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The N cycle of arid ecosystems is influenced by low soil organic matter, high soil
pH, and extremes in water potential and temperature that lead to open canopies
and development of biological soil crusts (biocrusts). We investigated the effects of
N amendment on soil microbial dynamics in a Larrea tridentata-Ambrosia dumosa
shrubland site in southern Nevada USA. Sites were fertilized with a NO3-NH4 mix at
0, 7, and 15 kg N ha−1 y−1 from March 2012 to March 2013. In March 2013, biocrust
(0–0.5 cm) and bulk soils (0–10 cm) were collected beneath Ambrosia canopies and
in the interspaces between plants. Biomass responses were assessed as bacterial
and fungal SSU rRNA gene copy number and chlorophyll a concentration. Metabolic
responses were measured by five ecoenzyme activities and rates of N transformation. By
most measures, nutrient availability, microbial biomass, and process rates were greater
in soils beneath the shrub canopy compared to the interspace between plants, and
greater in the surface biocrust horizon compared to the deeper 10 cm soil profile. Most
measures responded positively to experimental N addition. Effect sizes were generally
greater for bulk soil than biocrust. Results were incorporated into a meta-analysis of arid
ecosystem responses to N amendment that included data from 14 other studies. Effect
sizes were calculated for biomass and metabolic responses. Regressions of effect sizes,
calculated for biomass, and metabolic responses, showed similar trends in relation to
N application rate and N load (rate × duration). The critical points separating positive
from negative treatment effects were 88 kg ha−1 y−1 and 159 kg ha−1, respectively,
for biomass, and 70 kg ha−1 y−1 and 114 kg ha−1, respectively, for metabolism.
These critical values are comparable to those for microbial biomass, decomposition
rates and respiration reported in broader meta-analyses of N amendment effects in
mesic ecosystems. However, large effect sizes at low N addition rates indicate that arid
ecosystems are sensitive to modest increments in anthropogenic N deposition.

Keywords: arid ecosystems, nitrogen deposition, microbial biomass, ecoenzyme activity, meta-analysis

Introduction

Drylands (arid and semiarid lands) comprise about 35% of the terrestrial surface of the western
US and 41% of global terrestrial lands (Pointing and Belnap, 2012). Over 35% of the world’s
human population depends on dryland ecosystems for their livelihood, and this number is
increasing (Millennium Ecosystem Assessment, 2003). These resource-limited ecosystems have
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low resilience and resistance to abiotic perturbations. Thus
environmental changes often have large ecological effects on both
regional (Mack and Thompson, 1982; MacMahon, 1987) and
global scales (Ahlström et al., 2015). One perturbation of concern
is the atmospheric deposition of nitrogen (N), which increases
as human utilization of these lands expands. Therefore, it is
important for management of dryland ecosystems to understand
their vulnerability and response to N deposition.

Globally, the responses of soil microbial communities to
experimental N manipulations have been extensively studied,
and the subject of several meta-analyses (Knorr et al., 2005;
Treseder, 2008; Janssens et al., 2010; Zhou et al., 2014).
However, few studies of arid ecosystems had been conducted
at the time of writing. There are multiple reasons why arid
ecosystem responses to N might differ from those of wetter
mesic biomes. Foremost, responses to nutrient amendments are
contingent on the annual distribution of soil moisture, which
controls plant production and soil processes (Stursova et al.,
2006; Ladwig et al., 2012; Collins et al., 2014). In addition,
desert soils differ from mesic soils in pH, organic matter
concentration, and microbial community composition, both
bacterial, and fungal (Porras-Alfaro et al., 2011; Fierer et al.,
2012; Steven et al., 2013, 2014; Mueller et al., 2015). Proteolytic
and phenol oxidase activities, which are both associated with
N mineralization, are greater relative to glycosidase activities
(Sinsabaugh et al., 2008; Hofmockel et al., 2010). And fungi are
major agents of denitrification (Crenshaw et al., 2008; Chen et al.,
2015).

Another contrast between deserts and mesic regions is the
presence of biocrusts, a soil surface community of lichens,
mosses, cyanobacteria, bacteria, and fungi. Because plant cover
is low in deserts, biocrusts are often the dominant living cover
(Belnap and Lange, 2003). In very hot deserts, the biomass
of these surface crusts is low and dominated by heterotrophic
bacteria and fungi. As soil moisture increases, cyanobacteria
increase in abundance, followed by mosses and lichens. As
rainfall increases, so does the importance of biocrusts in
soil stability, the contribution of newly fixed C and N to
soils, and the interception of nutrient-rich dust that includes
anthropogenically created atmospheric N (Pointing and Belnap,
2012). The fungal networks that integrate biocrusts are able to
translocate this N to plants (Green et al., 2008; Zhuang et al.,
2014).

Given the low N content of arid soils and generally low rates
of atmospheric N deposition at this site and US deserts in general
(∼2 kg ha−1 y−1 in the absence of anthropogenic influence;
Fenn et al., 2003), these ecosystems should be responsive to
increases in N loading such as those associated with urbanization.
The few experimental studies to date show varied responses
(Supplementary Table S1). Interpretation is complicated by
differences in N dose and duration of experiments, lack of
redundancy in the response variables measured, and the spatial
heterogeneity of arid landscapes.

We approached these issues two ways. First, we added N to a
shrubland ecosystem that covers large areas of the southwestern
U.S. Measurements included a broad range of nutrient, biomass
and process responses nested within the major structural

components of the landscape. Second, we assembled data from
other N addition studies conducted in arid ecosystems for a
meta-analysis that compared the sensitivity and responsiveness of
arid ecosystems to those reported elswhere for mesic ecosystems.
Both approaches indicate that arid soils are highly responsive to
relatively small increments in N loading and that increased N
availability accentuates differences among habitat patches.

Materials and Methods

Study Site
The study site is located in the Lake Mead National Recreation
Area (Reno, NV, USA, UTM Zone 11 702869N 3927243E). Three
randomly selected 100m× 100m sites, separated by at least 5 km,
were chosenwithin Larrea tridentata (creosote bush) –A. dumosa
(burro bush) dominated shrubland found on lower elevation
alluvial fans within a 500 ha area designated as open for study by
the U.S. National Park Service. The alluvial soils have an average
texture of 80% sand, 13% silt, and 7% clay with a bulk pH of
7.4. Organic carbon content in the upper 10 cm averaged 0.35%.
A nearby weather station has documented long-term average
annual high and low temperatures of 23.8 and 11.1C, respectively,
with an annual average precipitation of 19.8 cm. The nearest
National Acid Deposition Program monitoring site (Red Rock
Canyon National Conservation Area, 50 km west) reports wet N
deposition rates of <1.0 kg/ha.

Within each site, fifteen A. dumosa plants of similar size,
leaf area, and condition were selected. Each plant became the
center of a 2 m × 2 m plot. To simulate N deposition typical
of urban impacts, plots were fertilized with a nitrate-ammonium
mix at three levels: 0, 7, and 15 kg N ha−1 yr−1, added in
seven parts every 2 months from March 2012 to May 2013 to
mitigate the effects of shock loading, sporadic precipitation and
aeolian erosion. Plots were harvested in May 2013. Herein these
treatments are referred to as Ambient (Amb), N7 and N15,
respectively.

Sampling
Pre-treatment soil and Ambrosia leaf samples were collected at
each site from within the delineated plots. After the fertilization
period, soil and plant leaf samples were again collected from the
delineated plots. At both times, soils were collected to depths
of 0–0.5 cm (hereafter referred to as “biocrust”) and 0–10 cm
(hereafter referred to as “bulk soil”) from under each plant
canopy (hereafter referred to as “canopy” samples) and from the
open areas between plants (hereafter referred to as “interspace”
samples). Within each plot, soil samples collected on the north,
east, south, and west side of the plant at the stem, mid-canopy,
and dripline were combined to form a single composite biocrust
or bulk soil canopy sample. Interspace biocrust and soil samples
were collected between the target Ambrosia and its nearest
neighbor on the north, east, south, and west. These samples were
collected 50–100 cm away from the canopy edge of the target
plant and combined to form a single composite biocrust or soil
sample for each plot.
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Biocrust and bulk soil samples were divided into four parts for
analysis of bacterial and fungal abundance, chlorophyll a, enzyme
activities, and chemistry. All soils were immediately placed on
ice until reaching the laboratory. Samples for molecular and
enzymatic analyses were frozen at −70◦C until analyzed.

Chemical Analyses
Subsamples of the collected soils were air-dried, sieved to 2 mm
and mixed; plant leaves were dried and ground, and both soil
and plant materials then sent to the Plant and Soil Analysis
Laboratory at Brigham Young University in Provo, UT, USA.
Organic matter was determined by chromic acid digestion
(Walkley and Black, 1934). Sample pH was measured in a
saturated soil paste solution (Rhoades, 1982). Total N (TN) was
determined by Kjeldahl analysis (Bremner and Keeney, 1966).
Available phosphorus (Pav) and available K (Kav) were extracted
with NaHCO3 (Olsen et al., 1954; Schoenau and Karamonos,
1993, respectively).

Pav was quantified colorimetrically at 880 nm using the
vanadomolybdophorphoric assay (Rice et al., 2012). Kav was
analyzed using an ICP spectrometer (Johnson and Ulrich,
1959). Soil particle size distributions were determined by the
hydrometer method (Day, 1965). Plant leaves were dried, ground,
digested with perchloric acid and analyzed for total N (Bremner
and Keeney, 1966) and minerals, using ICP spectrometry
(Johnson and Ulrich, 1959).

Net nitrification and ammonification rates were calculated by
measuring NO3-N and NH4-N concentrations in KCl extracts
before and after a 10 day incubation at 20C (Finzi et al., 2006).
N Mineralization was calculated as the sum of nitrification
and ammonification. Net changes were calculated in units of
μg g−1 d−1.

Chlorophyll
Chlorophyll a was extracted from biocrust in acetone and
quantified by HPLC based on peak areas from a photodiode
array detector at 436 nm, using commercial standards (DHI
Water and Environment, Denmark; Karsten and Garcia-Pichel,
1996).

Microbial Abundance
DNA was extracted from 0.5 g soil samples collected from Site
1 using the FAST DNA Spin kit for Soil following manufacturer
recommendations (MP Biomedicals, Solon, OH, USA). Extracted
DNA was quantified using the Quant-it PicoGreen dsDNA Assay
Kit (Invitrogen, Carlsbad, CA, USA), measured on a BioTech
Synergy H1 plate reader.

The DNA concentrations were normalized to 1 ng/μl, and
quantitative PCR (qPCR) reactions were conducted in 96-well
plates on a CFX Connect Real-Time PCR System (BioRad
Laboratories, Hercules, CA, USA), using a modified procedure
from Castro et al. (2010). DNA quantitative standards for
bacterial and fungal rRNA genes were generated by amplifying
the bacterial 16S RNA gene from Microcoleus vaginatus (the
most common cyanobacterium in regional biocrusts) using EUB
338 and EUB 518 primers (Lane et al., 1985), or amplifying
the fungal SSU RNA gene from a Phoma sp. culture (one of

the most abundant fungi in regional soils) using the nu-SSU-
1196F and nu-SSU-1536R primers (Borneman and Hartin, 2000).
Amplified fragments were cloned into Escherichia coli to generate
a single copy bacterial or fungal gene clone for generation of
standard curves. For field sample DNAs, duplicate 30 μl qPCR
reaction contained 15 ul of iQ SYBR Green Supermix (BioRad
Laboratories, Hercules, CA, USA), 1.25 μg/μl BSA (Roche
Diagnostics GmbH, Mannheim Germany), 1 μl of normalized
soil DNA and 133 nM of each primer (EUB 338 and EUB
518 Bacterial; Fungal Primers: nu-SSU- 1196F and nu-SSU-
1536R137). The reactions were amplified using the following
conditions: 95C for 3.25 min followed by 40 cycles of 95C for
15 s, annealing temperature for 30 s (55C bacterial or 53C fungal)
and 72C for 30 s, followed by a step at 95C for 1 min, and
80 cycles at 55C for 10 s with a 4C hold for dissociation curve
analysis.

Soil Enzyme Activities
Biocrust and bulk soil samples were assayed for the
potential activities of β-1,4-glucosidase (BG), alkaline
phosphatase (AP), alanine aminopeptidase (AAP), and β-1,4-
N-acetylglucosaminidase (NAG) using flourigenic methylumb-
elliferyl-linked substrates, following the protocol of Stursova
et al. (2006). Aliquots (200 μl) of sample suspensions (1 g
sample homogenized in 125 ml of 50 mM bicarbonate buffer,
pH 8) were dispensed into 96-well microplates. Each microplate
included 16 replicate wells per assay, plus positive and negative
controls for quench correction. Microplates were incubated at
21C. Fluorescence was measured at excitation and emission
wavelengths of 365 and 450 nm, respectively, using a BioTech
Synergy H1 plate reader. Activities were calculated in units of
nmol g−1 h−1.

Data Analyses
Data were grouped into three categories for multivariate
analysis: (i) soil nutrients and N transformation processes,
(ii) soil enzyme activities, and (iii) plant chemistry. For
soil nutrients and ecoenzyme activities (EEA), we first used
permutational MANOVA that included the fixed effects of
N treatment, soil collection depth, and collection location
including all interaction terms as well as the random
effects of site and plot. Plot was nested within site and N
treatment. Following normalization of response variables
to equalize the measurement scales, perMANOVA was
conducted in Primer v. 6.1.10 using 99999 iterations, residuals
calculated under a restricted model, and type III partial SS
(Clarke and Gorley, 2009). We included a priori contrasts
to compare the N treatments. For foliar chemistry, the
perMANOVA included the fixed effect of N treatment and
the random effects of site and plant (nested within site and N
treatment).

When multivariate analyses showed significant treatment
effects, we followed up with general linear mixed effects
models for individual response variables, including the same
fixed and random factors described above (restricted maximum
likelihood, Proc MIXED, SAS v. 9.3, SAS Institute Inc., Cary,
NC, USA). All variables were natural log-transformed to meet
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assumptions of normality of residuals and homogeneity of
variances, with the exception of ammonification, which did not
require transformation. Degrees of freedom of these models
varied due to rare incidences of missing data, and the exclusion
of one outlier (an ant nest) in the soil chemistry data. For
each N treatment, we calculated an effect size as RII = (N
treatment – Ambient)/(N treatment + Ambient) following
Armas et al. (2004) to facilitate cross-response and cross-study
comparisons.

The same individual general linear mixed models were used
to analyze the responses of soil organic carbon (SOC): Total N
and SOC:Pav ratios as well as microbial biomass indicators. These
variables were log-transformed prior to analysis. Because soil
fungi and bacteria data were collected only for Site 1, thesemodels
did not include the random effect of site. Chlorophyll data were
collected only for the biocrust, so soil depth was not a factor in
that analysis.

Mantel tests were conducted to examine relationships
among soil nutrient, ecoenzyme, and foliar chemistry response
matrices (RELATE function, 99999 permutations, Spearman
Rho, Primer v. 6.1.10, Clarke and Gorley, 2009). First,
across the entire dataset (180 observations) we examined the
relationship between soil nutrients/processes and EEA. Second,
for the matrices of responses observed at the scale of plants
(45 observations), we examined relationships among foliar
chemistry, soil nutrients/processes and EEA measured beneath
the plant canopy (averaged over the 0.5 and 10 cm soil
depths).

Meta-Analysis of Published Studies
Because most studies of arid ecosystem responses to experimental
N manipulation have only recently been published, these systems
have not been well represented in previous meta-analyses. We
created a comparative context for this study by assembling data
from 14 studies (this study and 13 others) that included soil
microbial responses to N amendment (Supplementary Table S1).
N application rates ranged from 5 to 560 kg ha−1 y−1 with
treatment durations of 0.3–10 year.

Eight studies (including our own) included microbial biomass
responses, measured variously by phospholipid fatty acids
(total, bacterial, fungal), qPCR (bacterial 16S gene copies,
fungal 18S gene copies), biocrust chlorophyll, cyanobacteria
species richness, muramic acid, and/or microbial biomass carbon
or nitrogen (chloroform fumigation/extraction). For each N
treatment, defined as a combination of application rate and
treatment duration, we calculated the effect size RII as described
above. For our Nevada study, we used the untransformed data
to calculate LS means from the mixed effects model to use in
RII. These effect sizes were pooled into a single category called
microbial biomass responses.

Ten studies included microbial metabolic responses
to N treatment measured using various enzyme assays
(β-glucosidase, Ala/Leu-aminopeptidase, phosphatase, β-N-
acetylglucosaminidase, urea aminohydrolase, invertase, phenol
oxidase, peroxidase), BIOLOG substrate induced respiration
(total change in absorbance), respiration (CO2 efflux), net
ammonification and/or net nitrification. As above, we calculated

an effect size for each N treatment and pooled the results into a
single category called microbial metabolic responses.

Regression analysis was used to relate effect size (RII)
to N application rate (kg ha−1 y−1) and cumulative N
loading (application rate × duration of treatment). For studies
that included multiple measures of biomass or metabolic
responses per N treatment, only the mean effect size was
used in the regression analyses so that all observations were
independent. Analyses compared model fit between linear
regression and log-transformation of the N treatment (x-axis)
using relative r2 values. Within studies, the number of treatment
replicates ranged from 2 to 10 (mean 5.4, Supplementary
Table S1). However, we chose not to conduct weighted
regressions because of the diversity of response metrics (i.e.,
weighting by study also biases some response variables over
others).

Results

Soil Nutrient Levels and N Transformation
Processes
Most soil nutrients and processes were influenced by N addition,
with the exception of potassium (K), soil δ15N (Figure 1B),
and N mineralization (Supplementary Table S2, perMANOVA
P = 0.0003). Soil N increased by 15 and 30% in the N7 and
N15 treatments relative to ambient plots, however, only the
N15 response was significantly greater than ambient (Table 1;
Figure 1A).

The effects of N addition varied more strongly with soil
depth than with spatial location (Supplementary Table S2:
perMANOVA N × Depth P = 0.027; N × Location P = 0.735).
This distinction was most pronounced for net ammonification,
which declined from −0.12 (Amb) to −0.33 (N7) to −0.61 (N15)
μg N g−1 d−1 for the biocrust horizon and from −0.16 to −0.27
to −0.30 μg N g−1 d−1, respectively, in the bulk soil (Table 2;
Figure 2A, full statistical results in Supplementary Table S2).
Net nitrification also responded significantly to N addition but
only in the biocrusts (increasing from 1.27 to 2.12 to 2.04 μg
N g−1 d−1, respectively, Table 2; Supplementary Table S2;
Figure 2B), although the Nitrification × Depth interaction was
marginally non-significant (P = 0.098). Net N mineralization in
the biocrust followed a similar pattern, responding more strongly
in the N7 treatment than the N15 treatment (from 1.15 to
2.05 to 1.43 μg N g−1 d−1, respectively), but again treatment
effects were non-significant over the deeper soil profile (Table 2;
Figure 2C).

Available P (Table 1) increased ∼25% with N addition
(RII = 0.12, Figure 1C; Supplementary Table S1), from
11.4 mg/kg to 14.1 and 14.6 mg/kg in the N7 and N15
treatments, possibly as a result of increased acidity generated
from nitrification, even though the N treatment did not
significantly reduce bulk soil pH, which ranged from 7.1
to 7.4.

N addition also altered nutrient ratios (Table 1). For biocrust,
the molar SOC:Pav ratio was 26% lower under the highest
level of N addition relative to N7 and 11% lower relative to
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FIGURE 1 | Soil nutrient and microbial biomass responses to experimental N addition. (A) Soil N. (B) Soil δ15N. (C) Extractable P. (D) Chlorophyll a.
(E) Fungal 18S copy number/g. (F) Bacterial 16S copy number/g. Different letters indicate significant differences among the N treatments. Data summarized in
Table 1. Statistical results presented in Supplementary Table S2.

TABLE 1 | Soil nutrient data by horizon, location, and N treatment.

Horizon Location N trt Organic C Total N Available P Available K SOC:TN SOC:Pav

% SD % SD ng/g SD ng/g SD Ratio SD Ratio SD

Biocrust 0.5 cm Canopy Amb 0.521 0.271 0.045 0.021 14.07 3.61 257.9 93.0 12.1 3.4 915 360

Biocrust 0.5 cm Interspace Amb 0.269 0.121 0.021 0.010 9.87 2.05 115.7 45.8 15.4 8.8 692 281

Soil 10 cm Canopy Amb 0.362 0.300 0.029 0.009 10.95 2.95 329.6 98.3 11.4 2.1 887 816

Soil 10 cm Interspace Amb 0.128 0.060 0.014 0.004 10.64 3.53 127.1 35.1 11.0 3.7 343 198

Biocrust 0.5 cm Canopy N7 0.698 0.309 0.060 0.022 16.03 5.63 275.0 151.0 13.8 4.2 1181 522

Biocrust 0.5 cm Interspace N7 0.310 0.135 0.024 0.010 11.16 2.56 112.9 57.0 16.0 8.1 754 352

Soil 10 cm Canopy N7 0.297 0.164 0.034 0.016 14.93 6.31 336.9 111.7 9.9 1.8 507 122

Soil 10 cm Interspace N7 0.155 0.058 0.017 0.005 14.10 4.23 136.8 65.7 10.8 2.2 306 141

Biocrust 0.5 cm Canopy N15 0.594 0.231 0.061 0.025 17.53 6.20 257.5 78.2 12.5 4.9 901 278

Biocrust 0.5 cm Interspace N15 0.265 0.161 0.030 0.015 12.78 3.81 127.2 58.7 10.4 3.3 522 220

Soil 10 cm Canopy N15 0.329 0.112 0.038 0.011 15.30 4.77 417.7 139.8 10.5 2.7 565 149

Soil 10 cm Interspace N15 0.136 0.067 0.018 0.007 12.97 3.79 164.9 29.6 9.2 4.1 292 151

SOC, soil organic carbon; TN, total N; Pav, available P.

the control (N × Depth, F2,124 = 3.12, P = 0.0475, SOC:Pav:
Amb = 804, N7 = 967, N15 = 711). More generally, the SOC:Pav
ratio decreased from 709 to 687 to 570 for the Amb, N7 and
N15 treatments, but the trend was not statistically significant.
The molar SOC:TN ratio showed a marginally non-significant
decline with N addition (F2,40 = 2.84, P = 0.0705, C:P: Amb
= 12.6 ± 0.8, N7 = 12.5 ± 0.8, N15 = 10.7 ± 0.8).

Other nutrient variables were non-responsive to N addition,
but showed significant spatial patterns. SOC was significantly
greater beneath the shrub canopy (mean ± SE: 0.47 ± 0.04%)
than in the interspace (0.21 ± 0.04%; Supplementary Table
S2, P < 0.0001) and declined 89% with soil depth from

0.44 ± 0.04% at 0.5 cm to 0.23± 0.04% at 10 cm (Table 1;
Supplementary Table S2). Soil N was 63% greater in the biocrust
(0.041 ± 0.005) than in the bulk soil (0.025 ± 0.005), and
118% greater beneath the shrub canopy (0.045 ± 0.005) than
in interspaces (0.021 ± 0.005, Table 1; Supplementary Table
S2). Available P was 24% greater under the shrub canopy
(14.82 ± 0.78) than in interspaces (11.92 ± 0.78, Table 1;
Supplementary Table S2). Soil K was also greater (139%) beneath
the shrub canopy (312 ± 19) compared to the interspaces
(131 ± 19, Table 1; Supplementary Table S2). Biocrust soils
beneath shrub canopies had 400% greater net nitrification
rates (3.02 ± 0.16) than interspace biocrust (0.60 ± 0.16);
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TABLE 2 | N transformation rates by horizon, location, and N treatment.

Horizon Location N trt Nitrification Ammonification N mineralization

µg g−1 d−1 SD µg g−1 d−1 SD µg g−1 d−1 SD

Biocrust 0.5 cm Canopy Amb 2.299 1.700 −0.098 0.289 2.200 1.902

Biocrust 0.5 cm Interspace Amb 0.348 0.311 −0.124 0.055 0.224 0.295

Soil 10 cm Canopy Amb 0.712 0.575 −0.239 0.236 0.473 0.604

Soil 10 cm Interspace Amb 0.113 0.095 −0.095 0.115 0.018 0.141

Biocrust 0.5 cm Canopy N7 4.275 2.361 −0.251 0.758 4.025 2.626

Biocrust 0.5 cm Interspace N7 0.634 0.320 −0.272 0.132 0.362 0.348

Soil 10 cm Canopy N7 0.829 0.801 −0.404 0.436 0.424 1.004

Soil 10 cm Interspace N7 0.132 0.144 −0.151 0.122 −0.018 0.195

Biocrust 0.5 cm Canopy N15 3.115 1.629 −0.694 0.376 2.421 1.698

Biocrust 0.5 cm Interspace N15 0.832 0.569 −0.524 0.175 0.308 0.468

Soil 10 cm Canopy N15 1.323 1.694 −0.341 0.377 0.982 1.821

Soil 10 cm Interspace N15 0.191 1.252 −0.277 0.273 −0.468 1.373

this difference was stronger (620%) for bulk soils (canopy
0.96± 0.16; interspace 0.13± 0.16; Table 2; Supplementary Table
S2, P = 0.0002). Net N mineralization showed a similar trend
(Table 2). Rates for biocrust beneath shrub canopy were 10-
fold greater than those for interspace crust (2.88 vs. 0.30), with
a stronger pattern across the deeper soil profile (canopy: 0.63,
interspace: −0.16).

Fungal, Bacterial, and Cyanobacterial Biomass
None of the estimates of microbial biomass responded
significantly to N amendment in either soil horizon, and there
was little shift in fungal/bacterial ratios (∼0.15, Supplementary
Table S4). However, in nearly all cases, the biomass indicators
increased with N addition (Table 3; Figures 1D–F). Sample sizes
for determining treatment effects on fungal and bacteria copy
numbers were small (n = 5 plots) because measurements were
conducted only at Site 1. Fungal copy numbers were 90% greater
for the N7 treatment (RII = 0.31) and 56% greater for N15
(RII = 0.22) relative to the Amb plots (Figure 1E). Bacterial copy
numbers were 11% greater for the N7 treatment (RII = 0.05)
and 36% higher for N15 (RII = 0.15; Table 3; Figure 1F).
Approximately 3% of the bacterial sequences were cyanobacteria,
which is typical for hot, dry deserts (Fierer et al., 2012). Biocrust
chlorophyll a, which was measured at all three sites, was 82%
greater for the N7 treatment (RII = 0.29) and 52% greater for
N15 (RII = 0.21) relative to the Amb plots (Table 4; Figure 1D).

Independent of responses to N amendment, microbial
biomass was greater in the biocrust than in the bulk soil (217%
for fungi and 118% for bacteria). Biocrust chlorophyll was 156%
higher under the canopy (211.7 ± 17.9) than in interspaces
(82.8 ± 17.9).

Soil Enzyme Activity
Collectively, the four soil EEA responded significantly to
N addition (Table 5; Supplementary Table S3, Figure 3:
perMANOVA P = 0.0039). AAP was the most responsive,
increasing with N addition in all four soil fractions. Overall, AAP
activity increased by 54% (RII = 0.21, Amb = 21.64 ± 5.02,

N7 = 22.83 ± 5.02, N15 = 33.33 ± 5.02; Supplementary Table
S3). In contrast, β-1,4-N-acetylglucosaminidase activity declined
36% across treatments (RII = −0.22; Amb = 5.25 ± 0.96,
N7 = 3.87 ± 0.96, N15 = 3.37 ± 0.96; Supplementary Table S3).

Like N transformation rates, the effects of N addition on
ecoenzyme activity varied with sampling depth (Table 5;
Supplementary Table S3, Figure 3; perMANOVA P = 0.0045).
This interaction was driven primarily by AP, which declined
54% with N addition in biocrust soil (RII = −0.37;
Amb = 29.98 ± 8.89, N7 = 21.01 ± 8.89, N15 = 13.76 ± 8.89)
but increased 59% for bulk soil (RII = 0.23; Amb = 4.16 ± 8.89,
N7 = 13.70 ± 8.89, N15 = 6.60 ± 8.89; Figure 3). β-1,4-N-
acetylglucosaminidase showed a similar pattern with a 45%
decline with N in the biocrust (RII = −0.29; Amb = 9.00 ± 1.28,
N7 = 6.37 ± 1.28, N15 = 4.99 ± 1.28) but a 17% increase in
bulk soil (RII = 0.08; Amb = 1.49 ± 1.28, N7 = 1.36 ± 1.28,
N15 = 1.74 ± 1.28). AAP also showed a greater relative response
to N in deep soil (116%, RII = 0.37) compared to surface biocrust
(23%, RII = 0.10).

Spatially, all ecoenzymes showed greater potential activity
in canopy soils than in interspaces (Table 5). β-1,4-N-
acetylglucosaminidase showed the strongest difference (353%
greater in canopy soil) followed by β-glucosidase (107%), AAP
(39%), and AP (37%).

Foliar Nutrients
N addition had no effect on nutrient concentrations in leaves
of A. dumosa (Supplementary Table S5, perMANOVA pseudo-
F = 0.90, P = 0.4149).

Connecting Biomass, Activities, and Nutrients
At the plot scale, the enzyme response matrix was positively
associated with the nutrient response matrix, but only beneath
the shrub canopy (Mantel ρ = 0.152, P = 0.0313, n = 45 plots),
not within the interspaces (Mantel ρ = 0.088, P = 0.1849).
Across all samples, the ecoenzyme response matrix was positively
correlated with all estimates of microbial biomass. Fungal
copy number showed the strongest positive correlation with
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FIGURE 2 | N transformation rates in relation to experimental N
addition for biocrust (0.5 cm) and soil (0–10 cm). (A) Ammonification.
(B) Nitrification. (C) N mineralization. Different letters indicate significant
differences among the N treatments. Data summarized in Table 2. Statistical
results presented in Supplementary Table S2.

ecoenzyme NMS axis1 (Spearman r = 0.39, P = 0.0026, n = 58),
followed closely by bacterial copy number (Spearman r = 0.38,
P = 0.0036, n = 58), then chlorophyll a (Spearman r = 0.37,
P = 0.0004, n = 87).

Meta-Analysis
Across studies, microbial biomass responses to N treatment were
best described by logarithmic regressions (Figure 4). For N
application rate (kg ha−1 y−1): effect = −0.0959 (ln rate)+ 0.429
(r2 = 0.358, n= 26, p= 0.00125). For N load: effect= −0.0779(ln
load)+ 0.395 (r2 = 0.386, n= 26, p= 0.0007). The critical points
separating positive from negative treatment effects were 88 kg
ha−1 y−1 and 159 kg ha−1, respectively.

Metabolic responses to N treatment were better
described by linear regressions, rather than logarithmic

(Figure 4). For application rate (kg ha−1 y−1):
effect = −0.00065(rate) + 0.455 (r2 = 0.21, n = 41, p = 0.0024).
For load: effect = −0.00052(load) + 0.0593 (r2 = 0.41, n = 41,
p < 0.00001). The critical points separating positive from
negative treatment effects were 70 kg ha−1 y−1 and 114 kg ha−1,
respectively.

Discussion

N Responses and Spatial Heterogeneity
By most measures, nutrient availability, microbial biomass, and
process rates were greater in soils beneath the shrub canopy
compared to the interspace between plants, and greater in the
surface biocrust horizon compared to the bulk soil. Most of these
measures also responded positively to experimental N addition,
despite the absence of large precipitation events over the study
period or evidence of changes in plant production and nutrient
content.

One notable exception was AP activity. Generally,
phosphatase activity increases in response to experimental
N addition because mitigating N limitation increases the relative
demand for P ( Skujiņš, 1978; Sinsabaugh and Follstad Shah,
2012). In that context, the 50% loss of phosphatase activity in the
N-amended biocrusts is anomalous, particularly because activity
increased by 50% over the deeper 10 cm profile (Figure 3).

Chemical analysis showed that available P increased by 20–
50% with N addition in all soil fractions (Table 1). These P
increases could be the result of acidity generated by increased
nitrification, which increased significantly (60–80%) in biocrusts,
with a somewhat smaller response for bulk soils. Analysis of these
carbonate soils conducted prior to treatment found a total P
content of 950 ± 40 μg/g (data not presented), which compared
to values of 10–18 μg/g for Pav (Table 1) suggests a potential
for increased P solubilization in response to acidity. Increased
Pav may also be a product of greater microbial biomass in the
N addition treatments. In any case, the divergent phosphatase
responses of biocrust and bulk soil indicate that N addition
depressed relative P limitation within the biocrust, but increased
it for bulk soil, possibly as a result of nutrient competition with
plants.

Although phosphatase is the clearest case of divergent
responses between biocrust and bulk soil, the general trend
extends to other ecoenzymes. Activities tend to show larger and
more positive responses in the bulk soil than in the biocrust
(Figures 3 and 4). This spatial pattern is consistent with the
dose-dependent responses observed across studies (Figure 4).
The surface biocrust likely experienced a greater effective N dose
than the underlying mineral soil given the sparse precipitation
over the study period. In addition, the mineral soil is the site
of plant–microbe interaction, including carbon priming and
nutrient competition, which may also affect the responses to N
addition.

Only one other aridland study included measurements of
the same ecoenzyme responses presented here (Stursova et al.,
2006). That study, conducted in semiarid grassland, sampled
soil (0–5 cm) beneath bunch grass (grama) canopy and in
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TABLE 3 | Fungal and bacterial SSU rRNA gene copy number by horizon, location, and N treatment.

Horizon Location N trt Fungal 18S Bacterial 16S Fungi/ Bacteria

Copies/g SD Copies/g SD Ratio SD

Biocrust 0.5 cm Canopy Amb 1.03E+08 6.20E+07 5.82E+08 2.47E+08 0.169 0.056

Biocrust 0.5 cm Interspace Amb 2.48E+07 1.27E+07 1.88E+08 2.74E+07 0.140 0.091

Soil 10 cm Canopy Amb 3.42E+07 1.12E+07 2.35E+08 4.64E+07 0.146 0.039

Soil 10 cm Interspace Amb 7.08E+06 3.65E+06 1.04E+08 2.98E+07 0.066 0.018

Biocrust 0.5 cm Canopy N7 2.28E+08 2.17E+08 6.22E+08 2.87E+08 0.345 0.217

Biocrust 0.5 cm Interspace N7 1.94E+07 6.66E+06 2.42E+08 1.02E+08 0.089 0.032

Soil 10 cm Canopy N7 6.50E+07 4.67E+07 2.34E+08 1.01E+08 0.366 0.440

Soil 10 cm Interspace N7 9.14E+06 2.44E+06 1.29E+08 3.51 E+07 0.072 0.012

Biocrust 0.5 cm Canopy N15 1.42E+08 1.17E+08 7.18E+08 3.97E+08 0.204 0.105

Biocrust 0.5 cm Interspace N15 6.24E+07 9.93E+07 2.87E+08 1.06E+08 0.221 0.335

Soil 10 cm Canopy N15 5.82E+07 5.92E+07 3.97E+08 2.44E+08 0.148 0.097

Soil 10 cm Interspace N15 7.40E+06 2.10E+06 1.09E+08 8.78E+07 0.094 0.059

TABLE 4 | Biocrust chlorophyll a data by horizon, location, and N
treatment.

Horizon Location N trt Chlor a

ng g1 SD

Biocrust 0.5 cm Canopy Amb 135.0 86.4

Biocrust 0.5 cm Interspace Amb 68.4 36.8

Biocrust 0.5 cm Canopy N7 234.2 136.2

Biocrust 0.5 cm Interspace N7 75.5 55.1

Biocrust 0.5 cm Canopy N15 265.8 214.9

Biocrust 0.5 cm Interspace N15 104.4 83.5

biocrust-covered interspaces. β-N-acetylglucosaminidase and
β-glucosidase activities were similar in magnitude to those
reported here, but AAP and AP activities were 3–5 times
greater in the prior study. In response to N amendment
(10 kg ha−1 y−1), AAP activity declined rather than increased,
β-N-acetylglucosaminidase activity doubled, while AP and
β-glucosidase activities showed little response.

Integrating N Responses through Carbon Use
Efficiency
The comparison above highlights the need for integrative
measures of ecosystem response to N loading, rather than
focusing on the causal nexus underlying individual responses.
Across the patch mosaic landscape of arid shrubland, nutrient
concentrations, microbial activity, microbial biomass and
their responses to N addition are often correlated because
they are integrated through microbial carbon use efficiency
(CUE). CUE is commonly defined as the ratio of microbial
growth to assimilation, which is often estimated as the sum of
growth and respiration. But CUE can also be estimated from
stoichiometric relationships among substrate composition,
biomass composition and nutrient acquisition activities
(Sinsabaugh et al., 2013). Sinsabaugh and Follstad Shah (2012)
proposed that:

CUE = CUEmax[SC:N/(SC:N + KN)],where
SC:N = (1/EEAC:N)(BC:N/LC:N).

TABLE 5 | Ecoenzymatic activity by horizon, location, and N treatment.

Horizon Location N trt AAP AP NAG BG AG

nmol g−1 d−1 SD nmol g−1 d−1 SD nmol g−1 d−1 SD nmol g−1 d−1 SD nmol g−1 d−1 SD

Biocrust 0.5 cm Canopy Amb 43.0 29.7 38.9 29.2 15.3 14.8 56.7 32.2 2.91 2.89

Biocrust 0.5 cm Interspace Amb 31.4 26.5 32.8 26.5 2.94 2.06 26.6 31.2 2.48 7.14

Soil 10 cm Canopy Amb 16.0 11.8 6.34 7.08 2.28 1.87 18.5 9.9 1.28 2.64

Soil 10 cm Interspace Amb 19.0 14.9 4.43 4.86 0.71 0.55 11.7 12.3 0.31 0.36

Biocrust 0.5 cm Canopy N7 34.8 22.7 30.0 32.2 11.4 16.0 55.4 35.5 4.13 5.68

Biocrust 0.5 cm Interspace N7 17.6 11.2 16.2 16.8 1.38 1.49 22.4 21.7 0.57 0.58

Soil 10 cm Canopy N7 29.7 25.4 15.3 18.2 2.77 2.53 25.1 16.8 1.00 1.53

Soil 10 cm Interspace N7 22.4 18.8 17.9 18.3 0.54 0.54 12.4 14.8 0.29 0.42

Biocrust 0.5 cm Canopy N15 41.2 23.3 14.8 13.7 7.20 4.69 40.9 23.2 3.31 3.95

Biocrust 0.5 cm Interspace N15 33.7 18.1 14.7 15.9 2.79 3.30 23.2 15.0 1.37 1.31

Soil 10 cm Canopy N15 32.9 22.2 7.35 11.3 2.58 1.92 23.2 14.7 1.71 1.94

Soil 10 cm Interspace N15 34.5 30.5 7.31 4.21 0.90 0.91 11.2 9.3 1.19 1.70

AAP, alanine aminopeptidase; AP, alkaline phosphatase; NAG, β-N-acetylglucosaminidase; BG, β-glucosidase; AG, α-glucosidase.
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FIGURE 3 | Relative responses of soil ecoenzyme activity to N treatment for biocrusts (0.5 cm) and bulk soil (0–10 cm). BG: β-1,4-glucosidase, AP:
alkaline phosphatase, AAP: alanine aminopeptidase, NAG: β-1,4-N-acetylglucosaminidase.

Ecoenzyme activitiesC:N is the ratio of C to N-acquiring
ecoenzymatic activities, measured here as the ratio of
BG/(NAG + AAP); BC:N is the elemental C:N ratio of microbial
biomass; LC:N is the elemental C:N ratio of labile organic matter;
KN is a half saturation constant (0.5); and CUEmax is the upper
limit for microbial growth efficiency (0.6).

Using data from Tables 1 and 5, and assuming a mean value of
8.6 for BC:N (Cleveland and Liptzin, 2007), the estimated CUEs
ranged from 0.29 to 0.51 across soil fractions (Figure 5). For
the N15 treatment, CUE increased in all soil fractions relative
to the Amb. The N7 responses were mixed, CUE declined in
biocrusts and increased in bulk soils. The CUE estimates for the
semiarid grassland study conducted by Stursova et al. (2006) are
similar to those for the shrubland (0.29–0.36), but show no net
response to N addition after 10 years of fertilization (Figure 5).
The Lake Mead NRA responses were measured after 1 year of
treatment. Based on other cross study comparisons (Figure 4),
this difference in CUE response between the studies may be the
result of the 10-fold difference in cumulative N loading.

Meta-Analysis of Aridland N Addition Studies
To aid decision making regarding ecosystem management and
restoration, there has been an effort to define critical loads for

N deposition by ecosystem type, where critical load is defined
as “the deposition of a pollutant below which no detrimental
ecological effect occurs over the long term according to present
knowledge” (Pardo et al., 2011). This definition does not
differentiate positive and negative responses. Our meta-analysis
of aridland studies showed that N amendment had generally
positive effects on microbial biomass and metabolic rates at N
doses <70 kg ha−1 y−1 and N loads<120 kg ha−1, and generally
negative effects at greater doses and loads (Figure 4).

Treseder (2008) conducted a meta-analysis of microbial
biomass responses to N amendment, using data from 82
ecosystems (80 mesic and 2 arid). She found no significant
differences across biomes, fertilizer types, or methods of biomass
measurement. A regression relating ln(response ratio) to N load
(n = 40, r2 = 0.18, p = 0.005) estimated the critical load
separating net positive and net negative effects at 200 kg ha−1.
Our regression model for aridland ecosystems yielded a similar
critical load of 160 kg ha−1 (Figure 3).

The meta-analysis by Knorr et al. (2005) focused on litter
decomposition rates, using data from 24 studies conducted in
grassland, forest and tundra ecosystems. Litter decomposition
was inhibited by N additions when dose rates were 2–20 times
the ambient N deposition level or when litter quality was low
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FIGURE 4 | Meta-analysis of aridland microbial responses to N addition.
(A) Microbial biomass in relation to N application rate: effect = −0.0959 (ln
rate) + 0.429 (r2 = 0.358, n = 26, p = 0.00125). (B) Microbial biomass in
relation to cumulative N load: effect = −0.0779 (ln load) + 0.395 (r2 = 0.386,
n = 26, p = 0.0007). (C) Metabolic rates in relation to N application rate:

effect = −0.00065 (rate) + 0.455 (r2 = 0.21, n = 41, p = 0.0024).
(D) Metabolic rates in relation to cumulative N load: effect = −0.00052 (load)
+ 0.0593 (r2 = 0.41, n = 41, p < 0.00001). Blue circles represent Lake Mead
bulk soil responses. Red circles represent Lake Mead biocrust responses. Data
from Supplementary Table S1.

FIGURE 5 | Microbial carbon use efficiency (CUE) by horizon,
location, and N treatment. For comparison, the orange circles
(Ambient) and triangles (N addition, 10 kg ha−1 y−1) are values
calculated for a N addition study conducted in semiarid grassland in
New Mexico (Stursova et al., 2006).

(i.e., high lignin or humus content). Conversely, low ambient N
deposition rates, high litter quality and short experiment duration
tended to increase decomposition rates. The conflation of N
dose with litter quality effects makes it difficult to estimate a
critical value for the positive to negative transition, but dose
rates >125 kg ha−1 y−1 generally inhibited decomposition.
For comparison, our regression model for microbial metabolic
responses in arid ecosystems estimates the critical dose at 70 kg
ha−1 y−1.

Janssens et al. (2010) conducted a meta-analysis of N effects on
heterotrophic respiration using data from 36 microcosm studies
of temperate forest soils. On average, respiration declined by 15%
in response to N amendment with a response range of −57 to
+63%. Doses >50 kg ha−1 y−1 generally had negative effects, in
comparison with our threshold estimate of 70 kg ha−1 y−1.

A meta-analysis by Zhou et al. (2014) analyzed N effects
on soil respiration, resolving autotrophic and heterotrophic
responses, using data from 295 studies conducted across a broad
range of biomes. On average, N addition stimulated autotrophic
respiration by 22% but reduced heterotrophic respiration by
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13%. A regression relating the response ratio of heterotrophic
respiration to N load showed no positive responses, i.e., the
response ratio intercept was <1.0. The maximum N dose rate
included in the meta-analysis was 74 kg ha−1 y−1, a value that
approximates our estimated critical point for the transition from
net positive to net negative effects.

Across ecosystems, lichens, and bryophytes, which are
components of biocrusts, are among the most sensitive
responders to increased N deposition with critical loads estimated
at 1–9 kg ha−1 y−1; critical loads for semiarid grasses and
shrubs also fall in this range (Pardo et al., 2011). Within our
meta-analysis of arid soil responses, the lowest N application
rate was 5 kg ha−1 y−1 and nearly all microbial responses
<15 kg ha−1 y−1 were positive. These results suggest that
arid ecosystems, characterized by low soil N contents and low
atmospheric deposition rates, may be among the most sensitive
to anthropogenic N deposition.

Conclusion

Despite the difficulties in making direct comparisons among
ecosystems, it appears that soil microbial responses to N
amendment in arid ecosystems are broadly comparable to those
of mesic ecosystems in terms of N saturation. However, it
appears they are more sensitive to low dose inputs by some
measures and more spatially heterogeneous in their responses.

This heightened vulnerability will create many future challenges
for land managers, as anthropogenically related N deposition is
expected to increase as arid regions become more developed as
spaces for living, recreation, and energy development.
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