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Global change has caused a worldwide increase in reports of Vibrio-associated diseases
with ecosystem-wide impacts on humans and marine animals. In Europe, higher
prevalence of human infections followed regional climatic trends with outbreaks occurring
during episodes of unusually warmweather. Similar patterns were also observed in Vibrio-
associated diseases affecting marine organisms such as fish, bivalves and corals. Basic
knowledge is still lacking on the ecology and evolutionary biology of these bacteria as well
as on their virulence mechanisms. Current limitations in experimental systems to study
infection and the lack of diagnostic tools still prevent a better understanding of Vibrio
emergence. A major challenge is to foster cooperation between fundamental and applied
research in order to investigate the consequences of pathogen emergence in natural
Vibrio populations and answer federative questions that meet societal needs. Here we
report the proceedings of the first European workshop dedicated to these specific goals
of the Vibrio research community by connecting current knowledge to societal issues
related to ocean health and food security.
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State of the Art and Perspectives of Vibrio
Research in Europe

According to the European Environment Agency the rise of global
sea surface temperature (SST) is one of themajor physical impacts
of climate change. However, SST in coastal European seas has
increased 4–7 times faster over the past few decades than in
the global oceans (Reid et al., 2011). This local increase in SST
has been linked to outbreaks of Vibrio-associated human illness
caused byVibrio cholerae nonO1-non-O139,V. parahaemolyticus,
and V. vulnificus in several European countries (Table 1).
However, the lack of mandatory notification systems for Vibrio-
associated illnesses prevents accurate estimates of the number of
Vibrio infections occurring in Europe. Also mass mortalities of
marine animals increase in frequency (Table 1), particularly in
heavily polluted coastal areas, suggesting human activities as a
factor favoring disease epidemics. Prominent examples include
several Vibrio species associated with the recent great devastation
of oyster beds in France. The salmonid farming industry is
constantly threatened by V. salmonicida and V. anguillarum.
Moreover, different subspecies of Photobacterium damselae are
associated with diseases in cultured fish species like sole, sea bass,
sea bream and turbot, while V. vulnificus causes hemorrhagic
septicaemia in eel, derbio, tilapia, trout and shrimps but can also
cause septicemia in humans. Finally, evidence has accumulated
linking Vibrio infections (e.g., V. coralliilyticus) to increasing mass
mortalities of benthic corals (e.g., Paramuricea clavata) in the NW
Mediterranean Sea.

To cover the large diversity of infectious vibrios, the
development of operational tools to identify and detect emergent
pathogens is essential to zoosanitary monitoring of cultivated
species as well as on wild animal populations. Yet, compared

TABLE 1 | Recent Vibrio-associated diseases caused by Vibrio in Europe.

Agent Pathogenic to Country References

V. parahaemolyticus, V. vulnificus and
non-O1/non-O139 V. cholerae

Human Germany Huehn et al. (2014)

V. parahaemolyticus Human France Quilici et al. (2005)
V. parahaemolyticus Human Spain Martinez-Urtaza et al. (2004)
V. parahaemolyticus Human Italy Ottaviani et al. (2012)
V. cholerae Human Sweden Andersson and Ekdahl (2006)
V. cholerae non-O1-non-O139 Human Italy Ottaviani et al. (2009)
V. cholerae non-O1-non-O139 Human Finland Lukinmaa et al. (2006)
V. cholerae non-O1-non-O139 Human Poland Stypulkowska-Misiurewicz et al. (2006)
V. cholerae non-O1-non-O139 Human Austria Huhulescu et al. (2007)
V. cholerae non-O1-non-O139 Human Austria Kirschner et al. (2008)
V. vulnificus Human Denmark Dalsgaard et al. (1996)
V. vulnificus Human Israel Bisharat et al. (1999)
V. vulnificus Human Spain Torres et al. (2002)
V. vulnificus Human Turkey Partridge et al. (2009)
V. vulnificus Human, finfish, crustacean USA, Europe, Asia Amaro et al. (2015); Oliver (2015)
V. alginolyticus Human Guernsey Reilly et al. (2011)
Vibrio spp. Human North and Baltic Seas Schets (2012)
V. coralliilyticus Coral Italy Vezzulli et al. (2010b)
V. crassostreae Oyster France Lemire et al. (2014)
V. aestuarianus Oyster France Goudenège et al. (2014)
Harveyi clade Finfish, crustaceans, mollusks Mediterranean countries Pujalte et al. (2003)
V. anguillarum Finfish Northern European countries Frans et al. (2011)
Photobacterium damselae subsp.
Damselae

Fish, humans, crustaceans,
mollusks, cetaceans

Mediterranean countries Rivas et al. (2013b)

to human pandemic strains, little is known about the virulence
mechanisms of emergent environmental vibrios. This lack of
knowledgemay be attributed to the high genetic diversity ofVibrio
isolates and the diversity/plurality of virulence mechanisms.
To date pathogenic capacity cannot be inferred by taxonomic
affiliation, because virulence factors (e.g., secretion systems,
toxins) are rarely species-specific and are often shared between
Vibrio species by lateral gene transfer. On top of that there are
very few animal models to distinguish pathogenic strains and
extend our understanding of the mechanisms involved in host-
microbe interactions. Hence the elucidation of virulence for agent
and target is a prerequisite to develop prophylactic methods to
fight infectious diseases.

Due to the extent of the environmental, economical, and public
health consequences resulting from Vibrio infections, a large
scientific community is working on these bacteria in Europe.
In order to join fundamental and applied research teams and
to investigate the emergence of pathogens in natural Vibrio
populations, we organized the first European workshop dedicated
to the research on vibrios in Paris (11–12th March 2015), that
provided a forum for experts in Vibrio ecology, evolution and
pathogenesis to address societal issues involving ocean health and
food security.

Vibrio Spread in Europe linked with climate
change
Vibrios preferentially grow in warm (>15°C) saline aquatic
environments. Warming of marine and saline inland waters
is likely to support larger numbers of Vibrio populations
and consequently an increased risk of Vibrio infections. An
increase in the prevalence of human infections caused by
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V. parahaemolyticus, V. cholerae non-O1-non-O139 and V.
vulnificus has been recorded in Europe even at high latitudes
(Baker-Austin et al., 2013). In northern Europe, the increase
in reported infections corresponds both in time and space
with spikes in domestically-acquired Vibrio cases in “heatwave”
years. Similarly, samples collected in the last 60 years by the
continuous plankton recorder (CPR) survey (Vezzulli et al., 2012)
showed that the genus Vibrio, including the human pathogen
V. cholerae, has increased in prevalence in the last 44 years
in the coastal North Sea, and that this increase is correlated
with warming SST. Elevated water temperatures might also
facilitate the successful invasion of pathogenic variants via food
trade (Nair et al., 2007), ballast water (Dobbs et al., 2013),
travelers (Fillion and Mileno, 2015) or natural animals. For
example, migrating birds may act as vectors of intercontinental
transport of V. cholerae (Vezzulli et al., 2010a). The direct
comparison of the population structure of V. cholerae from
a major bird sanctuary (Lake Neusiedl, Austria), with strains
collected from six other European countries revealed that several
strains in the lake shared the same alleles with other European
strains, consistent with pan-European transport between distant
ecosystems via birds (A. Kirschner, unpublished data). As a
future challenge, macro-ecological studies on the impact of
climate change on Vibrio persistence and spread in the aquatic
environment combined with studies investigating climate change
effects on epidemiologically relevant variables, such as host
susceptibility and exposure are needed to significantly improve
prediction and mitigation strategies against the future occurrence
of Vibrio disease outbreaks.

Virulence as a Function of Biotic Interactions
With Host and Microbiome
Virulence is a widespread phenomenon across the Vibrio
phylogeny (Wendling et al., 2014). Its expression critically
depends on biotic interactions with the host but also with
other resident microbiota. On the host side, spatially-structured
cross-infection experiments indicated that virulence of only
distantly related Vibrio strains was lower when infecting oysters
from the same geographic location. This suggests that oyster
hosts are locally adapted and have evolved resistance to genetic
factors shared within Vibrio populations (Wendling and Wegner,
2015). When considering interactions of Vibrio with the resident
microbiome, the hemolymph microbiome modulates infections
but is vulnerable to environmental disturbance (Lokmer and
Wegner, 2015). Accordingly, Vibrio disease cannot be seen as an
isolated event but needs to be considered in the context of the
microbiome, which includes other non-virulent Vibrio. Indeed,
the successive replacement of non-virulent with virulent strains
during oyster infections occurs in the natural environment
(Lemire et al., 2014) and the amplification of virulence in the
presence of non-virulent strains suggests that also non-virulent
strains contribute directly or indirectly to the development of
disease. Future research on Vibrio disease should therefore focus
on the higher order biotic interactions between the environment,
the host and the pathogenic as well as the non-pathogenic
fractions of microbial communities.

A key feature of the interaction between microbes within
a community is the production of molecules that determine
behavior like antagonism, competition or cooperation. Cell-
to-cell communication in vibrios coordinates virulence gene
expression based on the biotic and abiotic environment (Defoirdt,
2014). For example, the three-channel quorum sensing (QS)
system of V. harveyi controls the pathogenicity of the bacterium
toward different aquatic hosts (Defoirdt and Sorgeloos, 2012;
Pande et al., 2013), and our most recent research revealed
that another signaling molecule, indole, controls the virulence
of V. anguillarum toward sea bass larvae (Li et al., 2014b).
Another potential signaling mechanism has been described based
on the production and release of high concentrations of D-
amino acids into the extracellular milieu (Lam et al., 2009).
First discovered in V. cholerae, these D-amino acids are different
from those known to be part of the cell wall in bacteria (D-
Ala and D-Glu) and were therefore called non-canonical D-
amino acids (NCDAAs; Cava et al., 2011a). NCDAAs released
into the media by producer strains can affect non-producer
organisms beneficially or detrimentally in a particular niche (Cava
et al., 2011b; Alvarez et al., 2014). The possible implications
of NCDAAs in the biological processes of co-inhabitants still
remains to be investigated but the enormous energy demand
suggests that these molecules should have a great impact in
poly-microbial communities. Finally several strains of Vibrio
have been demonstrated to produce potent antibacterial agents
(andrimid and holomycin) or agents that block QS regulated
genes (solonamides, ngercheumicin) in human pathogens (Wietz
et al., 2010; Mansson et al., 2011; Kjaerulff et al., 2013; Nielsen
et al., 2014). Comparative and functional genomics using software
like antiSMASH (Medema et al., 2011) could identify the
genetic determinants of these secondary metabolites (polyketide
synthases and non-ribosomal peptide synthetases). Hence further
elucidation of virulence regulatory mechanisms will enable us to
better understand Vibrio-host interactions and ecology, and to
identify targets for the design of novel agents to control disease
caused by vibrios.

Horizontal Gene Transfer, Genome Plasticity, and
Chromosome Partitioning
Evolution of Vibrio species is often driven by mobile genetic
elements via horizontal gene transfer (HGT). However, very little
is known about HGT in environmental Vibrio isolates infecting
marine organisms. In 75 marine Vibrio spp. isolated from the
broad-nosed pipefish, Syngnathus typhle, associated prophages
were characterized and the virulence of strains carrying different
prophages was then assessed by comparing the relative expression
of 44 immune genes during controlled infection experiments
on juvenile pipefish. Preliminary results suggest that virulence
is significantly influenced by the associated prophages, further
supporting a role for bacteriophages inmanipulating the virulence
of environmental Vibrio isolates (C. Wendling unpublished data).

Virulence of V. vulnificus and P. damselae subsp. damselae
in fish is determined by transferable plasmids (pVvbt2 in V.
vulnificus and pPHDD1 in P. damselae). pVvbt2 contains two
highly conserved virulence genes involved in serum resistance
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(vep07) and the ability to grow from eel transferrin (vep20)
(Pajuelo et al., 2015). Interestingly, pPHDD1 also contains vep07
and vep20 homologs suggesting that both genes are involved in
resistance to fish innate immunity. pVvbt2 also encodes RtxA13,
a toxin belonging to MARTX (multifunctional, autoprocessive,
repeat in toxin) family. RtxA13 is considered a host-non-specific
virulence factor because it is involved in resistance to phagocytosis
by murine and human phagocytes as well as in eel death (Lee
et al., 2013). The other virulence plasmid, pPHDD1, encodes
phospholipase-D damselysin (Dly) and the pore-forming toxin
HlyApl (Rivas et al., 2011). A second HlyA (HlyAch) is encoded
in chromosome I (Rivas et al., 2013a, 2014) and the three toxins
contribute to hemolysis and virulence, and are secreted by a type-
two secretion system (Rivas et al., 2015). While the two HlyA
hemolysis produce an additive effect, Dly and any of the twoHlyA
interact in a synergistic manner, being responsible for maximal
virulence for fish and for mice (Rivas et al., 2013a). Due to their
host range and their duality as pathogens for both poikilotherm
and homeotherm animals, P. damselae andV. vulnificus constitute
valuable biological models to study the role of mobile genetic
elements in the rise of novel pathogenic strategies.

Vibrios contain large chromosomal integrons (Cambray et al.,
2010) and belong to the group of naturally competent bacteria,
which allows them to absorb free DNA from their surrounding
environment and recombine it into their genome (Seitz and
Blokesch, 2013a). For V. cholerae, entry into competence is tightly
regulated and requires growth to high cell densities on chitinous
surfaces (Meibom et al., 2005; Lo Scrudato and Blokesch, 2012,
2013). Uptake of external DNA is accomplished by a sophisticated
DNA-uptake machinery (Seitz and Blokesch, 2013b, 2014; Seitz
et al., 2014). As the competence regulon also encompasses
the type VI secretion system-encoding gene clusters, HGT is
enhanced through deliberate killing of neighboring non-sibling
cells followed by the transfer of their DNA (Borgeaud et al., 2015).

The presence of two chromosomes is another characteristic
feature of vibrios. While distinctive localization patterns have
been described for the two chromosomes, the selective advantages
brought by this bipartite architecture are still under debate
(Val et al., 2012, 2014). Replication of both chromosomes is
tightly coupled so that replication termination is synchronized
(Rasmussen et al., 2007). Moreover, the chromosomal position
of genes determines the relative copy number during growth
thereby impacting the bacteriums physiology (Soler-Bistue et al.,
2015). Notably, mechanistic aspects of chromosome organization,
architecture, and cell cycle-dependent dynamics are only starting
to be deciphered (Yamaichi et al., 2012; Demarre et al., 2014).
The elucidation of the mechanisms that coordinate the interplay
between chromosomes, accessory replicons, mobile DNA and
HGT mechanisms is essential to better apprehend the evolution
and niche adaptation of Vibrio species.

Adaptation of Pathogenic Vibrios to Intracellular
Life
The pathogenic V. tasmaniensis strain LGP32, a member of
the V. splendidus clade (Gay et al., 2004) was found to be a
facultative intracellular pathogen of oyster immune cells called
hemocytes (Duperthuy et al., 2011). This is a rare example of

Vibrio adapted to intracellular life. The virulence of LGP32 in
oysters correlated with the ability to enter hemocytes (Duperthuy
et al., 2010, 2011). Both cellular invasion and pathogenicity
depend on the major outer membrane protein OmpU, which
serves as an adhesin to invade host cells. Once inside the
phagosome, LGP32 releases outer membrane vesicles (OMVs)
that protect the organism against antimicrobial peptides and act
as vehicles for the delivery of virulence factors (Destoumieux-
Garzón et al., 2014; Vanhove et al., 2015). Moreover, entry into
hemocytes and intracellular survival of LGP32 are required for
expression of LGP32 cytotoxicity toward hemocytes. This capacity
to survive intracellularly relies on potent antioxidant and copper
tolerance responses, both of which are highly induced in the
hostile environment of the phagosome.

Small regulatory RNAs have been shown to play important
roles in regulating virulence gene expression in response to
conditions encountered in the host. sRNAs present in multicopies
such as Qrrs and CsrBs were found in several Vibrio spp. to
mediate QS regulation of virulence gene expression (Nguyen
and Jacq, 2014). One peculiarity of the Splendidus clade seems
to be the presence of four highly expressed copies of the CsrB
sRNAs in their genome, instead of 2–3 found in other vibrios
(Lenz et al., 2005; Toffano-Nioche et al., 2012). CsrB sRNAs
are highly transcribed inside oyster hemocytes suggesting a role
in adaptation to the intracellular environment (Vanhove et al.,
submitted). The landscape and phylogeny of putative sRNAs
encoded by LGP32 demonstrate rapid vertical evolution, with a
vast majority of sRNAs being species/strain specific, and only
a small number (28/250) conserved in all Vibrio sequenced so
far (Toffano-Nioche et al., 2012). Thus, sRNAs contribute to
a high diversity between species and provide opportunities for
adaptation/colonization of new hosts and virulence emergence, a
question that will be tackled by comparative functional studies of
conserved Vibrio sRNAs.

Model Systems to Study Pathogenicity
Mechanisms and Vibrio-host Interactions
Microbiologists are increasingly aware that how organisms behave
in situ in the “real world” might be distinct from those that
occur in laboratory monocultures grown under tightly controlled
conditions (Smith, 2000). Thus, model systems, which replicate
at least part of the natural processes of infection, are needed in
order to examine the relevance and biological impact of in vitro
findings. In vivo models that reproduce the main clinical and
pathological signs of disease seen following the consumption of
contaminated food or water, are available for toxigenic and non-
toxigenic V. cholerae, and for V. parahaemolyticus (Ritchie et al.,
2010, 2012; Shin et al., 2011). In these studies, a combination
of microbiological, histological and genetic analysis was used to
identify key virulence factors and the pathologic mechanisms
associated with the respective strains (e.g., see Zhou et al., 2013,
2014). However, a growing number of Vibrio-associated illnesses
are associated with a diverse group of strains, some of which lack
known virulence factors (Garcia et al., 2009; Jones et al., 2012;
Ottaviani et al., 2012). A future challenge will be to examine the
pathogenesis of these strains and identify additional virulence
markers, which should be used to improve risk assessment tools
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FIGURE 1 | Perspectives of the European Vibrio network. (A) Sharing of
common tools and databases. Large-scale sampling for Vibrio collection in the
environment and retrospective analysis of Vibrio populations could be improved
using the continuous plankton recorder (CPR) technology and the historical CPR
archive. An “encyclopedia of Vibrio genome sequences” could be developed by
the Genoscope (Evry, France) allowing access for the community to the
Microbial genome annotation and analysis platform (MAGE). A genetic resource

center, initially created under the scope of EMBRC France, could be improved
thanks to other teams performing genetic development. Several teams
developing in vivo and in vitro models to investigate host-Vibrio interactions as
well as structural biology were also identified. Training sessions (such as
summer schools) in the field of bioinformatics or microbial genetics could be
organized. (B) Collaborations addressing specific questions have already been
stimulated by the workshop.

targeted to the different pathogens. Furthermore, a growing
number of human Vibrio infections in Europe were not food-
borne, but instead associated with the ability of non-O1-non-
O139 V. cholerae, V. parahaemolyticus, or V. vulnificus to cause
septicemia via wound infections (Table 1). Models to examine
this aspect of their pathogenicity are currently lacking and should
become a high priority given the poor prognosis of individuals
acquiring this type of infection.

Next tomodels for human pathogens there is also an increasing
need for aquatic animal models. However, studies aimed at
investigating the pathogenicity mechanisms in aquatic hosts are

often confounded by the presence of the natural microbiota
(which usually containsVibrio spp.). Gnotobiotic animals provide
researchers with a means to examine host-microbe interactions
without interference or influence from unknown microbiota
(Gordon and Pesti, 1971). Amodel based on the use of gnotobiotic
1-day old larvae of brine shrimp (Artemia franciscana) has
been recently developed to study V. campbellii, V. harveyi,
or V. anguillarum pathogenesis (Defoirdt et al., 2005). An
alternative model system for V. anguillarum involves the use
of gnotobiotic European sea bass (Dicentrarchus labrax) larvae,
where survival is monitored over 1 week (Li et al., 2014a). Finally,
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specific-pathogen-free (SPF) juveniles of C. gigas (Petton et al.,
2013, 2015) have been developed to investigate the diversity and
dynamics of microbial populations in an oceanic environment
during disease. When combined with methods to monitor
gene expression and activity of vibrios during infection (e.g.,
Ruwandeepika et al., 2011; Defoirdt and Sorgeloos, 2012), a better
understanding of the infection process(es) will emerge.

Conclusion

This workshop clearly demonstrated the importance of vibrios
to our understanding of emergent diseases in marine and
inland aquatic ecosystems as well as their potential impact
on society. The rising frequency of disease events not only
affects humans directly but also indirectly by reducing food
security and ecosystem health. The synergistic investigation of
mechanistic and ecological processes contributing to disease
is therefore paramount for our understanding of the larger
scale consequences of changing Vibrio populations. A better
understanding of Vibrio ecology is pivotal for the development

of prevention and mitigation strategies. In addition, the
mechanistic knowledge of virulence regulatory mechanisms
could ultimately be used to inhibit disease. However, these
tasks are complicated by the high diversity present within Vibrio
populations, and the fact that biotic interactions within and
between microbial communities, modify disease expression
on different levels. Therefore, we have to consider Vibrio
disease as an emergent, multi-faceted phenomenon that will
require experimental model systems covering molecules to
whole organisms. Expertise for most of these crucial challenges
already exists and became united at the workshop under the
European umbrella of Vibrio research thereby fostering a more
productive combination of basic and applied research in the future
(Figure 1).
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