bacteria at most sites, suggesting two possibilities. One is that
the selected bacteria by SMX and OTC possess other tet genes
than tet(M), and is the other that tet(M) is abundant in total
assemblages but not in culturable resistant bacteria.

Conclusion

Quantitative PCR and culture methods revealed that sul genes are
conveyed by bacterial communities in urban surface waters and

STP effluent in the Durban area of South Africa. Additionally,
sul3 was detected in the culturable bacteria assemblage. The yet-
to-be cultured bacterial community may act as a non-visible
reservoir of ARGs in certain situations.
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