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Iron is an essential micronutrient for almost all organisms, including fungi. Usually,

fungi can uptake iron through receptor-mediated internalization of a siderophore or

heme, and/or reductive iron assimilation (RIA). Traditionally, the RIA pathway consists

of ferric reductases (Fres), ferroxidase (Fet3) and a high-affinity iron permease (Ftr1).

Paracoccidioides spp. genomes do not present an Ftr1 homolog. However, this fungus

expresses zinc regulated transporter homologs (Zrts), members of the ZIP family of

membrane transporters that are able in some organisms to transport zinc and iron. A

2,3,5-triphenyltetrazolium chloride (TTC)-overlay assay indicates that both Pb01 and

Pb18 express a ferric reductase activity; however, 59Fe uptake assays indicate that

only in Pb18 is this activity coupled to a reductase-dependent iron uptake pathway. In

addition, Zrts are up-regulated in iron deprivation, as indicated by RNAseq and qRT-PCR

using Pb01 transcripts. RNAseq strategy also demonstrated that transcripts related

to siderophore uptake and biosynthesis are up-regulated in iron-deprived condition.

The data suggest that the fungus could use both a non-classical RIA, comprising

ferric reductases and Fe/Zn permeases (Zrts), and siderophore uptake pathways under

iron-limited conditions. The study of iron metabolism reveals novel surface molecules that

could function as accessible targets for drugs to block iron uptake and, consequently,

inhibit pathogen’s proliferation.

Keywords: iron reduction, iron uptake, ferric reductase, zinc-regulated transporter, multicopper oxidases,

paracoccidioidomycosis

Introduction

Iron is the most common cofactor in biology. This fact could be explained by the high
abundance of the element in nature and by its chemical properties, mainly by its redox
ability. Since iron participates in several metabolic pathways, either aerobes or anaerobes must
obtain ferrous iron (Fe2+), since ferric iron (Fe3+) is insoluble. Typically, fungi accumulate
iron through two different strategies: (1) receptor-mediated internalization of ferric-siderophore
complexes and/or heme group; and (2) reductive iron assimilation (RIA), involving iron
reduction, followed by a ferroxidase-permeation step (Kosman, 2013). The first strategy has
been recently described in Paracoccidioides spp. It has been shown that this fungus is able to
utilize siderophores and hemoglobin as iron sources through receptor-mediated pathways (Bailão
et al., 2014; Silva-Bailão et al., 2014). However, the RIA in Paracoccidioides spp. remains elusive.
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Ferric reductases have a central role in both strategies of
iron capture (Baek et al., 2008). These enzymes, along with
ferroxidases and permeases, promote high-affinity iron uptake
(Kosman, 2003). Moreover, ferric reductases are important in
removing iron from siderophores (Yun et al., 2001) or from
host iron sources, such as transferrin and hemin (Knight et al.,
2005; Saikia et al., 2014). In addition to the essential role in
iron uptake, ferric reductases are also important for melanin
production, resistance to azole drugs, virulence (Saikia et al.,
2014) and host adaptation (Hu et al., 2014) in Cryptococcus
neoformans. In C. albicans, the ferric reductases also participate
in the oxidative stress response, filamentous development
and virulence (Xu et al., 2014). Besides the transmembrane
ferric reductase enzymes, a secreted γ-glutamyltransferase
(Ggt1) activity has been described in Histoplasma capsulatum,
Blastomyces dermatitidis, Paracoccidioides sp. and Sporothrix
schenckii (Zarnowski and Woods, 2005).

Multicopper oxidases (MCOs) consist of four enzyme
superfamilies: laccases, ascorbate oxidases, ferroxidases, and
ceruloplasmin, that catalyze the four-electron reduction of
molecular oxygen to two molecules of water (Sirim et al., 2011).
In fungal ferroxidases, as noted for Saccharomyces cerevisiae Fet3,
the specificity for Fe2+ as an electron donor derives from the
presence of two carboxyl groups, E185 and D409, which are in H-
bond contact with the T1 Cu ligandsH489 andH413, respectively
(Kosman, 2010). In most fungi, the Fe3+ product derived from a
ferroxidase reaction is channeled to a high-affinity iron permease,
Ftr1, which is associated to the ferroxidase in the fungal plasma
membrane (Kwok et al., 2006; Ziegler et al., 2011).

The Paracoccidioides genus comprises thermodimorphic
fungal pathogens causing paracoccidioidomycosis (PCM), which
is a deep systemic mycosis with a high prevalence in Brazil,
Colombia, Venezuela, and Argentina (San-Blas et al., 2002). Since
the notification of PCM cases is not obligatory, prevalence of this
fungal disease is likely significantly under-reported (Martinez,
2010). The treatment available for PCM is long and may include
several side effects and pathogen resistance. Thus, there is a
great demand for the development of safer alternative therapies
that are able to overcome resistance (Bocca et al., 2013). In this
context, blocking iron acquisition is a good strategy to prevent
or treat fungal diseases since iron is an essential nutrient for
pathogen proliferation in vertebrate hosts (Kronstad et al., 2013).
In this way, the knowledge about Paracoccidioides spp. iron
acquisition mechanisms can contribute to reveal new targets to
antifungal therapy.

The iron uptake mechanisms in Paracoccidioides spp. have
been investigated in part (Parente et al., 2011; Silva et al.,
2011; Bailão et al., 2014; Silva-Bailão et al., 2014). It has been
demonstrated by our group that Paracoccidioides spp. presents
multiple ferric reductases and MCOs and a ggt1 homolog,
but no ftr1 homolog (Silva et al., 2011). Moreover, it was
observed that ferric reductase transcripts (Bailão et al., 2006,
2007, 2012a), zinc regulated transporters (Zrts) homologs (Bailão
et al., 2006), hemoglobin receptor homologs and transcripts
related to siderophore synthesis and uptake (Parente et al.,
2011; Silva-Bailão et al., 2014) are induced during in vitro iron
deprivation or when in vivo models of infection were used.

Siderophore production and acquisition and host iron sources
have been investigated in Paracoccidioides spp. In iron-depleted
condition, siderophore secretion by this fungus increases.
Moreover, Paracoccidioides spp. are able to use siderophores
as iron source, increasing the fungus ability to survive inside
macrophages, a poor-iron environment (Silva-Bailão et al., 2014).
We also demonstrated that hemoglobin is the preferential host
iron source for Paracoccidioides spp. To acquire hemoglobin, the
fungus presents hemolytic activity and the ability to internalize
the entire molecule instead of promoting the iron release
extracellularly. A GPI-anchored hemoglobin receptor, Rbt5, is a
virulence factor (Bailão et al., 2014). Since Paracoccidioides spp.
do not express an Ftr1 homolog, Fre homologs could reduce the
iron, which could be imported by iron/zinc permeases (Bailão
et al., 2007; Silva et al., 2011), but this hypothesis remains elusive.

In this work, the RIA pathway was investigated. We have
demonstrated that Paracoccidioides spp. is able to reduce iron,
and in the case of Pb18, this reductase activity is linked to ferric
iron uptake. In contrast, this reductase activity in Pb01 does not
appear to be up-stream from this uptake. After reduction, the
data suggest that Fe2+ is probably internalized through a Fe/Zn
permease (Zrt). This suggestion is because Paracoccidioides spp.
genomes do not present an ftr1 homolog and the zrt1 and zrt2
transcripts are up-regulated during iron deprivation. In addition,
transcripts related to siderophore uptake and biosynthesis are up-
regulated upon iron deprivation. The data suggest that the fungus
could use both a non-classical RIA, comprising ferric reductases
and Fe/Zn permeases, and siderophore uptake pathways under
iron-limited conditions.

Materials and Methods

Strains and Growth Conditions
Paracoccidioides Pb01 (ATCC MYA-826; Paracoccidioides lutzii)
(Teixeira et al., 2014) and Pb18 (ATCC 32069; Paracoccidioides
brasiliensis, phylogenetic species S1) (Carrero et al., 2008) were
used in this work. The fungus was maintained in brain heart
infusion (BHI) medium supplemented with 4% (w/v) glucose at
36◦C to cultivate the yeast form. Before each experiment, the cells
were grown in liquid BHI supplemented with 4% (w/v) glucose
for 72 h at 36◦C under rotation.

In silico Sequences Analysis
Pb01 and Pb18 putative ferric reductase and ferroxidase
amino acid sequences were obtained in the Paracoccidioides
genome database (http://www.broadinstitute.org/annotation/
genome/paracoccidioides_brasiliensis/MultiHome.html). The
Paracoccidioides spp. sequences were compared using the
ClustalX2 program (Larkin et al., 2007). Comparisons
were performed with amino acid sequences from other
fungi, as following: Aspergillus fumigatus (http://www.
aspergillusgenome.org), Aspergillus nidulans (http://www.
broadinstitute.org /annotation/fungi/aspergillus_nidulans_old),
H. capsulatum (http://www.broadinstitute.org/annotation/geno
me/histoplasma_capsulatum/MultiHome.html). Coccidioides
immitis, Coccidioides posadasii (http://www.broadinstitute.
org/annotation/genome/coccidioides_group/MultiHome.html),
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B. dermatitidis (http://www.broadinstitute.org/annotation/
genome/blastomyces_dermatitidis/MultiHome.html), Ustilago
maydis (http://www.broadinstitute.org/annotation/genome/
ustilago_maydis/Home.html), C. neoformans (http://www.
broadinstitute.org/annotation/genome/cryptococcus_neoforma
ns/MultiHome.html), S. pombe (http://www.pombase.org), C.
albicans (http://www.candidagenome.org/), and S. cerevisiae
(http://www.yeastgenome.org). ClustalX2 program (Larkin
et al., 2007) and TreeView v.1.6.6 program (Page, 1996) were
used for phylogenetic analysis and visualization, respectively,
applying the neighbor-joining method and the tree architecture
was inferred from 1000 bootstraps. Domains in amino acid
sequences were localized using SMART online tool (http://smart.
embl-heidelberg.de/).

A structural model of the putative ferroxidase, Pb01
PAAG_06004 was obtained using the Modeler program (Sali
et al., 1995) at the Max-Planck Institute for Developmental
Biology website (http://toolkit.tuebingen.mpg.de/modeller#).
The input for the model used the structure of S. cerevisiae Fet3
as template (PDB 1ZPU). InsightII was used subsequently to
further energy minimize the model using the cvff forcefield with
5000 iterations and a CG convergence of 1.0.

RNA Extraction and Quantitative Real Time PCR
(qRT-PCR)
Pb01 and Pb18 yeast cells were incubated in Synthetic
Complete medium (SC medium: 6.67 g/l yeast nitrogen base
without amino acids, 2% glucose plus amino acids mixture)
with no supplementation or with addition of 200µM of
bathophenanthroline disulfonic acid (BPS) or 10µM FeCl3 at
36◦C under rotation. After 2 h, the cells were harvested and
total RNA was extracted using TRIzol (TRI Reagent, Sigma-
Aldrich, St. Louis, MO, USA) and mechanical cell rupture
(Mini-Beadbeater—Biospec Products Inc., Bartlesville, OK). The
total RNA was treated with DNAse I (Promega Corporation,
Madison, WI, USA) and used as template in in vitro reverse
transcription (SuperScript III First-Strand Synthesis SuperMix;
Invitrogen, Life Technologies). Then, the cDNAs were submitted
to a qRT-PCR reaction, which was performed using SYBR Green
PCR Master Mix (Applied Biosystems, Foster City, CA) in a
StepOnePlus Real-Time PCR System (Applied Biosystems Inc.).
The expression values were calculated using the transcript that
encoded alpha tubulin (XM_002796593) as the endogenous
control as previously reported (Bailão et al., 2012b). The
annealing temperature for all primers was 62◦C. The qRT-
PCR reaction was performed in biological triplicate for each
cDNA sample, and a melting curve analysis was performed
to confirm single PCR products. The relative standard curve
was generated using a pool of cDNAs from all the conditions
that were used, which was serially diluted 1:5–1:625. Relative
expression levels of transcripts of interest were calculated
using the standard curve method for relative quantification
(Bookout et al., 2006). Student’s t-test was applied in the
statistical analyses. For confirmation of Zrts induction in iron-
deprived condition by qRT-PCR, all steps were performed as
described, except for Pb01 incubation in chemically defined
MMcM medium (Restrepo and Jiménez, 1980) supplemented

with 3.5µM inorganic iron [Fe(NH4)2(SO4)2] or with 50µM
of the iron chelator bathophenanthroline disulfonic acid (BPS:
Sigma-Aldrich, Germany) for 3 or 24 h before cell harvesting.

TTC Indicator Plates
To detect Pb01 and Pb18 surface reductase activity, a plate assay
was used as described previously (Ogur et al., 1957), except
that the 2,3,5-triphenyltetrazolium chloride (TTC)-containing
overlay was poured on fresh colonies grown on SC plates,
supplemented or not with 50µMBPS (no iron condition), 30µM
inorganic iron [Fe(NH4)2(SO4)2], 30µM hemoglobin, 120µM
hemin, 30µg/ml ferritin, or 30µM transferrin, independently.
All host iron sources were purchased from Sigma-Aldrich, St.
Louis, MO, USA.

59Fe Uptake Assays
After 24 h of Pb01 and Pb18 incubation in SC medium with no
supplementation or with addition of 200µMBPS or 10µMFeCl3
at 36◦C under rotation, the cells were harvested and washed
with 1mM EDTA in citrate uptake buffer (2% analar glucose,
0.1 MES buffer, and 20mM Na-citrate, pH 6.0). After, the cells
were washed twice with citrate uptake buffer and incubated for
15min at 36◦C under rotation. At this time, an aliquot of cells
was collected and counted in a hemocytometer. Then, 20mM
of ascorbic acid was added (reductive-independent 59Fe uptake
assay) or not (reductive-dependent 59Fe uptake assay); Cl4K2Pt
(PtII compound) was added or not; and 0.2µM 59Fe solution
(Perkin-Elmer, Waltham, MA) was added independent of the
condition. A triplicate of point 0 and 60min were collected in
a filter membrane (type A/C 25mm glass fiber filter, Sigma-
Aldrich, St. Louis, MO, USA) and the cells were washed with
ice-cold 1X Quench buffer (37.5mM succinic acid, 62.5mMTris,
and 12.8mM EDTA, pH 6.0). Then filters containing the cells
were placed on the bottom of the test tubes and internalized
59Fe was measured using a Wallac γ counter (LKB Wallac
CompuGamma). 59Fe values were normalized with the number
of cells.

High-throughput mRNA Sequencing (RNA-seq)
Pb01 yeast cells were incubated in chemically defined MMcM
medium supplemented with 3.5µM Fe(NH4)2(SO4)2 or with
50µM BPS (Sigma-Aldrich, Germany) for 24 h at 36◦C on a
rotary shaker at 150 rpm. After that, the cells for both conditions,
in biological triplicates, were treated with TRIzol reagent
(Invitrogen, Carlsbad, CA, USA) to obtain RNA molecules. The
cDNAs libraries were prepared from poly(A)-fragment selected
mRNA and processed on the Illumina HiSeq2000 Sequencing
System (http://www.illumina.com/). As a result, approximately
40 million of reads of 100 bp paired-end sequencing were
obtained for each sample. The sequencing reads were mapped
to reference the Pb01 genome (http://www.broadinstitute.org/
annotation/genome/paracoccidioides_brasiliensis/MultiHome.
html) using the Bowtie 2 tool (Langmead et al., 2009). Briefly,
each read was allowed to alignment in just one site of the
genome and the reads were counted. The default parameters
were used to perform the alignment. The number of mismatches
allowed in seed alignment (−N) is 0, and the length of
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each seed (−L) is 20. Reads mapped to a gene region were
counted to infer expression measurement. Differentially
expressed genes were identified using Fisher Exact test in
DEGseq package (Wang et al., 2010). A p-value lower than
0.001 and minimum fold change of 1.5 were used to filter
the most relevant candidates. Meaning that transcripts with
log2 (fold change) higher than 0.58 or less than −0.58 were
selected and classified as up- and down-regulated transcripts,
respectively. Transcript’s identifications and annotations were
determined from the Paracoccidioides genome database. The
biological processes were obtained using the Pedant on MIPS
(http://pedant.helmholtzmuenchen.de/pedant3htmlview/pedant
3view?Method=analysis&Db=p3_r48325_Par_brasi_Pb01)
which provides a tool to browse and search the Functional
Categories (FunCat) of proteins.

The predicted proteins encoded by the transcripts identified
through RNAseq strategy were also classified as copper−,
iron−, and zinc-binding proteins from Paracoccidioides
genome as previously described (Tristão et al., 2015). Briefly,
metalloproteins were identified by using the RDGB tool
(Andreini et al., 2011) with default options. In the RDGB
strategy, the protein domains defined in the Pfam library are
used to identify putative homologs in any desired genome or list
of genomes. Copper−, iron−, and zinc-binding Pfam domains
were initially identified in the sequence of copper−, iron−,
and zinc-binding proteins of known 3D structures, which are
available from the Protein Data Bank (PDB). When a particular
metal is present within the 3D structure of the protein, this
information can be readily extracted from the PDB database
along with the pattern of amino acids that are involved in the
interaction of the protein with the metal. In addition, other
specific domains were also identified to predicted encoded
transcripts using the Paracoccidioides genome database (http://
www.broadinstitute.org/annotation/genome/paracoccidioides_
brasiliensis/MultiHome.html).

Results

Characterization of Paracoccidioides spp. Ferric
Reductases
The Paracoccidioides spp. Genome Database searching for
proteins possessing all the three domains: FRD (PF01794), FAD-
binding domain (PF08022), and ferric reductase NAD-binding
domain (PF08030) resulted in seven Pb01 and seven Pb18
putative ferric reductases. Moreover, amino acid sequences of
Paracoccidioides spp. Ggt1 homologs were collected in the same
database. These sequences were used to construct a phylogenetic
tree comprising ferric reductase sequences of different fungi: A.
nidulans, A. fumigatus, H. capsulatum, C. immitis, C. posadasii,
B. dermatitidis, U. maydis, C. neoformans, S. pombe, S. cerevisiae,
and C. albicans (Supplementary Figure 1). It could be observed
that all the Paracoccidioides spp. sequences are grouped with
H. capsulatum, C. immitis, C. posadasii, and B. dermatitidis
sequences. Moreover, BLAST analyses revealed the presence
of three groups of proteins in this phylogenetic three: (1)
transmembrane ferric reductases; (2) NADPH oxidases; and
(3) γ-glutamyltransferases. The sequences identified as NADPH
oxidases were excluded from posterior analyses, since they are out
of the manuscript’s scope.

All the Pb01 and Pb18 sequences classified as transmembrane
ferric reductases contained characteristic features of ferric
reductases, such as the FRD, NAD, and FAD-binding domains,
a bis-heme motif and at least five transmembrane domains
(Figure 1). The sequences classified as γ-glutamyltransferases
were aligned and presented similarity, mainly in some regions
of γ-glutamyltranspeptidase domain (PF01019) (Supplementary
Figure 2), indicating that other fungi, such as A. fumigatus, A.
nidulans, C. albicans, C. neoformans, S. cerevisiae, S. pombe,
U. maydis, C. immitis, and C. posadasii, not tested yet for
extracellular glutathione-dependent ferric reductase (GSH-FeR)
activity could utilize this alternative iron reduction route.

FIGURE 1 | Paracoccidioides spp. ferric reductases present typical

domains. Domains identified in Pb01 and Pb18 transmembrane ferric

reductases were: ferric reductase domain (blue box), FAD-binding domain

(green box), and NAD-binding domain (yellow box). Asterisks indicate the

bis-hememotif comprising conserved histidine residues. Black boxes above

each sequence indicate the lengh and position of transmembrane domains.

The number of amino acids (aa) of each protein is indicated adjacent to the

sequences.
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Paracoccidioides spp. Ferric Reductase
Regulation and Iron Uptake
In order to evaluate the Pb01 and Pb18 putative ferric reductase
transcripts, the yeast cells were cultivated in presence of 10µM
inorganic iron or 200µM BPS. After 2 h, it was observed no
relevant regulation of all Pb01 transcripts analyzed in response
to iron availability. Pb18 fre3, fre7, and ggt1 transcripts presented
a slight regulation in response to iron availability. Under iron
supplementation, Pb18 fre3 transcript level increased, whereas
Pb18 fre7 and ggt1 transcripts level reduced, comparing to
the SC medium without any supplementation. Under iron
deprivation (presence of BPS), Pb18 fre7 transcript level reduced,
whereas Pb18 ggt1 transcript level increased, comparing to the
SC medium without any supplementation (Figure 2). Overall,
there was no indication of a pattern of iron regulation of ferric
reductase transcripts abundance in Paracoccidioides spp.

To investigate if the RIA pathway could be functional when
Paracoccidioides spp. grow in presence of different iron sources,
inorganic iron, hemoglobin, hemin, ferritin, or transferrin were
used. SC medium not supplemented with iron or chelated with
BPS (no iron) were also used as controls. The Pb01 and Pb18 yeast
cells growing in all conditions presented cell surface reductase
activity, as evidenced by the red colony color in the presence
of TTC (Figure 3). In addition, 59Fe uptake was quantified in
presence or absence of the reducing agent ascorbic acid using
Pb01 and Pb18 yeast cells grown in presence or absence of iron.
The results showed that cells cultivated under iron deprivation
(200µM BPS) presented an increased 59Fe uptake rate, when
compared to cells cultivated in the presence of 10µM FeCl3
(Figure 4). When ascorbic acid was omitted, 59Fe uptake should
be dependent on ferric reduction; only Pb18 cells cultivated
under iron deprivation were able to internalize 59Fe added as
ferric iron indicating that the reductase activity in this strain was
coupled to iron uptake.

Since the ferric reductase activity can be subject to inhibition
by Pt(II) (Eide et al., 1992), the Pb18 ferric reductase sensitivity to
this element was tested using as an indicator the sensitivity of 59Fe
uptake to this transition metal. Pb18 cells cultivated under iron

deprivation exhibited a modest decrease in reductase-dependent
59Fe uptake in the presence of Pt(II) (Figure 5A); the limited
uptake by Pb01 of 59Fe added as ferric iron was not strongly
affected by this addition (Figure 5B).

The Multicopper Oxidases in Paracoccidioides

spp.
To start an investigation about Paracoccidioides spp. ferroxidases,
a searching for MCOs in Laccase Engineering Database (LccED:

FIGURE 3 | Activation of ferric reductase activity in presence of

different iron sources by Paracoccidioides spp. Pb01 and Pb18 cell

cultures were collected after 24 h in presence of 200µM BPS, washed and

104 cells were spotted on SC medium plates, which were supplemented or

not with 50µM BPS, 30µM inorganic iron, 30µM hemoglobin, 120µM hemin,

30mg/ml ferritin, or 30µM transferrin, independently. After 10 days of growth,

TTC-containing agar solution was poured on the plates containing the

colonies. The red colonies after TTC addition indicate a reduction of the

colorless electron acceptor TTC to a red formazan precipitate.

FIGURE 2 | Expression profile of transcripts putatively encoding

Paracoccidioides spp. ferric reductases. Pb01 and Pb18 yeast

cells were recovered from SC medium, which was supplemented

or not with 200µM BPS or 10µM FeCl3, after 2 h incubation.

After RNA extraction and cDNA synthesis, Pb01 and Pb18

transcript levels were quantified using qRT-PCR. The expression

values were calculated using alpha tubulin as the endogenous

control. The data are expressed as the mean ± SD from

triplicates. *Statistically significant data as determined by Student’s

t-test (p < 0.05).
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FIGURE 4 | The iron uptake rate in Paracoccidioides spp. is

dependent on the culture conditions and on the oxidation state of

available iron. Pb01 and Pb18 yeast cells were cultivated on SC medium,

which was supplemented or not with 200µM BPS or 10µM FeCl3, for 24 h.

Then, the cells were collected, washed and incubated in presence of 59Fe

with addition (+) or not (−) of ascorbic acid for 60min. After this, the cells

were collected and washed again and submitted to a γ counter for iron

uptake rate establishment. The data is present as the mean ± SD from

triplicates or quadruplicates. *Statistically significant data, as determined by

Student’s t-test (p < 0.05), relative to yeast cells cultivated on SC medium.

FIGURE 5 | Effect of a platinum compound addition on the iron uptake

rate of Paracoccidioides spp. Pb01 and Pb18 yeast cells were cultivated

on SC medium supplemented or not with 200µM BPS for 24 h. Then, the

cells were collected, washed and incubated in presence of 59Fe with

addition (+) or not (−) of ascorbic acid and/or a platinum compound (PtII) for

60min. After this, the cells were collected and washed again and submitted

to a γ counter for iron uptake rate establishment in Pb18 (A) and Pb01 (B).

The data is present as the mean ± SD from triplicates or quadruplicates.

*Statistically significant data, as determined by Student’s t-test (p < 0.05),

relative to yeast cells cultivated on abscence of a PtII compound.

http://www.lcced.uni-stuttgart.de) was developed. It resulted
in no Paracoccidioides spp. sequences classified in family
E, corresponding to fungal ferroxidases. Paracoccidioides spp.
MCOs are classified as basidiomycete laccases (family A),
ascomycete laccases (family B), and fungal pigment MCOs
(family D) (http://www.lcced.uni-stuttgart.de/cgi-bin/LccED1.2/
index.pl?page=org&id=35). However, the sequences of all the
Pb01 and Pb18 MCOs deposited in Paracoccidioides Genome
Database were collected and aligned with S. cerevisiae Fet3
(Supplementary Figure 3) to identify both potential Cu-
binding residues and the carboxylate side chains that support

ferrous oxidase activity in fungal ferroxidases (Kosman, 2010).
This examination indicated that only PAAG_00163 do not
clearly displayed all four Cu-binding motifs and therefore
cannot support the ferroxidase activity typical in the RIA
pathway.

The ferroxidase activity in fungal MCOs is due to two acidic
residues; in Fet3 these are E185 and D407. The global alignments
(Supplementary Figure 3) provide insight into the presence
of homologous residues in two Paracoccidioides spp. proteins,
PAAG_06004 and PADG_05994, which are likely ferroxidases. A
clear difference between Fet3 and Paracoccidioides spp. proteins
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is that the former presents a C-terminal transmembrane domain,
whereas PAAG_06004 and PADG_05994 present N-terminal
transmembrane domain (Supplementary Figure 3). Due to high
similarity in ferroxidase motifs and in residues involved in
Fe2+ binding between the PAAG_06004 and PADG_05994, a
structural model of PAAG_06004 was constructed based on
the structure of Fet3 (PBD 1ZPU). Despite the fact that the
two proteins have only 22% identity, a satisfactory model
was generated that did, however, contain a relatively large
(unfavorable) Z-score for torsion angle energy. However, the
model faithfully reproduced the conformation of the protein’s
four predicted Cu-coordination sites and indicated that in
PAAG_06004 E280 and D536 could be part of a ferroxidase
site in this protein (Figure 6). Isolation and characterization
of this protein is necessary to test this possible ferroxidase
activity.

The Iron Permeases in Paracoccidioides sp.
A whole transcriptome sequencing strategy was performed as
previously described (Lima et al., 2014). The number of the reads

FIGURE 6 | Model of the putative Cu-coordination sites in Pb01

PAAG_06004. The ribbon diagram illustrates the protein folds that contain the

11 side chains that make up the coordination sites for the 4 Cu-atoms found in

fungal MCOs. The six His side chains in the lower left quadrant are ligands to

the T2 and T3 Cu atoms that make up the trinuclear cluster to which O2 binds

and is reduced to 2H2O. The grouping of H540, C616, H621, and M626 are

ligands to the T1 Cu that is the electron acceptor from the reducing substrate.

Ferroxidases contain two acidic side chains outer-sphere to this ligand

grouping that are in H-bond contact with each of the His side chains. The

unbiased computer model of PAAG_06004 has E280 and D536 in this

conformation relative to the Fet3 T1 Cu His ligands H621 and H540,

respectively, suggesting that this protein could exhibit ferroxidase activity.

counted for each transcript in iron replete and iron-deprived
conditions was represented by scattered dots (Supplementary
Figure 4). The transcripts were represented by dots, which
could present a different number of reads in each condition
(Supplementary Figure 4A). We also applied a statistical test
to identify differentially expressed transcripts, represented by
red dots (Supplementary Figure 4B). A total of 549 transcripts
were statistically significant (Supplementary Figure 4B) but
a cut-off of 1.5-fold change (Amich et al., 2013) generated
30 up- and 44 down-regulated transcripts (Supplementary
Tables 1, 2).

Previous analysis has indicated that Paracoccidioides spp. does
not express a Ftr1 homolog and thus the fungus could use zinc
permeases to transport iron (Bailão et al., 2007; Silva et al., 2011).
The RNAseq analysis revealed that zinc permeases transcripts
(zrt1 and zrt2) are up-regulated under iron deprivation in Pb01
yeast cells, consistent with this hypothesis (Supplementary Table
1 and Figure 7). The results also revealed that a siderophore
uptake encoding transcript (mirB) and transcripts encoding
enzymes, such as carbapenemantibiotics biosynthesis protein
(carD) and NADP-specific glutamate dehydrogenase (gdh),
involved in ornithine biosynthesis, a hydroxamate precursor,
are up-regulated under iron deprivation (Supplementary Table
1 and Figure 7). This fact points to an increase in siderophore
synthesis and uptake during iron deprivation. Down-regulated
transcripts are related to amino acid and lipid metabolism,
which could generate acetyl-CoA, precursor for several metabolic
pathways, and with heme biosynthesis, an iron-dependent
molecule. The acetyl-CoA decreased production in association
with the down-regulation of the electron transport chain could
indicate an impaired aerobic metabolism (Figure 7). In fact,
iron-sulfur proteins, such as succinate dehydrogenase iron-
sulfur subunit (sdh) and cytosolic Fe-S cluster assembling factor
NBP35, that also need iron as a cofactor, were down-regulated
(Supplementary Table 2 and Figure 7), indicating that the fungus
faces an iron-deprived condition.

When Pb01 zrt1 and zrt2 transcripts were analyzed using qRT-
PCR, similar results were obtained. After 24 h of iron deprivation,
zrt1 and zrt2 expression increased (Figure 8), indicating that
these genes could play a role in iron acquisition.

The Iron Uptake Strategies in Paracoccidioides

spp.
Based on previously published data (Bailão et al., 2007, 2014;
Parente et al., 2011; Silva-Bailão et al., 2014) and those obtained in
this study, an updated model regarding the iron uptake strategies
used by Paracoccidioides spp. was proposed (Figure 9). Under
iron deprivation, the fungus may use both ferric/ferrous iron
uptake and siderophore uptake pathways, since an increase in zrts
transcripts and in those involved with siderophore production
and uptake was observed in this study and/or in previously
published data (Parente et al., 2011; Silva-Bailão et al., 2014).
Hemoglobin uptake through the hemoglobin receptors may
be used preferentially in the presence of this host molecule,
since Pb01 putative hemoglobin receptors present reduced
transcription under iron depletion (Bailão et al., 2014). In the
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FIGURE 7 | Schematic representation of up and down-regulated

transcripts under iron deprivation. Pb01 yeast cells were cultivated

on MMcM medium supplemented with 3.5µM inorganic iron or with

50µM BPS (iron deprivation) for 24 h. Then, a high-throughput mRNA

sequencing (RNA-seq) strategy was used to compare transcripts

expressed in iron deprivation and in presence of iron. Some

transcripts obtained using this strategy was selected to construct this

scheme. In iron deprivation condition, transcripts involved with

siderophore synthesis (carD and gdh) and uptake (mirB) and with iron

uptake using Fe/Zn permeases (zrt1 and zrt2) were up-regulated. On

the other hand, transcripts involved with amino acid (kynu and tyr)

and lipid degradation (thio, echand acd) and with synthesis of putative

iron-dependent molecules (alas, sdh, and nbp35), such as heme and

iron-sulfur proteins, were down-regulated. carD, carbapenemantibiotics

biosynthesis protein; gdh, NADP-specific glutamate dehydrogenase;

mirB, siderophore iron transporter; zrt1 and zrt2, zinc regulated

transporters; kynu, kynureninase; tyr, tyrosinase central

domain-containing protein; thio, 3-ketoacyl-CoA thiolase; ech,

delta(3,5)-delta(2,4)-dienoyl-CoA isomerase; acd, acyl-CoA

dehydrogenase family protein; alas, 5-aminolevulinate synthase; sdh,

succinate dehydrogenase iron-sulfur subunit; nbp35, cytosolic Fe-S

cluster assembling factor.

same way, transmembrane ferric reductases seem to be up-
regulated in presence of host iron sources, such as transferrin
and hemoglobin, since Pb01 fre3 transcript (named previously as
fre2) presented an increased expression during Pb01 yeast cells
incubation with human plasma (Bailão et al., 2007) and human
blood (Bailão et al., 2006).

Discussion

As described previously, Paracoccidioides spp. presents multiple
ferric reductases (Silva et al., 2011). These proteins are very
similar to homologs found in H. capsulatum, C. immitis,
C. posadasii, and B. dermatitidis, as expected, since all the

organisms are classified in the Onygenales order (Sharpton et al.,
2009). There are five putative transmembrane ferric reductases
either for Pb01 or for Pb18. Moreover these fungi present
one glutathione-dependent ferric reductase homolog, whose
activity has been described (Zarnowski and Woods, 2005). The
Paracoccidioides spp. transmembrane ferric reductases present
domains described for homologs from other pathogenic fungi,
such as FRD, NAD and FAD-binding domains, bis-heme motif
and transmembrane domains (Almeida et al., 2009; Saikia et al.,
2014). The expression of these ferric reductases seems not
to be iron-dependent, since the differences observed between
the iron-replete and the iron-deprived conditions were subtle.
Similar results were observed for C. neoformans, in which subtle
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FIGURE 8 | Transcripts putatively encoding Paracoccidioides sp. Fe/Zn

permeases are iron-regulated. Pb01 yeast cells were recovered from

MMcM medium, which was supplemented with 50µM BPS or 3.5µM

inorganic iron for 3 or 24 h. After RNA extraction and cDNA synthesis, levels of

Pb01 zrt1 and zrt2 were quantified by qRT-PCR. The expression values were

calculated using alpha tubulin as the endogenous control. The values that

were plotted on the bar graph were normalized against the expression data

that were obtained from the iron addition condition (fold change). The data are

expressed as the mean ± SD from triplicates. *Statistically significant data as

determined by Student’s t-test (p < 0.05).

differences in ferric reductases expression were observed in
presence or absence of iron (Saikia et al., 2014). However, an
increase in Paracoccidioides spp. ferric reductase expression has
been observed in the presence of human blood and plasma
(Bailão et al., 2006, 2007). This apparent inconsistency could be
explained if the ferric reductase expression would be activated in
the presence of human iron sources, such as transferrin, an iron
source that could be used by Paracoccidioides spp. (Bailão et al.,
2014).

59Fe uptake assays demonstrated that Pb18 reduce and uptake
iron in scarcity of this metal. On the other hand, Pb01 express
an apparently inefficient RIA system, since 59Fe uptake in the
absence of ascorbic acid was low in any culture condition
used in this work although TTC assay indicates this strain
does exhibit cell surface ferric reductase activity. It has been
proposed that A. nidulans also lack an efficient RIA pathway,
because a siderophore-deficient strain is not able to utilize
Fe3+ (Eisendle et al., 2003). Perhaps the main route to acquire
iron in these fungi is the siderophore uptake, which has been
demonstrated to be efficient either in A. nidulans (Eisendle
et al., 2003) or in Paracoccidioides spp. (Silva-Bailão et al.,
2014).

Paracoccidioides spp. MCOs (PAAG_06004 and
PADG_05994), with a low Fet3 identity, were identified in
Paracoccidioides spp. genome database. To confirm if these
proteins could act as ferroxidases and if the MCO domain face or
not the cytoplasm, the proteins should be isolated, characterized,
and cellular localized, that is our focus in future studies. What
we hypothesize at this moment is that an MCO does not play
a significant role in RIA pathway in Paracoccidioides spp., since
in previous work (Bailão et al., 2006, 2007, 2014; Costa et al.,
2007; Parente et al., 2011), as well as in this work, ferroxidase
regulation in low-iron conditions was not observed. Moreover,

this pathway appears to be unusual, since it does not include an
Ftr1 homolog, common to several fungi (Stearman et al., 1996;
Ziegler et al., 2011). Similarly, a homology search in A. nidulans
genome database failed to identify Fet3 and Ftr1 homologs
(Eisendle et al., 2003).

We note, however, that Paracoccidioides spp. express
Zrts homologs that are induced in iron- (this work) or
zinc-deprivation (Parente et al., 2013). In plants and mammals, it
has been demonstrated that ZIP (Zrt/Irt-like Proteins) family of
membrane transporters is able to transport not only zinc, but also
iron (Zhao et al., 2010; Milner et al., 2013). Additionally, it has
been observed that Paracoccidioides spp. Zrts present more than
one possible metal-binding domain (HXHXHXH) (Zhao and
Eide, 1996) in the sequence (Silva et al., 2011), suggesting that
these domains could be responsible for zinc and iron binding.
These facts corroborate the hypothesis that Paracoccidioides
Zrts are able to transport both iron and zinc. Moreover, it has
been demonstrated that Zrt expression increases in yeast cells
recovered from liver of infected mice and in presence of human
plasma (Bailão et al., 2006, 2007). These data suggest that the
permease is regulated in iron-limited conditions either in vitro
or in vivo and in presence of human iron sources, such as
transferrin. Maybe the iron-regulation in Paracoccidioides spp.
impacts most strongly on the permeases and not on the ferric
reductases.

A whole transcriptome sequencing strategy also revealed that
both a siderophore transporter and the ornithine, a hydroxamate
precursor (Eisendle et al., 2003), biosynthesis are up-regulated,
indicating that Paracoccidioides spp. utilize the siderophore
uptake pathway during iron scarcity, as previously demonstrated
(Silva-Bailão et al., 2014). At the same time, expression of Zrts is
also up-regulated, indicating that the fungus use more than one
iron uptake strategy to acquire this metal when in iron scarcity.
On the other hand, aerobic respiration and iron-dependent
molecule synthesis pathways seems to be down-regulated, such
as the synthesis of iron-sulfur proteins and heme precursors.
It has been observed that tricarboxylic acid cycle and electron
transport chain proteins decreased in abundance under iron
limiting conditions (Parente et al., 2011). It could occur because
iron is used as prosthetic group in a plenty of energy metabolism
pathways (Kosman, 2013).

The RIA pathway in Paracoccidioides spp. appears constitutive
in that ferric reductase expression is relatively insensitive to type
or concentration of iron source. In contrast, in iron-deprived
condition (Figure 9), transcripts related to siderophore uptake
and biosynthesis of extracellular siderophores (coprogen B)
are up-regulated as observed in this work and in others
previously published (Parente et al., 2011; Silva-Bailão et al.,
2014). Transcripts related to iron and zinc permeases are also up-
regulated in Paracoccidioides spp. This indicates that the fungus
can use both RIA and siderophore uptake pathways in iron
limited condition. Paracoccidioides spp. also may use hemoglobin
receptors to acquire this host iron source; those receptors are
activated preferentially in presence of hemoglobin instead of
iron deprivation (Bailão et al., 2014). In addition, in presence
of transferrin (abundant in human plasma) and hemoglobin
(abundant in human blood), the transcription of ferric reductases
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FIGURE 9 | Schematic representation of Paracoccidioides spp.

activated pathways in iron-deprived condition. Forms with dark

colors indicate proteins whose transcription is up-regulated and that

ones with light colors do not present transcription regulation. In that

way, in iron-deprived condition, siderophore uptake, and biosynthesis

of extracellular siderophores (coprogen B), as well as, Fe/Zn

permeases (Zrts) are up-regulated. It seems that transmembrane ferric

reductases and hemoglobin receptors are up-regulated mainly in

presence of host iron sources, such as transferrin and hemoglobin,

respectively.

is up-regulated (Bailão et al., 2006, 2007). These data indicate that
both RIA and siderophore uptake pathways could function under
iron deprivation.

The study of iron metabolism is important to reveal
novel molecules that contribute to iron uptake, an essential
micronutrient for almost all organisms (Johnson, 2008). These
proteins could function as accessible targets for drugs to
block iron uptake, what could impair the pathogen’s life.
Moreover, iron permeases might also be exploited as vaccine
targets or as route for antifungal internalization (Kronstad
et al., 2013). Then, Paracoccidioides spp. proteins involved with
iron uptake could be used as vaccine or drug targets or as
drug internalization route to inhibit the proliferation of the
pathogen.
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