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Programmed cell death in bacteria is generally associated with two-component

toxin-antitoxin systems. The SpoIIS toxin-antitoxin system, consisting of a

membrane-bound SpoIISA toxin and a small, cytosolic antitoxin SpoIISB, was originally

identified in Bacillus subtilis. In this work we describe the Bacillus cereus SpoIIS system

which is a three-component system, harboring an additional gene spoIISC. Its protein

product serves as an antitoxin, and similarly as SpoIISB, is able to bind SpoIISA and

abolish its toxic effect. Our results indicate that SpoIISC seems to be present not only in

B. cereus but also in other Bacilli containing a SpoIIS toxin-antitoxin system. In addition,

we show that B. cereus SpoIISA can form higher oligomers and we discuss the possible

role of this multimerization for the protein’s toxic function.

Keywords: Bacillus cereus, toxin-antitoxin system, SpoIIS, programmed cell death, Bacillus subtilis

Introduction

Programmed cell death (PCD) is a genetically regulated system in which a bacterial cell is able
to commit suicide in response to a variety of different stresses. This response includes cell lysis
or growth inhibition induced by harsh environmental conditions such as starvation or antibiotic
treatment, active mother cell lysis during sporulation to release the spore, or altruistic suicide
to release cell content to provide the nutrients required for the normal development of the
remaining bacterial population (Engelberg-Kulka et al., 2006). PCD is usually mediated by a
pair of toxin/antitoxin (TA) genes. Toxins are always highly stabile proteins. Their antidotes, the
antitoxins, are usually labile proteins or small RNAs. TA systems are classified according to the
nature of the antitoxin. Type I and III are small RNAs which either inhibit the synthesis of the
toxin or capture it. Examples include the type I hok-sok system (Pedersen and Gerdes, 1999) and
the type III ToxIN system (Fineran et al., 2009). Types II, IV, and V, on the other hand, are all
proteins. They include the type II mazEF TA system (Gerdes et al., 2005), the type IV yeeU-yeeV
system (Masuda et al., 2012), and the type V ghoT-ghoS system (Wang et al., 2012). These three
types are distinguished based on their mode of action. The type II antitoxin is a small protein
with an N-terminal DNA-binding domain and a C-terminal toxin-bonding domain, the type IV
antitoxin is an antagonist of its cognate toxin and competes with it in binding to its target, and
the type V antitoxin is an endoribonuclease that degrades the toxin-encoding mRNA (Goeders and
Van Melderen, 2014).

Many bacteria harbor genes for TA systems on plasmids (Ruiz-Echevarría et al., 1995; Gerdes
et al., 1997; Sayeed et al., 2000; Van Melderen, 2001; Camacho et al., 2002). These genes are
part of a mechanism called post-segregational killing, which ensures that their host plasmids
are retained in the daughter cells of a growing bacterial population. In this process, the stable,
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Melničáková et al. The Bacillus cereus toxin-antitoxin system

long-lived toxin kills those daughter cells which do not inherit
the plasmid encoding the labile antitoxin (Gerdes et al.,
1986; Lehnherr and Yarmolinsky, 1995; Hayes, 2003). Other
bacterial species contain numerous toxin-antitoxin genes on their
chromosome (Hayes, 2003; Tsilibaris et al., 2007; Van Melderen
and Saavedra De Bast, 2009). Chromosomal TA systems may
serve to prevent the spread of mobile genetic elements such as
phages or plasmids; they are typically involved in the general
stress response and in guarding against DNA loss (reviewed in
Schuster and Bertram, 2013).

The spoIIS locus was originally identified on the Bacillus
subtilis chromosome during a study of the genetic mutants that
block sporulation after the formation of the polar septum (Adler
et al., 2001). Formerly, the locus was thought to consist of two
genes, spoIISA coding for the toxin and spoIISB for proteic
antitoxin (Adler et al., 2001), thus classifying as type II TA
system. A condition-dependent analysis of the transcription of
all B. subtilis genes indicated that a third transcriptionally active
region, S458, might be present in the spoIIS operon (Nicolas et al.,
2012), which we name spoIISC. Inactivation of the spoIISA toxin
gene has no effect on sporulation, but inactivation of the spoIISB
antitoxin gene decreases sporulation efficiency by four orders
of magnitude. Furthermore, disruption of spoIISA in a spoIISB
null mutant restores sporulation. Thus, SpoIISB is required for
sporulation only if SpoIISA is present in the cell (Adler et al.,
2001). The morphological consequence of an artificially induced
higher level of toxin expression is the formation of plasmolysis
zones in the cytoplasmic membrane, leading to the death of
the cell. The transcription of spoIISA, spoIISB, and spoIISC is
upregulated during sporulation from four to up to eight hours
(Nicolas et al., 2012); however, the expression of SpoIISA is
independent of the crucial sporulation initiation transcription
factor, Spo0A (Rešetárová et al., 2010). Production of the
SpoIISA toxin is also induced during ethanol stress and nutrient
deprivation. During starvation, the production of SpoIISB was
detected, which suggests that SpoIISB is able to diminish the toxic
effect of SpoIISA. Moreover, SpoIISB is also produced during
swarming and at times of high cell density. There is presently
only a little information about spoIISC, but it is known that its
transcription is activated during both sporulation and biofilm
formation (Nicolas et al., 2012). The SpoIISA toxin is neutralized
by the formation of a tight complex with the SpoIISB antitoxin.
The crystal structure of this complex revealed that SpoIISB and
the cytoplasmic domain of SpoIISA form a heterotetrameric
complex with C-SpoIISA2:SpoIISB2 stoichiometry (Florek et al.,
2011).

Homologs of SpoIISA and SpoIISB proteins have also been
identified among other Bacillus species, but they display only a
low level of homology. Both B. subtilis and B. cereus SpoIISA
inhibit the growth of E. coli cells, and the SpoIISB antitoxin is
able to neutralize SpoIISA toxicity in E. coli (Florek et al., 2008).

In the present study we analyze the spoIIS operon in B. cereus
ATCC 14579. Even though a third trancriptionally active region
in the spoIIS operon of B. subtilis was identified, it is unclear
whether its product is really part of this TA system. We have
found that both B. subtilis and B. cereus spoIISC encode an
antitoxin that is able to diminish SpoIISA toxicity in E. coli.

As in B. subtilis, the B. cereus spoIIS operon consists of three
genes: spoIISA, spoIISB, and spoIISC. Using a bacterial two hybrid
system we show that B. cereus C-SpoIISA interacts with other
C-SpoIISA molecules, as well as with SpoIISB and SpoIISC.
These new positive interactions, identified in vivo, were also
confirmed in vitro using a pull-down assay. In vitro analysis of the
oligomeric states of B. cereus C-SpoIISA revealed that the soluble
C-SpoIISA exists in monomeric, dimeric and trimeric forms.

Materials and Methods

Bacterial Strains, Growth Conditions, and Media
The bacterial strains E. coli XL1-BLUE, DH5α, and MM294
were used for routine DNA manipulations. The E. coli BTH101
reporter strain was employed in the bacterial adenylate cyclase-
based two-hybrid system. E. coli BL21 (λDE3) cells were
employed in expression of recombinant protein. E. coli cells
were grown at 37◦C, 28◦C or room temperature in LB (Ausubel
et al., 1987) or SOC medium (Hanahan, 1983) or on agar plates.
When required, the medium was supplemented with appropriate
antibiotics and other additives. E. coli transformation and
DNA manipulations were performed using standard protocols
(Sambrook et al., 1989).

The Kill/Rescue Assay Cultivation
To evaluate the effect of the expression of B. cereus spoIIS genes
on the growth of E. coliMM294, a single colony of bacterial cells
was resuspended in 100µl of LB and grown overnight on LB agar
plates. The bacterial lawn was washed off with 1ml LB and this
primary culture was used to inoculate a second cell generation
in LB containing 100µg ml−1 ampicillin and 0.5% glucose (w/v).
The starting optical density (OD600) of the cell cultures was 0.05–
0.06. The cells were cultivated at 37◦C in an orbital shaker at
150 rpm and growth was monitored by measuring the OD600 in
1-h intervals. When the OD600 reached 0.4, spoIIS expression was
induced by the addition of l-arabinose to a final concentration of
0.02% (w/v).

Recombinant Plasmid Construction
All bacterial strains and plasmids used in this study are listed
in Table 1. All primers for cloning were designed for the
PCR amplification of specific genes and regulatory regions and
are listed in Table 2. Chromosomal DNA of B. subtilis PY79
(Youngman et al., 1984) and Bacillus cereus ATCC 14579 was
used for amplification of spoIIS genes.

Bacterial Two-hybrid System
Fragments T25 and T18 from the adenylate cyclase bacterial two-
hybrid system (Karimova et al., 1998) were fused with the C-
terminal domain of SpoIISA, full-length SpoIISB and SpoIISC,
all from both B. cereus and B. subtilis. Chromosomal DNA from
B. subtilis PY79 and B. cereus ATCC 14579 were used as PCR
templates. E. coli BTH101 was used as a host for testing protein-
protein interactions. Cells were co-transformed with the relevant
plasmid combinations and plated onto LB plates supplemented
with 100µg ml−1 ampicillin, 30µg ml−1 kanamycin, 40µg
ml−1 X-Gal and 0.1mM IPTG and grown for 48 h at room
temperature.
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TABLE 1 | Strains and plasmids used in this study.

Strain Genotype or description Reference or origin

E. coli

MM294 F− endA1 hsdR17 (rk−, mk) supE44 thi-1 recA+ Meselson and Yuan, 1968

BTH101 F− cya-99 araD139 galE15 galK16 rpsL1(StrR) hsdR2 mcrA1 mcrB1 Karimova et al., 1998

DH5α F’ Iq supE44 1lacU169 (ϕ80 lacZ1M15) hsdR17 recA1 endA1 gyrA96 thi-1 relA1 Meselson and Yuan, 1968

XL1-BLUE 1(mcrA)183 (mcrCB-hsdSMR-mrr)173 endA1 supE44 thi-1 recA1 gyrA96 relA lac (F’ proAB lacIq

1M15Tn5 kan’)

Stratagene

IB890 pBAD24 in MM294 Florek et al., 2008

IB926 pBAD24-BCIISA in MM294 Florek et al., 2008

PLASMIDS USED IN KILL/RESCUE ASSAY

pBAD24 AmpR araC; PBAD promoter Guzman et al., 1995

pBADCIISA AmpR araC; PBAD promoter, B. cereus spoIISA-like gene Florek et al., 2008

pBADIISAB Bc AmpR araC; PBAD promoter, B. cereus spoIISAB-like genes This study

pBADIISC Bc AmpR araC; PBAD promoter, B. cereus spoIISC-like gene This study

pBADIISAC Bc AmpR araC; PBAD promoter, B. cereus spoIISAC-like genes This study

pBADIISA Bs AmpR araC; PBAD promoter, B. subtilis spoIISA This study

pBADIISAB Bs AmpR araC; PBAD promoter, B. subtilis spoIISAB This study

pBADIISC Bs AmpR araC; PBAD promoter, B. subtilis spoIISC-like gene This study

pBADIISAC Bs AmpR araC; PBAD promoter, B. subtilis spoIISAC This study

PLASMIDS FOR TESTING PROTEIN-PROTEIN INTERACTIONS IN VITRO

pET15b AmpR; T7lac promoter Novagen

pETDuet-1 AmpR; T7lac promoter Novagen

pET15b-Bc-CIISA AmpR; T7lac promoter, B. cereus C-spoIISA Laboratory stock

pET15b-Bc-HCIISA AmpR; T7lac promoter, His6 tag fused with B. cereus C-spoIISA This study

pETDuet-Bc-IISC AmpR; T7lac promoter, B. cereus spoIISC This study

pETDuet-Bc-HCIISAC AmpR; T7lac promoter, His6 tag fused with B. cereus C-spoIISA, T7lac promoter, B. cereus spoIISC This study

pETDuetCIISA Bc AmpR; T7lac promoter, His6 tag fused with B. cereus C-spoIISA This study

pETDuetIISB Bc AmpR; T7lac promoter, B. cereus spoIISB fused with S-tag This study

pETDuetCIISAB Bc AmpR; T7lac promoter His6-tag fused with B. cereus C-spoIISA, T7lac promoter, B. cereus spoIISB

fused with S-tag

This study

PLASMIDS FOR THE BACTERIAL TWO-HYBRID SYSTEM

pKT25 KanR; Plac promoter, T25 Karimova et al., 1998

pKNT25 KanR; Plac promoter, T25 Karimova et al., 1998

pUT18 AmpR; Plac promoter, T18 Karimova et al., 1998

pUT18C AmpR; Plac promoter, T18 Karimova et al., 1998

pKT25-zip KanR; Plac promoter, T25 fused with zip Karimova et al., 1998

pUT18C-zip AmpR; Plac promoter, T18 fused with zip Karimova et al., 1998

pKTCIISA Bc KanR; Plac promoter, T25 fused with B. cereus C-SpoIISA This study

pKNTCIISA Bc KanR; Plac promoter, B. cereus C-spoIISA fused with T25 This study

pUTCIISA Bc AmpR; Plac promoter, B. cereus C-spoIISA fused with T18 This study

pUTCCIISA Bc AmpR; Plac promoter, T18 fused with B. cereus C-spoIISA This study

pUTIISB Bc AmpR; Plac promoter, B. cereus spoIISB fused with T18 This study

pUTCIISB Bc AmpR; Plac promoter, T18 fused with B. cereus spoIISB This study

pUTIISC Bc AmpR; Plac promoter, B. cereus spoIISC fused with T18 This study

pUTCIISC Bc AmpR; Plac promoter, T18 fused with B. cereus spoIISC This study

pKTIISC Bc KanR; Plac promoter, T25 fused with B. cereus spoIISC This study

pKNTIISC Bc KanR; Plac promoter, B. cereus spoIISC fused with T25 This study

pKTCIISA Bs KanR; Plac promoter, T25 fused with B. subtilis C-spoIISA This study

pKNTCIISA Bs KanR; Plac promoter, B. subtilis C-spoIISA fused with T25 This study

pUTCIISA Bs AmpR; Plac promoter, B. subtilis C-spoIISA fused with T18 This study

pUTCCIISA Bs AmpR; Plac promoter, T18 fused with B. subtilis C-spoIISA This study

pUTIISB Bs AmpR; Plac promoter, B. subtilis spoIISB fused with T18 This study

(Continued)
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TABLE 1 | Continued

Strain Genotype or description Reference or origin

pUTCIISB Bs AmpR; Plac promoter, T18 fused with B. subtilis spoIISB This study

pUTIISC Bs AmpR; Plac promoter, B. subtilis spoIISC fused with T18 This study

pUTCIISC Bs AmpR; Plac promoter, T18 fused with B. subtilis spoIISC This study

pKTIISC Bs KanR; Plac promoter, T25 fused with B. subtilis spoIISC This study

pKNTIISC Bs KanR; Plac promoter, B. subtilis spoIISC fused with T25 This study

TABLE 2 | Primers used in this study.

Primer Sequence (5′–3′), restriction sites are in bold Final construct

SP/Bc-CIISA/XhoI TCATCATCACTCGAGGAAATATGGGGTGCGAAATT pET15b-Bc-HCIISA

ASP/Bc-CIISABamE TCATCATCAGGATCCTTTACTAAAATAACTATGAT

SP/BcIISB/NdeI TCATCATCACATATGGTGATTGTAGTGGTAAAAGA pETDuet-Bc-IISC

ASP/BcIISB/XhoI TCATCATCACTCGAGTACACTTATGATTTTCTTTT

SP/IISA/NcoI TCATCATCACCATGGATGATCTCTAACATTCGAAT pBADIISAB Bc

ASP/IISB/HindIII TCATCATCAAAGCTTGCAAATGTAGAAAGAGTGTA

SP/IISCBc/PstI TCATCATCACTGCAGTGAAAAGGGGGAGAAGAGATG pBADIISC Bc

ASP/IISCBc/HindIII TCATCATCAAAGCTTATGCTCTATGCATTTTCTTT

SP/IISABc/EcoRI TCATCATCAGAATTCATGATCTCTAACATTCGAAT pBADIISAC (via pBADIISC Bc)

ASP/IISABc/NcoI TCATCATCACCATGGTAGAAGAAAAGGACAGAAAA

SP/CIISABc/BamHI TCATCATCAGGATCCCGAAATATGGGGTGCGAAATT All four BACTH vectors carrying CIISA Bc

ASP/CIISABcSTOP/EcoRI TCATCATCAGAATTCGATTCTGTCCTTATTTACTA pUTCCIISA Bc, pKTCIISA Bc

ASP/CIISABcNOSTOP/EcoRI TCATCATCAGAATTCGATTTACTAAAATAACTATGA pUTCIISA Bc, pKNTCIISA Bc

SP/IISBBc/BamHI TCATCATCAGGATCCCGTGATTGTAGTGGTAAAAGA pUTIISB Bc, pUTCIISB Bc

ASP/IISBBcNOSTOP/EcoRI TCATCATCAGAATTCGATGATTTTCTTTTTAATTCTT pUTIISB Bc

ASP/IISBBcSTOP/EcoRI TCATCATCAGAATTCGAGCAAATGTAGAAAGAGTGTA pUTCIISB Bc

SP/IISCBc/BamHI TCATCATCAGGATCCCATGGCTGAAGTCAATGTGCA All four BACTH vectors carrying SpoIISC Bc

ASP/IISCBcNOSTOP/EcoRI TCATCATCAGAATTCGATGCATTTTCTTTTGTTCTTT pUTIISC Bc, pKNTIISC Bc

ASP/IISCBcSTOP/EcoRI TCATCATCAGAATTCGACTATGCATTTTCTTTTGTTC pUTCIISC Bc, pKTIISC Bc

SP/CIISABc/BamHI2 TCATCATCAGGATCCGATTTCAGAAATATGGGG pETDuetCIISA Bc

ASP/CIISABc/EcoRI TCATCATCAGAATTCGATTCTGTCCTTATTTACTAA

SP/IISBBc/KpnI TCATCATCAGGTACCGTGATTGTAGTGGTA pETDuetIISB Bc, pETDuetCIISAB Bc (via pETDuetCIISA Bc)

ASP/IISBBc/XhoI TCATCATCACTCGAGTGATTTTCTTTTTAA

SP/IISABs/EcoRI TCATCATCAGAATTCATGGTTTTATTCTTTCAGATCATGGTCTGG pBADIISA Bs, pBADIISAB Bs

ASP/IISABs/NcoI TCATCATCACCATGGTTCCATTATCCTTCACCTTC pBADIISA Bs

ASP/IISBBs/NcoI TCATCATCACCATGGTTTAGTGTGATCATGCTTTT pBADIISAB Bs

SP/IISCBs/PstI TCATCATCACTGCAGAGAGGATAATGTCAGGTGAT pBADIISAC Bs

ASP/IISCBs/HindIII TCATCATCAAAGCTTCAAAGACCATAAAAATCCCGGAGCCGCTCC

SP/CIISABs/BamHI TCATCATCAGGATCCCAAAAAACTGGCCGGCAGCGAGCTTGAAACA All four BACTH vectors carrying CIISA Bs

ASP/CIISABsSTOP/EcoRI TCATCATCAGAATTCTTATCCTTCACCTTCCTCCT pUTCCIISABs, pKTCIISABs

ASP/CIISABsNOSTOP/EcoRI TCATCATCAGAATTCGATCCTTCACCTTCCTCCTCAA pUTCIISABs, pKNTCIISABs

SP/IISBBs/BamHI TCATCATCAGGATCCCATGGAACGTGCGTTTCAAAACAGATGCGAG pUTIISB Bs, pUTCIISB Bs

ASP/IISBBsNOSTOP/EcoRI TCATCATCAGAATTCGATCCTTCACCTTCCTCCTCAA pUTIISB Bs

ASP/IISBBsSTOP/EcoRI TCATCATCAGAATTCTCATGCTTTTTTTCGTTTAT pUTCIISB Bs

SP/IISCBs/BamHI TCATCATCAGGATCCCGTGACATATAATAAATACAA All four BACTH vectors carrying SpoIISC Bs

ASP/IISCBsNOSTOP/EcoRI TCATCATCAGAATTCGATGCTTTTTTTCGTTTATACT pUTIISC Bs, pKNTIISC Bs

ASP/IISCBsSTOP/EcoRI TCATCATCAGAATTCGATTATTTTTTCTTCTTCAACT pUTCIISC Bs, pKTIISC Bs

SDS-PAGE Analysis
One dimensional SDS-PAGE was performed according to
Laemmli (1970). Samples of whole cell lysates of recombinant-
protein expressing E. coli BL21 (λDE3) cells, protein complexes,

or purified protein samples were resuspended in sample buffer
[4% SDS (w/v); 10% β-mercaptoethanol (v/v); 20% glycerol (v/v);
0.25M Tris-Cl, pH 8] and boiled for 10min. Denatured proteins
were separated in 12% polyacrylamide gels. Due to the low
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molecular weight of B. cereus SpoIISC (6.6 kDa), this protein
was analyzed using 16.5% Tricine–SDS-PAGE (Schägger and
von Jagow, 1987), which better resolves such small proteins.
As for the SDS-PAGE, samples of whole cell lysates of E.
coli BL21 (λDE3) cells expressing recombinant SpoIISC and
purified protein samples were resuspended in Novex sample
buffer (Invitrogen, USA), then heated for 5min in a boiling water
bath and briefly spun down. The gels were run at 25mA and
stained with Coomassie brilliant blue R-250.

Pull-down Assay
Pull-down assays were used to confirm in vitro the interactions
between B. cereus C-SpoIISA and SpoIISB, SpoIISC and B.
subtilis C-SpoIISA. In order to investigate the interaction of
His6-tagged B. cereus C-SpoIISA with S-tagged SpoIISB, the
following proteins were isolated: His6-tagged C-SpoIISA, S-
tagged SpoIISB and His6-tagged C-SpoIISA expressed together
with S-tagged SpoIISB. E. coli BL21 (λDE3) competent cells
were transformed with the pETDuetCIISA Bc and pETDuetIISB
Bc plasmids (Table 1) for the overexpression of His6-tagged
C-SpoIISA and S-tagged SpoIISB, respectively. Transformation
with pETDuetCIISAB Bc was performed to obtain co-expression
of His6-tagged C-SpoIISA with S-tagged SpoIISB. The resulting
cell cultures were grown at 28◦C in LB medium supplemented
with 100µg ml−1 ampicillin and 0.5% glucose. Recombinant
protein expression was induced by the addition of IPTG to a final
concentration of 0.5mM, when the culture reached an OD600

of ∼0.6. Cells were harvested 5 h after induction, centrifuged,
and resuspended in solubilization buffer [20mM Tris-Cl, pH 8;
150mMNaCl; 10% glycerol (v/v); 10mMMgCl2; 1mMAEBSF].
Proteins were solubilized by overnight incubation at 14◦C in
the presence of 10mM CHAPS (Sigma Aldrich). Samples were
centrifuged for 30min at 60 000 × g and 4◦C. Soluble fractions
were loaded onto a Ni Sepharose HP column (Amersham
Bioscience) and washed; bound proteins were eluted with an
imidazole step gradient from 0.2 M, to 0.4 M, 0.6M and 1 M.
The most concentrated fraction of the His6-tagged C-SpoIISA,
that with 1M imidazole, was used in further experiments.
The S-tagged B. cereus SpoIISB 0.2M imidazole fraction was
used as a control for non-specific binding to the Ni column.
Finally, the 0.4M imidazole fraction of SpoIISB was used in
the assay to confirm that His6-tagged C-SpoIISA interacts with
S-tagged SpoIISB. These proteins and the C-SpoIISA–SpoIISB
protein complex were fractionated by 16.5%Tricine–SDS–PAGE.
The fractioned proteins were transferred onto a nitrocellulose
membrane and subsequently Western blotted.

The pull-down assay of His6-tagged B. cereus C-SpoIISA with
untagged SpoIISC was performed similarly as described above.
In this case, E. coli BL21 (λDE3) cells were transformed with
pETDuet-Bc-HCIISAC for the interaction study and pETDuet-
Bc-IISC (Table 1) to control for the non-specific binding of
B. cereus SpoIISC to the Ni column.

Glutaraldehyde Crosslinking
The oligomeric state of recombinant B. cereus His6-C-SpoIISA
was assessed by glutaraldehyde crosslinking. E. coli BL21 (λDE3)
competent cells were transformed with pETDuetCIISA Bc, and

protein expression was induced with 0.5mM IPTG for 5 h at
28◦C. Cells were then harvested and resuspended in a buffer
containing 20mM HEPES pH 7.5 and 150mM NaCl and
sonicated. The soluble fractions were centrifuged for 30min at
60 000 × g and 4◦C and then loaded onto a Ni Sepharose HP
column (Amersham Bioscience). Proteins were eluted with an
imidizole step gradient from 0.1M to 0.2 M, 0.3M and 1 M. For
the crosslinking, 80µg of protein was mixed with 5µl of a freshly
prepared solution of 2.3% glutaraldehyde to make a total volume
of 100µl. This reactionmixture was incubated for 30min at 37◦C
and the reaction was then stopped by the addition of 10µl of
1M Tris-HCl, pH 8.0. The crosslinked molecules of B. cereus C-
SpoIISA were loaded onto a 12% SDS-PAGE gel and detected by
Western blotting.

Western Blotting
To visualize the interaction of B. cereus C-SpoIISA with the
heterologous B. subtilis C-SpoIISA as well as the interaction
of B. cereus C-SpoIISA with SpoIISB, we performed Western
blotting using the general protocol of Ausubel et al. (1987).
Briefly, proteins were fractionated by either 12% SDS-PAGE or
16.5% Tricine-SDS-PAGE and transferred onto a nitrocellulose
membrane (Hybond ECL; Amersham Bioscience). To prevent
non-specific binding, the membrane was treated using 5% non-
fat milk in Tris-buffered saline with 0.05% Tween 20 (v/v).
His6-tagged B. cereus C-SpoIISA was probed with an anti
His6-tag monoclonal antibody (Novagen; catalog no. 70796-3)
while S-tagged B. subtilis C-SpoIISA and S-tagged B. cereus
SpoIISB were probed with an anti S-tag monoclonal antibody
(Novagen; catalog no. 71549-3). Protein interactions were
detected using antimouse horseradish peroxidase-conjugated
secondary antibodies (Promega; catalog no. W402B).

Gel Filtration
To analyze the oligomerization of B. cereus C-SpoIISA using
gel filtration, we developed a procedure for purifying untagged
B. cereus C-SpoIISA. First, E. coli BL21 (λDE3) cells were
transformed with the plasmid pET15b-Bc-CIISA. Next, the cell
culture was grown at 28◦C in LB medium supplemented with
100µg ml−1 ampicillin. When the culture reached an OD600

of 0.6, the expression of untagged C-SpoIISA was induced with
0.5mM IPTG. The cells were harvested 5 h after induction,
centrifuged and resuspended in a resuspension buffer containing
50mM glycine, pH 10; 50mM NaCl; 10mM MgCl2; 10%
glycerol (v/v); and 1mM AEBSF. The protein was solubilized
by incubating at 14◦C overnight in the presence of 10mM
CHAPS (Sigma Aldrich). The soluble fractions were cleared by
centrifugation for 30min at 60 000 × g and 4◦C and loaded
onto a HiPrep DEAE Sepharose FF 16/10 column (GEHealthcare
Life Sciences), which had previously been equilibrated with a
resuspension buffer containing 10mM CHAPS. The protein
eluted in the flow-through fraction and was loaded onto a HiPrep
Q Sepharose HP 16/10 column (GE Healthcare Life Sciences),
previously equilibrated with the same solution. The protein was
eluted from this column with a continuous salt gradient ranging
from 0.2 to 1M NaCl. The purified protein was applied to a
Superose 6 10/300 GL column (GE Healthcare Life Sciences)
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connected to an FPLC (GE Healthcare Life Sciences) instrument
controlled by UNICORN 5.11 software, at a flow rate of 0.4ml
min−1. The elution was followed usingUV absorbance at 280 nm.

Dynamic Light Scattering Measurements
DLS experiments were performed at 20◦C on a Zetasizer Nano
ZS instrument (Malvern Instrument) controlled by DTS software
(version 5.1, Malvern Instruments Ltd). The instrument has a
90◦ scattering angle. The purified protein, at a concentration
of 100µM in a resuspension buffer at pH 8 containing 10mM
CHAPS, was filtered through 20 nm filters into a 40µl cuvette.
A single measurement consisted of 20 runs of 12 s each. All
measurements were done in triplicate. The samples gave a clear
signal (the y-intercept was 0.95) and required only moderate
attenuation (set at 7).

Bioinformatics Analysis
Promoter analysis was performed using BPROM (Solovyev and
Salamov, 2011). Identification of Rho-independent bacterial
terminators was done using was done using ARNold web
tool (Naville et al., 2011; http://rna.igmors.u-psud.fr/toolbox/
arnold/). B. cereus SpoIISA membrane topology prediction was
done using the MEMSAT3 and MEMSAT-SVM algorithms
(http://bioinf.cs.ucl.ac.uk/psipred/; Nugent and Jones, 2009).

Results and Discussion

The SpoIISABC Toxin-antitoxin System
The SpoIIS toxin-antitoxin system in Bacillus subtilis consists
of a SpoIISA toxin that is neutralized by a SpoIISB antitoxin
(Adler et al., 2001; Florek et al., 2008). However, profiling of
the condition-dependent transcription of B. subtilis revealed the
presence of a third transcriptionally active region, denoted as
S458 (Nicolas et al., 2012), located 55 bp downstream of spoIISB
in the spoIIS operon, which we named spoIISC. Adler et al. (2001)
identified two promoters in the B. subtilis spoIIS operon. The first
promoter (PA) is located upstream of spoIISA and is important
for regulating the expression of both spoIISA and spoIISB. The
second promoter (PB) is located within the spoIISA gene and
serves to regulate the expression of spoIISB. A promoter search
using BPROM (see Materials and Methods) revealed a possible
additional promoter (PC) downstream of spoIISB which could
be used to regulate the expression of spoIISC. Its -35 sequence
is 5′-TTCCTT-3′ and its -10 sequence is 5′-ACATATAAT-3′.
In addition, a search for Rho-independent bacterial terminators
using the ARNold tool identified the terminator (5′- GAAAAA
ATAAATCCCGGAGCGGCTCCGGGATTTTTATGGTCT -3′;
letters in bold indicates bases contributing to the loop structure,
underlined letters are bases forming the stem of terminator
hairpin) immediately after the spoIISC STOP codon.

We previously found that a two-component SpoIIS system
also exists in B. cereus (Florek et al., 2008). The position of its
locus on the chromosome is completely different from that
of the spoIIS operon in B. subtilis. While the B. subtilis spoIIS
operon is 115◦ away from the origin of replication, the B. cereus
spoIIS locus is 158◦ away. The B. cereus spoIIS operon consists of
spoIISA (BC_2436), which encodes a 245-residue SpoIISA-like

protein, and BC_2437, which encodes a hypothetical protein with
58 residues. As shown in Florek et al. (2008), BC_2437 is found
316 bp downstream of the spoIISA-like gene and was named
spoIISB since its SpoIISB-like product was able to neutralize the
toxicity of the SpoIISA-like protein in E. coli. Prompted by the
identification of a putative third transcript in the B. subtilis spoIIS
operon (Nicolas et al., 2012), we revisited the bioinformatics
analysis of the B. cereus spoIIS operon and found that the B. cereus
spoIIS operon also likely contains three genes: the BC_2436 ORF
encoding a 245-residue SpoIISA-like protein; a 138-bp ORF 103
bp downstream of this gene, which encodes a 45-residue, putative
SpoIISB; and a further 72 bp downstream of that, the BC_2437
ORF, which encodes the 58-residue protein we had previously
called SpoIISB, but which we now call SpoIISC (Figure 1; Florek
et al., 2008). As in the B. subtilis analysis, BPROM identified
putative promoters in this operon. B. cereus spoIISA appears to
be driven by the putative promoter PA, the putative PB promoter
for controlling spoIISB gene expression is found within the
spoIISA gene, and the putative PC promoter that likely regulates
the expression of spoIISC is located downstream of the spoIISB
gene. ARNold tool predicts that a Rho-independent bacterial
transcription terminator, with the sequence 5′-AAAGAACA
AAAGAAAATGCATAGAGCATTTTCTTTTGTTTTTTTA-3′
(letters in bold indicates bases contributing to the loop structure,
underlined letters are bases forming the stem of terminator
hairpin). This sequence overlaps with the end of B. cereus
spoIISC gene (Figure 1A).

The presence of three promoters in the spoIIS locus may
be due to the different conditions under which the expression
of individual genes is induced. The transcription of all three
B. subtilis spoIIS genes is clearly induced during sporulation,
but during nutrient deprivation only the spoIISA and spoIISB
genes are transcribed (Nicolas et al., 2012). Moreover, there are
conditions which induce transcription of only one of these genes:
spoIISA is transcribed during ethanol stress, spoIISB during
swarming and at high cell density, and spoIISC during biofilm
formation (Nicolas et al., 2012).

Both B. subtilis and B. cereus SpoIISA-SpoIISB systems are
clear examples of type II TA systems (Adler et al., 2001; Florek
et al., 2011). The spoIIS operon has been identified only in Bacilli,
and only a low level of homology can be detected between the
SpoIIS proteins of B. subtilis and B. cereus (Florek et al., 2008).
SpoIISA proteins display 17.3% identity and 30.2% similarity,
while the SpoIISB proteins have only 12.5% identity and 17.9%
similarity. The SpoIISC proteins have the lowest homology, with
only 8.6% identity and 15.5% similarity. On the other hand,
the SpoIISB and SpoIISC proteins from one of these organisms
exhibit a higher level of homology with each other than with their
counterparts in the other organism. Thus the B. subtilis SpoIISB
and SpoIISC proteins show 37.5% homology and 12.5% identity
while B. cereus SpoIISB and SpoIISC have 35.6% similarity and
27.1% identity (Figure 1B).

Bacterial type II TA systems are normally organized so that the
first gene in the operon codes for the antitoxin and the toxin is
positioned farther downstream; both genes are usually preceded
by their own promoters. This arrangement ensures an abundance
of antitoxin is produced to prevent toxin activity when it is
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FIGURE 1 | Comparison of the spoIIS loci of Bacillus cereus and

Bacillus subtilis. (A) Genomic organization of the spoIIS locus in B. cereus

and B. subtilis. (B) Alignment of the SpoIIS proteins of B. cereus (Bc) and B.

subtilis (Bs). Amino acids printed in normal weight on a gray background

indicate similar amino acids, while bold weight on a gray background

indicates identical amino acids.

undesirable. One exception to this arrangement is the higBA
TA module in pathogenic Proteus species (Hurley and Woychik,
2009). As noted above, the spoIIS system is another, with the toxin
preceding its two putative antitoxin genes. The SpoIIS TA system
is unusual in another way as well. The typical type II TA system
is a two-component system, but the SpoIIS TA system consists of
three components: the SpoIISA toxin, the SpoIISB antitoxin and
the third component SpoIISC (a likely antitoxin). Other three-
component type II TA systems have previously been reported,
including the ω-ε-ζ TA module encoded by the Streptococcus
pyogenes plasmid pSM19035, the paaR-paaA-parE TA module
encoded by E. coli O157:H7, and the pasA/pasB/pasC module
of the Thiobacillus ferrooxidans plasmid pTF-FC2 (reviewed in
Unterholzner et al., 2013). In all of these systems, at least one of
the three components is involved in autoregulating the operon.

There is presently no information about whether the expression
of the spoIIS operon in Bacilli is autoregulated.

The spoIISB and spoIISC Genes Encode
Antitoxins in Bacillus Cereus
B. subtilis transcription analysis by Nicolas et al. (2012) and in
this study have revealed that the spoIIS operon is formed by
the spoIISA, spoIISB, and spoIISC genes. In E. coli, B. subtilis
SpoIISA inhibited bacterial growth and SpoIISB was able to
neutralize SpoIISA toxicity (Florek et al., 2008). Previously, we
observed that B. cereus SpoIISA, like B. subtilis SpoIISA, has a
toxic effect on E. coli growth (Florek et al., 2008), but at that
time, we had incorrectly designated ORF BC_2437 as spoIISB.
A new bioinformatics analysis, prompted by the likely existence
of a third gene in the B. subtilis spoIIS operon by Nicolas et al.
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(2012), shows that BC_2437 indeed contains spoIISC and that
SpoIISB is a 45-residue protein of unknown function encoded
by a small ORF (only 138 bp) located between the spoIISA and
spoIISC genes.

To determine if B. cereus SpoIISB and SpoIISC are both
able to neutralize the toxicity of B. cereus SpoIISA in E. coli,
the corresponding genes spoIISAB and spoIISAC were cloned
into pBAD24 vectors under the control of arabinose-inducible
PBAD promoters to generate pBADIISAB Bc and pBADIISAC Bc.
These plasmids were subsequently introduced into E. coliMM294
cells. The growth of these transformed cells, together with the
control strains IB890 (E. coli MM294 / pBAD24) and IB926 (E.
coliMM294/pBAD-BCIISA) (Florek et al., 2008), was monitored
after the induction of protein expression. As found previously
(Florek et al., 2008), the growth of E. coli cells expressing
only B. cereus SpoIISA was inhibited. On the other hand, both
SpoIISB and SpoIISC were able to neutralize the toxicity of
SpoIISA: the growth curves of those strains which expressed
both SpoIISA and either the SpoIISB antitoxin or SpoIISC were
similar to that of the wild-type IB890 E. coli cells (Figure 2A).
Because B. cereus SpoIISB and SpoIISC disturb SpoIISA toxicity
when expressed in E. coli cells, it can be concluded that
both spoIISB and spoIISC encode antitoxins and that they are
likely to have similar functions as the antitoxins in B. subtilis.
Indeed, an identical set of experiments using the B. subtilis
genes rather than the B. cereus ones gives very similar results
(Figure 2B).

The Interactions of SpoIIS Proteins in a Bacterial
Two Hybrid System
The clearest evidence that B. subtilis SpoIISA and SpoIISB
directly interact can be found in the crystal structure of the C-
terminal domain of SpoIISA in complex with SpoIISB (Florek

et al., 2011). To analyze the protein–protein interactions of the
B. cereus SpoIIS proteins in vivo, we made use of the bacterial
adenylate cyclase two hybrid system (Karimova et al., 1998).
Like B. subtilis SpoIISA, B. cereus SpoIISA is predicted to be
a membrane protein with three membrane-spanning segments.
However, we decided to use only the cytoplasmic domains in
this protein–protein interaction study, since the whole SpoIISA
protein is toxic for E. coli as we have shown previously. We
prepared fusions of the C-terminal domain of B. cereus SpoIISA,
SpoIISB, and SpoIISC with the adenylate cyclase fragments T25
and T18. All possible interactions were tested and compared
with those of similar SpoIIS fusion proteins from B. subtilis
(Figure 3).

Our results confirmed the dimerization of B. subtilis C-
SpoIISA as well as the interaction of B. subtilis C-SpoIISA
with SpoIISB described in Florek et al. (2011). A positive
interaction was also observed for B. subtilis C-SpoIISA with
SpoIISC (Figure 3). Finally, we found that the B. cereus C-
terminal domain of SpoIISA can interact with another C-SpoIISA
protomer, with SpoIISB and with SpoIISC (Figure 3).

B. cereus SpoIISB and SpoIISC are Able to Bind
the C-terminal Domain of SpoIISA in vitro
To analyze these protein–protein interactions in vitro, we
prepared three derivatives of the pETDuet recombinant
expression plasmid, each containing one of the following genes,
all under the control of an IPTG-inducible T7 promoter: a
gene coding for a His6-tagged B. cereus C-SpoIISA, an S-tagged
SpoIISB and an untagged SpoIISC (Table 1). We found that
His6-tagged C-SpoIISA binds the Ni column and that S-tagged
SpoIISB and untagged SpoIISC creates a tight complex with
C-SpoIISA which can be eluted by a solubilization buffer step
gradient containing 0.1–1mM imidazole (Figure 4).

FIGURE 2 | Kill/rescue assay in E. coli MM294. In order to test the ability

of SpoIISC to act as an antitoxin for SpoIISA, SpoIIS proteins were

expressed alone or in combination in E. coli cells. All results are mean values

of three independent replicates and the bars represent 1 SD. The growth of

E. coli cells expressing the SpoIISA toxin (circle) was inhibited while those

cells expressing either the SpoIISAB complex (square) or the SpoIISAC

complex (triangle) had wild-type growth (no marker). Arrows indicate the

addition of 0.02% arabinose to induce expression. (A) The effect of the B.

cereus SpoIIS proteins on the growth of E. coli MM294 cells. (B) The effect

of the B. subtilis SpoIIS proteins on the growth of E. coli MM294 cells.
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FIGURE 3 | Interaction study of the SpoIIS proteins using the BACTH

system. Since fusions with SpoIIS proteins in both orientations were positive

in some cases, only representative ones were selected. A strain expressing a

pair of leucine zipper proteins, T25-Zip and T18-Zip, served as the positive

control; the negative control was a strain expressing the pair T25-CIISA Bc

and T18-Zip. Abbreviations: Bc, B. cereus; Bs, B. subtilis; CIISA, C-terminal

domain of SpoIISA; IISB, SpoIISB; IISC, SpoIISC.

The interaction of B. cereus His6-tagged C-SpoIISA with S-
tagged SpoIISB was confirmed in a pull-down assay by the co-
elution of both proteins from a Ni column. When SpoIISB is
co-expressed in E. coli together with His6-tagged C-SpoIISA, the
His6-tagged C-SpoIISA binds the Ni column, and since S-tagged
SpoIISB binds C-SpoIISA, the two are pulled down together as a
complex during elution with 0.4M imidazole (Figure 4A). This
complex could be detected by Western blotting using an anti-
His6-tagmonoclonal antibody to identify His6-tagged C-SpoIISA
(Figure 4A, lane 3) and an anti-S-tag monoclonal antibody to
identify the S-tagged SpoIISB (Figure 4A, lane 6).

A similar approach was used to test the interaction of
untagged B. cereus SpoIISC with His6-tagged C-SpoIISA in vitro
(Figure 4B). B. cereus SpoIISC expressed in E. coli BL21 (DE3)
appears in the insoluble fraction of the cell lysate according to
16.5% Tricine/SDS–PAGE (data not shown). However, when co-
expressed with B. cereus His6-tagged C-SpoIISA in the same
cells, they form a complex which is able to pull SpoIISC out
of the insoluble fraction. The whole complex can then be

solubilized and purified from the soluble fraction by affinity
chromatography.

B. cereus C-terminal Domain of SpoIISA forms
an Oligomer
The crystal structure of the B. subtilis SpoIISA C-terminal
domain shows that the protein dimerizes by forming a four-helix
bundle using the first and last α-helices of each molecule (Florek
et al., 2011). Our bacterial two-hybrid experiments showed that
B. cereus C-SpoIISA interacts with other B. cereus C-SpoIISA
molecules (Figure 3), suggesting that this molecule also forms
oligomers. The oligomeric form of C-SpoIISA was examined by
measuring the hydrodynamic radius of dissolved particles using
dynamic light scattering. A cumulant analysis showed that the
sample was monomodal (i.e., had only one peak, Figure 5A),
and was polydisperse, with a polydispersity index of 0.255 and
an overall polydispersity of 50.32%. The polydispersity indicates
broader particle size distribution, and thus the hydrodynamic
radius and corresponding molecular mass cannot be reliably
calculated.

The SpoIISA oligomerisation was examined further by size-
exclusion chromatography of C-SpoIISA using a Superose 6
10/300 GL column. In this analysis, most of the protein appeared
in the void volume fraction of the column, which was determined
from the elution of Blue dextran 2000 (∼2000 kDa, Pharmacia)
(Figure 5B). Three small peaks were detected, however, and likely
correspond to the 59.1 kDa trimer, the 39.4 kDa dimer and the
19.7 kDa monomer of C-SpoIISA. The existence of monomeric,
dimeric and trimeric states was confirmed by glutaraldehyde
crosslinking (Figure 5C), but the existence of higher oligomeric
forms could not be confirmed because such large species would
not have been able to enter the crosslinking gel.

Taken together, the above results indicate that B. cereus C-
SpoIISA is able to form higher multimers, even if their nature is
unclear. In this respect, its behavior differs from that of B. subtilis
C-SpoIISA, which formed only dimers (Florek et al., 2011).
Whole B. subtilis SpoIISA does seem to form higher oligomers,
but this seems to require its N-terminal transmembrane domain
rather than just its C-terminal cytosolic domain (Makroczyová
et al., 2014). Earlier studies also suggested that whole SpoIISA
oligomerizes, and moreover suggested that it forms holin-like
pores (Adler et al., 2001). Whether either the B. subtilis or B.
cereus proteins actually do form such pores remains unknown,
however.

Finally, this study describes the SpoIISC protein, a third
component of the spoIIS locus. This protein serves as an antitoxin
and shows similarity to SpoIISB. The presence of two antitoxin
genes in the spoIIS locus of both B. subtilis and B. cereus naturally
poses the question of the role of such duplication. One possibility
is that the different proteins are linked to different conditions
under which they might be expressed, as was shown for B.
subtilis SpoIIS system (Nicolas et al., 2012). They may also act
as transcription regulators, as some other antitoxins are known
to. It is also possible that their different amino-acid compositions
could affect their affinity for SpoIISA, leading to different degrees
of inhibition. In any case, our results show that the SpoIIS TA
system is much more complex than had previously been thought.
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FIGURE 4 | Pull-down assays of B. cereus SpoIISB and SpoIISC with

C-SpoIISA. The soluble fractions of lysed bacterial cells were applied to a Ni

Sepharose HP column. The eluted proteins were identified by Western

blotting (A) and Coomassie brilliant blue R-250 staining (B). (A) In the

Western blot, the eluted proteins were probed with an anti-His6 monoclonal

antibody (lanes 1–3) or with an anti-S monoclonal antibody (lanes 4–6).

Lanes 1 and 4 contain purified His6-tagged C-SpoIISA, lanes 2 and 5,

purified S-tagged SpoIISB. S-tagged SpoIISB does not bind a Ni Sepharose

HP column. Lanes 3 and 6 show that His6-tagged C-SpoIISA can pull down

S-tagged SpoIISB and therefore that there is an interaction between them.

(B) A pull-down assay showing an interaction between His6-tagged

C-SpoIISA and SpoIISC when both proteins are co-expressed. TF, total

fraction; SF, soluble fraction; IF, insoluble fraction; FT, flow-through fraction,

0.04; 0.2; 0.4, 0.6, and 1.0—molarity of imidazole used in washing and

elution. The arrows mark the following positions on the protein ladder from

top to bottom: 116, 66.2, 45, 35, 25, 18.4, and 14.4 kDa.

FIGURE 5 | Analysis of the multimeric state of B. cereus

C-SpoIISA. (A) Dynamic light scattering analysis of C-SpoIISA oligomer.

Size distribution (by intensity) of B. cereus C-SpoIISA, at 20◦C, average

hydrodynamic radius = 55 nm. (B) Gel filtration of C-SpoIISA. The stars

indicate the positions at which the following protein standards eluted

from the column (left to right): 2000, 450, 66, 45, and 29 kDa. (C)

Western blot analysis of glutaraldehyde-crosslinked His6-tagged

C-SpoIISA.
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Melničáková et al. The Bacillus cereus toxin-antitoxin system

functions as a protein-RNA toxin-antitoxin pair. Proc. Natl. Acad. Sci. U.S.A.
106, 894–899. doi: 10.1073/pnas.0808832106

Florek, P., Levdikov, V. M., Blagova, E., Lebedev, A. A., Škrabana, R., Rešetárová,
S., et al. (2011). The structure and interactions of SpoIISA and SpoIISB, a
toxin-antitoxin system in Bacillus subtilis. J. Biol. Chem. 286, 6808–6819. doi:
10.1074/jbc.M110.172429

Florek, P., Muchová, K., Pavelčíková, P., and Barák, I. (2008). Expression of
functional Bacillus SpoIISAB toxin-antitoxinmodules in Escherichia coli. FEMS

Microbiol. Lett. 278, 177–184. doi: 10.1111/j.1574-6968.2007.00984.x
Gerdes, K., Christensen, S. K., and Løbner-Olesen, A. (2005). Prokaryotic

toxin-antitoxin stress response loci. Nat. Rev. Microbiol. 3, 371–382. doi:
10.1038/nrmicro1147

Gerdes, K., Gultyaev, A. P., Franch, T., Pedersen, K., and Mikkelsen, N. D. (1997).
Antisense RNA-regulated programmed cell death. Annu. Rev. Genet. 31, 1–31.
doi: 10.1146/annurev.genet.31.1.1

Gerdes, K., Rasmussen, P. B., and Molin, S. (1986). Unique type of plasmid
maintenance function: postsegregational killing of plasmid-free cells. Proc.
Natl. Acad. Sci. U.S.A. 83, 3116–3120. doi: 10.1073/pnas.83.10.3116

Goeders, N., and Van Melderen, L. (2014). Toxin-antitoxin systems as
multilevel interaction systems. Toxins (Basel). 6, 304–324. doi: 10.3390/toxins
6010304

Guzman, L. M., Belin, D., Carson, M. J., and Beckwith, J. (1995). Tight regulation,
modulation, and high-level expression by vectors containing the arabinose
PBAD promoter. J. Bacteriol. 177, 4121–4130.

Hanahan, D. (1983). Studies on transformation of Escherichia coli with
plasmids. J. Mol. Biol. 166, 557–580. doi: 10.1016/S0022-2836(83)
80284-8

Hayes, F. (2003). Toxins-antitoxins: plasmidmaintenance, programmed cell death,
and cell cycle arrest. Science 301, 1496–1499. doi: 10.1126/science.1088157

Hurley, J. M., and Woychik, N. A. (2009). Bacterial toxin HigB associates with
ribosomes and mediates translation-dependent mRNA cleavage at A-rich sites.
J. Biol. Chem. 284, 18605–18613. doi: 10.1074/jbc.M109.008763

Karimova, G., Pidoux, J., Ullmann, A., and Ladant, D. (1998). A bacterial two-
hybrid system based on a reconstituted signal transduction pathway. Proc. Natl.
Acad. Sci. U.S.A. 95, 5752–5756. doi: 10.1073/pnas.95.10.5752

Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the
head of bacteriophage T4. Nature 227, 680–685. doi: 10.1038/227680a0

Lehnherr, H., and Yarmolinsky, M. B. (1995). Addiction protein Phd of plasmid
prophage P1 is a substrate of the ClpXP serine protease of Escherichia coli. Proc.
Natl. Acad. Sci. U.S.A. 92, 3274–3277. doi: 10.1073/pnas.92.8.3274

Makroczyová, J., Rešetárová, S., Florek, P., and Barák, I. (2014). Topology of the
Bacillus subtilis SpoIISA protein and its role in toxin–antitoxin function. FEMS

Microbiol. Lett. 358, 180–187. doi: 10.1111/1574-6968.12531
Masuda, H., Tan, Q., Awano, N., Wu, K.-P., and Inouye, M. (2012). YeeU enhances

the bundling of cytoskeletal polymers of MreB and FtsZ, antagonizing the
CbtA (YeeV) toxicity in Escherichia coli. Mol. Microbiol. 84, 979–989. doi:
10.1111/j.1365-2958.2012.08068.x

Meselson, M., and Yuan, R. (1968). DNA restriction enzyme from E. coli. Nature
217, 1110–1114. doi: 10.1038/2171110a0

Naville, M., Ghuillot-Gaudeffroy, A., Marchais, A., and Gautheret, D. (2011).
ARNold: a web tool for the prediction of Rho-independent transcription
terminators. RNA Biol. 8, 11–13. doi: 10.4161/rna.8.1.13346

Nicolas, P., Maeder, U., Dervyn, E., Rochat, T., Leduc, A., Pigeonneau,
N., et al. (2012). Condition-dependent transcriptome reveals high-level
regulatory architecture in Bacillus subtilis. Science 335, 1103–1106. doi:
10.1126/science.1206848

Nugent, T., and Jones, D. T. (2009). Transmembrane protein topology prediction
using support vector machines. BMC Bioinformatics 10:159. doi: 10.1186/1471-
2105-10-159

Pedersen, K., and Gerdes, K. (1999). Multiple hok genes on the chromosome
of Escherichia coli. Mol. Microbiol. 32, 1090–1102. doi: 10.1046/j.1365-
2958.1999.01431.x

Rešetárová, S., Florek, P., Muchová, K., Wilkinson, A. J., and Barák, I. (2010).
Expression and localization of SpoIISA toxin during the life cycle of Bacillus
subtilis. Res. Microbiol. 161, 750–756. doi: 10.1016/j.resmic.2010.09.005

Ruiz-Echevarría, M. J., Giménez-Gallego, G., Sabariegos-Jareño, R., and Díaz-
Orejas, R. (1995). Kid, a small protein of the parD stability system of plasmid
R1, is an inhibitor of DNA replication acting at the initiation of DNA synthesis.
J. Mol. Biol. 247, 568–577.

Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989). Molecular Cloning:

A Laboratory Manual, 2nd Edn. New York, NY: Cold Spring Harbor
Laboratory.

Sayeed, S., Reaves, L., Radnedge, L., and Austin, S. (2000). The stability
region of the large virulence plasmid of Shigella flexneri encodes an
efficient postsegregational killing system. J. Bacteriol. 182, 2416–2421. doi:
10.1128/JB.182.9.2416-2421.2000

Schägger, H., and von Jagow, G. (1987). Tricine-sodium dodecyl sulfate-
polyacrylamide gel electrophoresis for the separation of proteins in the
range from 1 to 100 kDa. Anal. Biochem. 166, 368–379. doi: 10.1016/0003-
2697(87)90587-2

Schuster, C. F., and Bertram, R. (2013). Toxin-antitoxin systems are ubiquitous and
versatile modulators of prokaryotic cell fate. FEMS Microbiol. Lett. 340, 73–85.
doi: 10.1111/1574-6968.12074

Solovyev, V., and Salamov, A. (2011). “Automatic annotation of microbial
genomes and metagenomic sequences,” in Metagenomics and its Applications

in Agriculture, Biomedicine and Environmental Studies, ed R. W. Li
(New York, NY: Nova Science Publishers), 61–78.

Tsilibaris, V., Maenhaut-Michel, G., Mine, N., and Van Melderen, L. (2007). What
is the benefit to Escherichia coli of having multiple toxin-antitoxin systems in
its genome? J. Bacteriol. 189, 6101–6108. doi: 10.1128/JB.00527-07

Unterholzner, S. J., Poppenberger, B., and Rozhon, W. (2013). Toxin–antitoxin
systems.Mob. Genet. Elements 3:e26219. doi: 10.4161/mge.26219

Van Melderen, L. (2001). Molecular interactions of the CcdB poison with its
bacterial target, the DNA gyrase. Int. J. Med. Microbiol. 291, 537–544. doi:
10.1078/1438-4221-00164

Van Melderen, L., and Saavedra De Bast, M. (2009). Bacterial toxin–
antitoxin systems: more than selfish entities? PLoS Genet. 5:e1000437. doi:
10.1371/journal.pgen.1000437

Wang, X., Lord, D. M., Cheng, H.-Y., Osbourne, D. O., Hong, S. H., Sanchez-
Torres, V., et al. (2012). A new type V toxin-antitoxin system where mRNA
for toxin GhoT is cleaved by antitoxin GhoS. Nat. Chem. Biol. 8, 855–861. doi:
10.1038/nchembio.1062

Youngman, P., Perkins, J. B., and Losick, R. (1984). Construction of a cloning
site near one end of Tn917 into which foreign DNA may be inserted without
affecting transposition in Bacillus subtilis or expression of the transposon-borne
erm gene. Plasmid 12, 1–9. doi: 10.1016/0147-619X(84)90061-1

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.
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