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The objective of the study was to improve the understanding of antibiotic resistance (AR)
ecology through characterization of antibiotic-resistant commensal isolates associated
with an aquaculture production system. A total of 4767 isolates non-susceptible
to sulfamethoxazole/trimethoprim (Sul/Tri), tetracycline (Tet), erythromycin (Erm), or
cefotaxime (Ctx), originated from fish, feed, and environmental samples of an
aquaculture farm with no known history of antibiotic applications were examined.
Close to 80% of the isolates exhibited multi-drug resistance in media containing
the corresponding antibiotics, and representative AR genes were detected in various
isolates by PCR, with feed isolates had the highest positive rate detected. Identified AR
gene carriers involved 18 bacterial genera. Selected AR genes led to acquired resistance
in other bacteria by transformation. The AR traits in many isolates were stable in the
absence of selective pressure. AR-rich feed and possibly environmental factors may
contribute to AR in the aquaculture ecosystem. For minimum inhibitory concentration
test, brain heart infusion medium was found more suitable for majority of the bacteria
examined than cation-adjusted Mueller Hinton broth, with latter being the recommended
medium for clinical isolates by standard protocol. The data indicated a need to update
the methodology due to genetic diversity of microbiota for better understanding of the
AR ecology.

Keywords: antibiotic resistance, aquaculture ecosystem, multiple risk factors, commensal bacteria

Introduction

The rapid emergence of antibiotic resistance (AR) in the global ecosystem has become a
major public health concern. In the past decade, with a broadened scope of investigation, both
population- and organism-based studies have illustrated that commensal bacteria likely have
played a key role in AR ecology (Andremont, 2003; Wang et al., 2006; Wang and Schaffner, 2011).
With the expansion of research territory, AR has been found prevalent across the ecosystem, from
clinical samples, animal and human hosts, retail foods, to waste water, soil, and other natural
environment (Zhanel et al., 2000; Österblad et al., 2001; Aubry-Damon et al., 2004; Wang et al.,
2006; Koike et al., 2007; Sommer et al., 2009; Li and Wang, 2010; D’Costa et al., 2011; Zhang,
2011; Ye et al., 2013). For instance, using non-specific culturing methods and culture-independent
real-time PCR, the abundance of AR in the food chain was revealed and a broad-spectrum of
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non-pathogenic and even beneficial bacteria were found carrying
transmissible AR genes (Duran and Marshall, 2005; Wang et al.,
2006; Manuzon et al., 2007). Characterization of antibiotic-
resistant (ART) isolates associated with food animals, ready-
to-eat food products, human, and environmental samples has
led to the discovery of various mechanisms involved in AR
evolution (Sommer et al., 2009; Bhullar et al., 2012), enrichment
(Zhang et al., 2011), and persistence (Sørum et al., 2006; Rosvoll
et al., 2010; Li et al., 2011). It becomes evident that commensal
flora provides a particular window of vulnerability of AR in
the ecosystem, and prompt response to the early indication
can be critically important for preventive AR management
(Andremont, 2003; Wang et al., 2006; Wang and Schaffner,
2011). Due to the advancement in metagenomics and other
molecular techniques, the complexity of microbiome associated
with both hosts and environment has been gradually uncovered
(Venter et al., 2004; Sommer et al., 2009; Zhang et al., 2011).
However, the extremely large size and diverse distribution of
the commensal population, as well as genetic diversity of the
subpopulations presented several major challenges to researchers.
There is no single way of recovering, culturing, or characterizing
all the cultures, making proper interpretation of data a daunting
task.

Aquatic creatures are susceptible to infectious diseases. Use
of antibiotics in aquaculture production systems is considered
a major risk factor contributing to AR in aquaculture products
and the ecosystem. ART pathogens, such as Aeromonas
(Akinbowale et al., 2007; Penders and Stobberingh, 2008),
Vibrio (Oh et al., 2011; Rebouças et al., 2011), and Salmonella
(Ribeiro et al., 2010; Budiati et al., 2013), have been reported
to be associated with the aquaculture system. Particularly,
certain AR determinants have been found in both aquaculture
and clinical isolates, indicating potential AR dissemination
between food and humans. For instance, one gene cassette
containing blaCMY−2, sugE, and blc detected in Aeromonas
salmonicida ssp. salmonicida isolates from Atlantic Canadian
salmon farm was identical to a transponson-like element
widely distributed among clinical and food-borne Salmonella
and other Enterobacteriaceae throughout Asia and the United
States (McIntosh et al., 2008). Rhodes et al. (2000) reported
the dissemination of tet(A)-associated Tn1721 and Tn1721-like
elements among different Aeromonas species and Escherichia
coli, and between the human and aquaculture environment
in distinct geographical locations (including Norway, Scotland,
England, and Germany). In addition, various AR genes were
found in a broad spectrum of commensal bacteria associated
with aquaculture products and the environment (Ye et al.,
2013; Shah et al., 2014). However, these data are still
insufficient in elucidating AR risk factors in the aquaculture
ecosystem.

In a recent study, we have uncovered a rich profile of ART
bacteria in samples from a domestic aquaculture farm with no
known history of antibiotic application, by culture-dependent
and -independent methods (Huang, 2014). The objective of
this study was to characterize the genotypic and phenotypic
features of the corresponding ART isolates, as well as AR
persistence and dissemination, for an improved understanding of

the AR ecology associated with aquaculture production. During
the evaluation of minimum inhibitory concentration (MIC) for
representative antibiotics of the isolates, we have compared
the data using both standard approach for pathogens (CLSI,
2013) and a modified method (Wang et al., 2006), to collect
baseline information for further methodology improvement,
to address the needs for proper assessment of commensal
bacteria.

Materials and methods

Bacterial Strains and Culture Condition
A total of 4767 isolates recovered from Sul/Tri-, Tet-, Erm-, or
Ctx-containing agar plates were examined in the study. These
isolates originated from fish intestine (1045 isolates), fish
surface rinsing water (850 isolates), fish feed (150 isolates),
pond mud (1293 isolates), and pond water (1429 isolates)
from an aquaculture farm with no known history of antibiotic
applications. All isolates were cultured in brain heart infusion
(BHI) media containing the corresponding antibiotics, including
152 μg/ml of sulfamethoxazole (Sigma–Aldrich, St. Louis, MO,
USA) with 8 μg/ml of trimethoprim (Sigma–Aldrich), 16 μg/ml
of tetracycline (Sigma–Aldrich), 100 μg/ml of erythromycin
(Fisher Scientific, Waltham, MA, USA), or 4μg/ml of cefotaxime
(Sigma–Aldrich; Ye et al., 2013).

Determination of Drug Resistance Profiles, AR
Genes, and Identification of AR Gene Carriers
Recovered Sul/Trir, Tetr, Ermr, and Ctxr isolates were spotted on
BHI agar plates containing each of the four antibiotics for rapid
assessment of their phenotypic resistance profile.

Approximately one-fourth of the ART isolates were randomly
selected for conventional PCR screening for representative AR
genes (Li and Wang, 2010). AR gene primers used in the
study were listed in Table 1. Approximately 10% of the positive
PCR products were confirmed by DNA sequence assessment
using an ABI Prism 3700 sequencer (Applied Biosystems, Foster
City, CA, USA) at the Plant Microbe Genomics Facility, The
Ohio State University, and the obtained DNA sequences were
compared with published AR gene sequences deposited in the
NCBI database. Approximately 50% of the AR gene carriers were
further identified by PCR and partial 16S rRNA gene sequence
analysis, as described previously (Wang et al., 2006).

MIC Assessments
Twenty-nine ART isolates carrying AR genes were subjected to
the MIC test. The assessments were conducted using microbroth
dilution method as suggested by CLSI (2013) protocol. BHI and
cation-adjusted Mueller Hinton (CAMH) broth were employed
as basic medium independently. ART isolates were grown in the
broth containing the corresponding antibiotic (including up to
608 μg/ml Sul with 32 μg/ml Tri, 512 μg/ml Tet, 512 μg/ml
Erm, or 512 μg/ml Ctx). Reference strains Staphylococcus
aureus ATCCR©29213, Enterococcus faecalis ATCCR©29212, E. coli
ATCCR©25922, and Pseudomonas aeruginosa ATCCR©27853 were
examined in parallel as controls.
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TABLE 1 | Primers used for conventional PCR.

Primer Sequence (5′–3′) Reference

sul1 F CGGCGTGGGCTACCTGAACG Kerrn (2002)

sul1 R GCCGATCGCGTGAAGTTCCG

sul2 F GCAGGCGCGTAAGCTGA Zhang et al. (2011)

sul2 R GGCTCGTGTGTGCGGATG

tetS F GAACGCCAGAGAGGTATT Zhang et al. (2011)

tetS R TACCTCCATTTGGACCTCAC

tetL F TTGGATCGATAGTAGCC Zhang et al. (2011)

tetL R GTAACCAGCCAACTAATGAC

tetM F CGAACAAGAGGAAAGCATAAG Zhang et al. (2011)

tetM R CAATACAATAGGAGCAAGC

ermB F TGGTATTCCAAATGCGTAATG Zhang et al. (2011)

ermB R CTGTGGTATGGCGGGTAAGT

ermC F GCTAATATTGTTTAAATCGTCAAT Wang et al. (2006)

ermC R TCAAAACATAATATAGATAAA

blaTEM F CATTTCCGTGTCGCCCTTATTC Dallenne et al. (2010)

blaTEM R CGTTCATCCATAGTTGCCTGAC

blaSHV F AGCCGCTTGAGCAAATTAAAC Dallenne et al. (2010)

blaSHV R ATCCCGCAGATAAATCACCAC

blaOXA F GGCACCAGATTCAACTTTCAAG Dallenne et al. (2010)

blaOXA R GACCCCAAGTTTCCTGTAAGTG

blaCMY−2 F GACAGCCTCTTTCTCCACA Zhang et al. (2011)

blaCMY−2 R TGGAACGAAGGCTACGTA

blaCTX MU1 ATGTGCAGYACCAGTAARGT Zhang et al. (2011)

blaCTX MU2 TGGGTRAARTARGTSACCAGA

Persistence of AR
AR stability in resistant isolates was determined according to the
published procedures (Li et al., 2011) with slight modifications.
Basically, after consecutive transfer every 12 h for 30 days, the
cultures were serially diluted and plated on BHI agar plates. One
hundred colonies were randomly picked from each sample, and
spotted onto BHI agar plates with and without the corresponding
antibiotic. The ratio of resistant to total colonies was used to
describe the resistance persistence in ART isolates at the absence
of the antibiotic selective pressure.

Transformation
Chemical transformation was conducted using plasmids from
nine Gram-negative ART isolates carrying AR genes and E. coli
DH5α as a recipient by the calcium chloride transformation
method (Dagert and Ehrlich, 1979). Meanwhile, electroporation
was employed when introducing plasmids from five Gram-
positive ART isolates carrying AR genes to Lactococcus lactis LM
2301 following the procedures described previously (Mcintyre
and Harlander, 1989).

Results

MIC Assessment
MIC analysis showed that the MIC results of Tet, Erm, or Ctx for
the four reference strains were comparable in BHI and CAMH
broth. However, culture medium had varied but clear impact

on MIC results of Sul/Tri. For instance, while the MIC values
of Sul/Tri for P. aeruginosa ATCCR©27853 in both media were
comparable (608/32 μg/ml), the other three reference strains
showed 4- to 64-fold higher MIC values in BHI than that of in
CAMH. It is worth noting that E. faecalis ATCCR©29212 didn’t
grow as well in CAMH as in BHI broth.

As illustrated in Table 2, twenty-nine isolates used in the
MIC assessment were identified and they belonged to 15 genera.
MIC values for Tet, Erm, or Ctx in BHI were the same as,
or twofold to fourfold higher than the results from CAMH.
Among the strains examined, 9 out of 20 (45%) Terr, 6 out of
6 (100%) Ermr, and 2 out of 5 (40%) Ctxr isolates exhibited
high and consistent MIC values (no less than 128 μg/ml)
in both BHI and CAMH for Tet, Erm, or Ctx, respectively.
But the MIC values for Sul/Tri in BHI and CAMH varied
significantly in close to 70% of the isolates (21 out of 29).
Some Sul/Trir isolates showed very high value (no less than
608/32 μg/ml) in both BHI and CAMH, including Plesiomonas
sp., Aeromonas sp., and Psychrobacter sp. Bacteria from genera
such as Enterobacter sp., Bacillus sp., and Kurthia sp. showed
higher MIC value in BHI (no less than 304/16 μg/ml) than
that in CAMH (no more than 9.5/0.5 μg/ml). Moreover,
isolates of Vagococcus sp., Aerococcus sp., Corynebacterium
sp., and Enterococcus sp. didn’t grow or had poor growth in
CAMH, but exhibited higher MIC value in BHI (no less than
608/32 μg/ml).

Phenotypic-Resistant Profiles of the ART
Isolates
Of the recovered Sul/Trir, Tetr, Ermr, and Ctxr isolates (from
BHI plates) associated with fish intestine, surface rinsing water,
fish feed, pond mud, and pond water samples, 3772 of 4767 total
isolates (79.1%) showed resistance to more than one antibiotic,
and 824 isolates (17.4%) were resistant to all four antibiotics
tested. As shown in Table 3, multi-drug-resistant bacteria were
common in all samples.

Prevalence of the AR Genes and Identification
of the Isolates
As shown in Table 4, more AR genes were detected in isolates
associated with fish feed and fish intestine than surface rinsing
water, pond mud, and pond water samples. For instance, a
high percentage and broad spectrum of AR genes were found
in isolates from fish feed samples, including sul1 (10.2%), sul2
(2.0%), tetL (13.3%), tetM (9.2%), tetS (6.1%), and ermB (1.0%).
Within the 13 AR determinants examined, tetM had the highest
detection rate (8.1%) in the isolates.

As illustrated in Table 4, identified AR gene carriers belonged
to 18 genera. Aeromonas sp., Enterococcus sp., Enterobacter
sp., and Plesiomonas sp. identified in fish intestine samples
were commonly isolated from fish (Austin, 2002). Some of
the isolates examined, including Bacillus sp., Carnobacterium
sp., Corynebacterium sp., Enterococcus sp., Plesiomonas sp.,
Lactococcus sp., and Psychrobacter sp. were found to carry
multiple resistance encoding genes. Fish feed contained various
AR genes in a broad spectrum of organisms, though total count
of ART bacteria was relatively low.
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TABLE 2 | Comparison of MIC results between BHI and CAMH medium.

Isolates Identity AR genes carried Resistance phenotype and MIC (µg/ml)

Sul/Trir Tetr Ermr Ctxr

BHI CAMH BHI CAMH BHI CAMH BHI CAMH

17iT21 Plesiomonas sp. sul1 >608/32 >608/32 256 128 – – – –

17wT9 Plesiomonas sp. tetM – – 256 128 – – – –

18iS4 Plesiomonas sp. sul2 >608/32 >608/32 – – – – – –

18iS31 Plesiomonas sp. sul2 >608/32 >608/32 – – – – – –

17fS1 Enterococcus sp. tetM, tetL >608/32 Weak growth ≤9.5/0.5 256 128 – – – –

17fS3 Enterococcus sp. sul1 >608/32 Weak growth ≤9.5/0.5 16 16 – – – –

18iX15 Enterococcus sp. tetS, tetL >608/32 Weak growth ≤9.5/0.5 256 128 – – 512 512

18fT19 Enterococcus sp. tetS >608/32 Weak growth ≤9.5/0.5 256 128 – – – –

17iE3 Enterobacter sp. sul2 304/16 ≤9.5/0.5 – – 512 256 – –

17iE10 Enterobacter sp. sul2 >608/32 ≤9.5/0.5 – – 512 256 – –

17iE11 Enterobacter sp. sul2 304/16 ≤9.5/0.5 – – 512 256 16 8

17iE26 Enterobacter sp. sul2 >608/32 ≤9.5/0.5 – – 512 256 – –

17fT6 Kocuria sp. sul1 >608/32 ≤9.5/0.5 64 64 – – – –

17fT2 Corynebacterium sp. sul1 >608/32 Weak growth 256 128 – – – –

18fT26 Corynebacterium sp. tetL – – 32 32 – – – –

18fT27 Corynebacterium sp. tetL – – 32 32 – – – –

18iS7 Aeromonas sp. sul1 >608/32 >608/32 – – – – – –

18fE1 Bacillus sp. ermB >608/32 ≤9.5/0.5 256 256 512 512 4 4

17fT12 Aerococcus sp. tetM >608/32 Weak growth 256 128 – – – –

17fS5 Aerococcus sp. tetM >608/32 Weak growth 32 32 – – – –

18fS13 Psychrobacter sp. sul2 >608/32 >608/32 32 32 – – – –

18fS19 Psychrobacter sp. sul1, sul2 >608/32 >608/32 32 32 – – – –

18pwE5 Staphylococcus sp. ermC >608/32 ≤9.5/0.5 – – >512 >512 >512 >512

18fT47 Carnobacterium sp. tetS, tetL – – 64 64 – – – –

18fT5 Kurthia sp. tetM >608/32 ≤9.5/0.5 256 256 – – 64 16

18fT29 Lactobacillus sp. tetL – – 32 32 – – – –

18fS10 Pseudoclavibacter sp. sul1 608/32 608/32 32 32 - – – –

18fT12 Vagococcus sp. tetL >608/32 No growth 128 No growth – – – –

BHI, Brain heart infusion; CAMH, cation-adjusted Mueller Hinton.

TABLE 3 | Multi-drug-resistant isolates from aquaculture samples.

Sample Isolates resistant to antibiotic

1ARa 2AR 3AR 4AR

Surface rinsing water (n = 850) 18.7% (159/850) 35.6% (303/850) 32.2% (274/850) 13.4% (114/850)

Fish intestine (n = 1045) 19.8% (207/1045) 58.5% (611/1045) 12.1% (126/1045) 9.7% (101/1045)

Pond mud (n = 1293) 13.4% (173/1293) 34.9% (451/1293) 34.0% (440/1293) 17.7% (229/1293)

Pond water (n = 1429) 8.7% (125/1429) 15.2% (217/1429) 50.6% (723/1429) 25.5% (364/1429)

Fish feed (n = 150) 36.0% (54/150) 31.3% (47/150) 22.0% (33/150) 10.7% (16/150)

aNumber of antibiotic(s) the isolates were resistant to.

Stability of the AR
Results of persistence assessment showed that 90–100% of
the progenies from nine ART isolates examined retained
their original AR traits, indicating that the AR determinants
are generally stable in the resistant isolates without the
corresponding antibiotic selective pressure. Progenies of an
Enterococcus strain from the intestine sample retained resistance
to Sur/Tri but became susceptible to Tet and Ctx.

Functionality of the AR Determinants
Plasmids from two out of nine Gram-negative isolates (sul1+
Aeromonas sp. from the fish intestine and sul2+ Psychrobacter
sp. from the fish feed) and one out of five Gram-positive
isolate (tetL+ Vagococcus sp. from fish feed) were successfully
transferred to E. coli and L. lactis, respectively, resulting
in acquired resistance in transformants. The transformants
exhibited comparable MIC for the corresponding antibiotic with
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TABLE 4 | The identity of AR gene carriers.

Sample (# isolates tested) Detected AR genes (# positive isolates) Gene carrier [AR gene (#isolates identified)]

Surface rinsing water (209) sul1 (8), sul2 (1), tetM (30), sul1+tetM (5) Plesiomonas sp. [sul1 (3), sul2 (1), tetM(3), sul1+tetM (2)]

Fish intestine (357) sul1 (7), sul2 (15), tetL (1), tetM (9), sul1+tetM (1), tetL+ tetS(1), Aeromonas sp. [ sul1 (1)]; Enterobacter sp., [sul2 (7)];
Enterococcus sp. [tetL (1), tetL+ tetS (1)];
Plesiomonas sp. [sul1 (3), sul2 (6), sul1+ tetM (1)];

Pond Mud (269) sul1 (3), sul2 (1) Aeromonas sp. [sul1 (1)]; Plesiomonas sp. [sul1 (1)]

Pond water (244) sul1 (5), tetS (1), tetL+tetS (3), ermC(1) Exiguobacterium sp. [sul1 (2)]; Staphylococcus sp. [ermC (1)];
Lactococcus sp. [tetS (1), tetL+tetS (2)];

Fish feed (98) sul1 (9), sul2 (1), sul1+sul2 (1), tetL (4), tetM (2), tetS (3), tetL+ tetM
(6), tetL+ tetS (2), tetL+tetM+tetS (1), ermB (1)

Aerococcus sp. [tetM (2)]; Bacillus sp. [tetS (1), ermB (1)];
Carnobacterium sp. [tetL+tetS (1)];
Corynebacterium sp. [sul1 (1), tetL (2)]; Kurthia sp. [tetM (1)];
Enterococcus sp. [sul1 (1), tetS (2), tetL+tetM (5), tetL+tetS (1),
tetL+tetM+tetS (1)]; Kocuria sp. [sul1 (4)]; Lactobacillus sp. [tetL
(1)]; Pseudoclavibacter sp. [sul1 (1)];
Psychrobacter sp. [sul2 (1), sul1+sul2 (1)];
Staphylococcus sp. [sul1 (1)]; Vagococcus sp. [ tetL (1)]

the donors, indicating the resistance genes were functional in
other bacteria if acquired via horizontal gene transfer events.

Discussion

It is recognized that AR ecology, of the emergence, persistence,
and dissemination of ART bacteria and AR genes in the microbial
ecosystem, is much more complicated than previously thought.
Up to 107 CFU/g ART bacteria, representing about 1% of the
total bacterial population, were detected in the samples from
this aquaculture farm, despite that the farm has no known
history of antibiotic applications during production (Huang,
2014). Here, we report that majority of the ART isolates from the
fish and aquaculture environment were resistant to two or more
antibiotics.

MIC is a relatively precise measure of resistance to antibiotics.
The measurement is essential for AR assessment not just because
of the need to measure resistance trend, but more importantly,
the MIC value is correlated to the dosage required for effective
therapy. It is important to recognize that bacterial strains carrying
the same resistance gene may have different MIC values, even for
those from the same genus (Miranda et al., 2003). Understanding
the molecular mechanisms contributing to the phenotype would
be of great value to properly evaluate AR risk and control
its dissemination. However, it has been difficult to compare
antibiotic susceptibility results because of variation in testing
methods in published studies. Most studies in the United States
used CAMH broth, following NCCLS-recommended procedure
(now it is CLSI), while Iso-Sensitest broth is widely used in
Europe (Koeth et al., 2000). Koeth et al. (2000) conducted a
study using 124 Centers for Disease Control and Prevention
(CDC) reference strains compared the medium effect on MIC
results, and concluded that data from the above two broth were
comparable.

Due to genetic diversity of microbiota associated with both
host and natural environment, bacterial media used in the studies
likely have an impact on the results. Sul/Trir population was

found abundant in microbiota across the host and environmental
samples. Considering the potential effect of cultural medium
on MIC results, in this study we have examined MIC for
representative strains in both CAMH and BHI. The isolates had
different MIC values in the two media, especially for Sul/Trir
isolates. Approximately 67% Sul/Trir isolates recovered from BHI
medium exhibited resistance against Sul/Tri in CAMH medium
(data no shown), and some of them had much higher MIC values
in BHI than that in CAMH. As shown in Table 2, some isolates
such as Enterococcus sp. (17fS1, 17fS3, 18iX15, and 18fT19)
and Enterobacter sp. (17iE3, 17iE10, 17iE11, and 17iE26) were
classified as susceptible to Sul/Tri using CAMH, but showed
high MIC values in BHI. In fact, the corresponding resistance
determinants sul1 or sul2 were identified in the above strains with
positive detection rate comparable to other AR genes, suggesting
their MIC results in CAMH-Sul/Tri broth cannot represent
their real resistance status against the antibiotics. As a matter
of fact, CLSI has acknowledged the mismatch between MIC
results of Enterococcus sp. using CAMH-Sul/Tri medium and
resistant patterns in clinical treatments (CLSI, 2013). Moreover,
although CAMH medium is widely used for MIC test, bacteria
from certain genera didn’t grow well in CAMH. As shown in
Table 2, one tetL bearing isolate Vagococcus sp. could not grow in
CAMH-Tet, but showed highMIC value (128μg/ml) in BHI-Tet.
These data indicated the limitations of CAMH as the medium
for MIC assessment. While we have found that BHI serves the
need for MIC analysis for most of the commensal isolates in
this study, further validation using more reference strains and
supplementation of media for cultures discriminated by BHI
will be essential for methodology improvement. Moreover, ART
isolates with higher MIC values are more difficult to eliminate
with antibiotics. Whether the high MICs of the above strains
are due to new molecular determinants or established resistance
genes but with additional enhancement mechanisms are worth
further investigation.

As illustrated in Table 4, 30 of 98 ART isolates (30.6%) from
fish feed samples were found to carry one or more of the 12
AR genes examined, and the positive detection rate was much
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higher than those of the ART isolates from other samples, being
9.5% (34 of 357) in fish intestine, 21% (44 of 209) in surface
rinsing water associated with skin microbiota, 4.1% (10 of 244)
in pond water, and 1.5% (4 of 269) in pond mud sample. This
result was consistent with the finding that multiple AR gene pools
in high levels were detected in fish feed samples by real-time
PCR (Huang, 2014). In addition, fish skin and intestine samples
also contained a large number of ART bacteria and AR genes
which also is in agreement with the results reported by Ye et al.
(2013). Because animal and fish by-products, often rich in ART
bacteria, are used in fish feed as an important protein source, it
is inevitable that there is a large pool of AR genes and potentially
AR gene carrying bacteria in fish feed. ART bacteria even multi-
drug-resistant bacteria were reported in various types of animal
feeds, such as poultry feeds (Schwalbe et al., 1999), cattle feed
ingredients (Dargatz et al., 2005), and rendered animal protein
products originating from poultry, cattle, and fish (Hofacre
et al., 2001). Without proper treatment, fish feed rich in AR
gene-carrying bacteria survived the feed manufacturing process
could be a potential risk factor spreading ART bacteria in the
aquaculture production system and subsequently the food chain.
In fact, several genera of ART bacteria were found in multiple
types of samples. For example, Plesiomonas sp. were detected
in surface rinsing water, fish intestine, and pond mud samples,
while Aeromonas sp. were present in fish intestine and pond
mud samples. The data suggested that thesemicroorganisms were
present in both the host and farm environment, and may have
been circulating within the aquaculture ecosystem.

As illustrated in Table 4, there was no significant correlation
of the types of AR encoding genes and their carriers between
fish intestine and feed, indicating that hosts (fish) potentially
also have a role in the selective enrichment of or breeding
certain resistant bacteria in the population. In this study, the sul1
gene of Aeromonas sp. from the fish intestine, the sul2 gene of

Psychrobacter sp. and the tet (L) gene of Vagococcus sp. from
the fish feed were found functional after being transferred to
the corresponding recipients, suggesting that they can serve as
a source of AR genes if involved in horizontal gene transfer
events. Finally, representative AR genes were only found in a
small percent of the ART isolates. A functional genomic analysis
has already discovered a new Tetr-encoding gene, tet47, from a
Tetr isolate associated with a fish intestine sample (Huang et al.,
2015).

In summary, ART commensal bacteria associated with this
aquaculture system with no known history of antibiotics
application exhibited multi-drug-resistance (MDR). Various
AR determinants were detected and 18 bacterial genera were
identified among those AR gene carrying isolates. The data
suggested that the aquaculture system is a rich reservoir of
AR, risk factors other than direct antibiotic application, such as
AR-rich feed or even environmental factors, may have played
important role(s) disseminating AR in this ecosystem. Follow-
up studies are needed to reveal a more comprehensive picture of
AR in aquaculture production, and for targeted and effective AR
mitigation in the ecosystem. Moreover, BHI medium was found
more suitable for majority of the commensal bacteria examined
than CAMH broth for MIC assessment.
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