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Pseudomonas Exotoxin A: optimized
by evolution for effective killing
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Pseudomonas Exotoxin A (PE) is the most toxic virulence factor of the pathogenic
bacterium Pseudomonas aeruginosa. This review describes current knowledge about
the intoxication pathways of PE. Moreover, PE represents a remarkable example for
pathoadaptive evolution, how bacterial molecules have been structurally and functionally
optimized under evolutionary pressure to effectively impair and kill their host cells.
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Introduction

Pseudomonas aeruginosa is a common Gram-negative, rod-shaped bacterium, which is optimally
adapted in various environmental conditions. As an obligate respirer, it can use aerobic respiration
as its optimal metabolism; however, it can also respire anaerobically on nitrate or other alternative
electron acceptors (Su and Hassett, 2012). This is one reason, why P. aeruginosa is ubiquitously
present in soil, water or sewage as well as in human, animal or plant hosts and why it is
widespread around the world (Wiehlmann et al., 2007; Pirnay et al., 2009). Infection of healthy
individuals by P. aeruginosa is very rare, but as an opportunistic bacterium it often colonizes
immunocompromised patients with cystic fibrosis, burns, or AIDS (Gellatly and Hancock, 2013).
The infections range from endophtalmitis, endocarditis, meningitis, and septicemia to chronic lung
infections (Driscoll et al., 2007; Gomez and Prince, 2007; Gellatly and Hancock, 2013). Due to its
inherent resistance to different antibiotics or chemotherapeutic agents, P. aeruginosa can only be
eliminated with difficulty and leads to a high mortality rate (Maschmeyer and Braveny, 2000; Rowe
etal., 2005).

A number of virulence factors enables P. aeruginosa to adhere to tissue surfaces, to damage tissue
for dissemination and nutrition supply and to increase its survival rate (Coggan and Wolfgang,
2012; Jimenez et al., 2012; Balasubramanian et al., 2013). One of them is Pseudomonas Exotoxin A
(PE), which has enzymatic activity and belongs to the mono-ADP-ribosyltransferase family (Liu,
1974). With regard to its function it is specified as NAD™-diphthamide-ADP-ribosyltransferase
(EC 2.4.2.36) (Domenighini and Rappuoli, 1996). In the last years, the cytotoxic pathways of PE
in eukaryotic host cells were investigated. Much relevant knowledge was obtained from studies
with immunotoxins, in which the enzymatic active part of the toxin, coupled to antibodies,
antibody fragments or ligands, was used for targeted therapeutic approaches against different
cancers. Preclinical and clinical trials with PE-based immunotoxins were reviewed elsewhere (Wolf
and Elsasser-Beile, 2009; Weidle et al., 2014). In the present article, we describe the cytotoxic
pathways of PE (Figure 1) and how this molecule was structurally and functionally optimized
under evolutionary pressure to effectively impair and finally kill its host cells.
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FIGURE 1 | (A) Schematic representation of the structural and functional domains of Pseudomonas Exotoxin A (PE). (B) Molecular pathways of PE. 2-KG,
2-ketogluconate; CCP, clathrin coated pit; CD91, CD91 receptor; CS, caveosome; EE, early endosome; eEF-2, eukaryotic elongation factor-2; ER, endoplasmatic
reticulum; G, Golgi apparatus; KDEL-R, KDEL-receptor; PCP, plasma carboxypeptidases; PDI, protein disulfide isomerase; PtxR, PtxS, transcription regulators; R,
ribosome; Rab, Rab-GTPase; RNA Pol, RNA polymerase; Sec61p, Sec61p translocon; T2SS, type Il secretion system.

Pseudomonas Exotoxin A

Structure and Function

The PE gene was originally cloned from the P. aeruginosa
strain PA 103 and analysis of the 5" and 3’ flanking regions
evidenced that the PE gene is translated from a monocystronic
message (Gray et al., 1984). PE is expressed as a protein with
a length of 638 amino acids (aa) and can be divided into
several structural and functional domains (Wedekind et al,

2001; Figure 1A). Generally, PE belongs to the two-component
AB toxin family, composed of an A domain with enzymatic
activity and a B domain as cell binding subunit (Odumosu
et al,, 2010). In detail, PE contains a highly hydrophobic leader
peptide of 25 aa at its N-terminus, which is removed during
secretion. The leader sequence is followed by the receptor binding
domain Ia (aa 1-252), which is composed of antiparallel f3-
sheets. Domain II (aa 253-364) with six consecutive a-helices,
enables the toxin to translocate across cell membranes. The last
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four residues (aa 400-404) of domain Ib (aa 365-404) together
with domain III (aa 405-613) form the catalytic subunit of
the toxin with ADP-ribosyltransferase activity (Siegall et al.,
1989).

Molecular Pathways of Intoxication

The regulation of PE expression is complex and not fully
understood to date. Different studies established a relation
between PE expression and iron metabolism. The efficient uptake
of iron is one important factor for P. aeruginosa allowing
the colonization of the host. For this, the bacterium produces
siderophores, such as pyoverdine, low-molecular weight excreted
molecules that specifically chelate iron ions with high affinity.
Interestingly, in the presence of iron ions, pyoverdine was found
to activate a signaling pathway for the up-regulation of PE
expression (Hunt et al., 2002; Lamont et al., 2002; Cornelis and
Dingemans, 2013).

Recent data also suggest that there is a link to the bacterial
glucose metabolism (Daddaoua et al, 2012, 2014). As a
facultative aerobic organism, P. aeruginosa prefers respiration
as metabolism. It gains energy by transferring electrons from
glucose, a reduced substrate, to oxygen, the final electron
acceptor. The initial step of glucose metabolism takes place
in the periplasm and includes the oxidation of glucose to
2-ketogluconate, which enters the cytoplasm to be further
metabolized. 2-ketogluconate is able to bind to the transcriptional
repressor protein PtxS. In the absence of 2-ketogluconate, two
PtxS molecules are bound to a dimer of the regulator PtxR,
which again binds to the - 35 region to the PE promotor and
inhibits the transcription of PE. After 2-ketogluconate binding,
PtxS dissociates from the PtxR/DNA complex and PtxR can
recruit RNA polymerase to facilitate the transcription of the toxin
(Daddaoua et al., 2012, 2014; Figure 1B).

Pseudomonas Exotoxin A is secreted into the extracellular
medium via the general secretory pathway, a two-step
mechanism, which is highly conserved in Gram-negative
bacteria (Voulhoux et al., 2000; Gerard-Vincent et al., 2002).
After cytoplasmatic expression as an unfolded precursor
protein, PE is initially transported to the periplasm using
the Sec machinery (Douzi et al., 2012). During translocation
through the inner membrane, the N-terminal signal peptide
is cleaved off and PE is released into the periplasmatic space.
In the hydrophilic environment of the periplasm, PE is folded
to a mature conformational protein in a manner that can be
recognized by the type II secretion system (T2SS), specifically
called Xcp in P. aeruginosa, for secretion into the extracellular
space (Voulhoux et al., 2000; Gerard-Vincent et al., 2002).
Mutagenesis experiments gave evidence that two N-terminal
glutamic acid residues at the +2 and +3 positions of domain
Ia as well as domain II of PE are important for folding and
extracellular secretion (Lu et al., 1993). It is therefore speculated
that the corresponding residues are part of a still unknown
conformational secretion signal of PE for recognition by T2SS or
that they are important for the appropriate presentation of such
a signal (Lu et al., 1993; Voulhoux et al., 2000).

Once secreted, the terminal lysine (aa 613) of PE can
be cleaved from the toxin in the extracellular environment,

presumably by plasma carboxypeptidases of the host. This
leads to a formation of a C-terminal motif from REDLK (aa
609-613) to REDL (aa 609-612), which enables the toxin to bind
to KDEL receptors at the Golgi apparatus during subsequent
intracellular trafficking (Hessler and Kreitman, 1997). On the
host cell surface, PE specifically binds via domain Ia to CD91,
which is also known as alpha2-macroglobulin receptor/low-
density lipoprotein receptor-related protein (a2MR/LRP;
Kounnas et al, 1992). Then, there are two pathways open
for PE to reach the Endoplasmatic Reticulum: the KDEL-
receptor mediated pathway and the lipid-dependent sorting
pathway.

KDEL-Receptor Mediated Pathway

CD91 bound PE molecules can be internalized via clathrin-
coated pits. In the acidic early endosomal environment, PE
dissociates from the CD91 receptor. Moreover, it undergoes a
conformational change, which makes the furin-cleavable motif
within domain II (aa 274-280, RHRQPRG) accessible. The
protease furin cleaves PE between the residues R-279 and G-280,
in two PE fragments. The first fragment (aa 1-279) of about
28 kDa in weight consists of domain I and parts of domain II.
The second one (aa 280-613) of about 37 kDa contains parts
of domain II, domains Ib, and domain III and holds the ADP-
ribosylation activity (Ogata et al., 1992; Wedekind et al., 2001).
After furin cleavage both fragments are still connected by a
disulfide bond between C-265 and C-287, which encompasses the
furin cleavage site. There is evidence that there is an unfolding
event, possibly under the influence of chaperones, which leads
to a surface exposure of the disulfide bond. The disulfide bond
is then reduced, presumably by protein-disulfide-isomerases,
and the 37 kDa fragment is detached (McKee and FitzGerald,
1999). After cleavage and transport into late endosomes, the
37 kDa PE fragment exploits a Rab9-regulated pathway to
reach the trans Golgi network (TGN). Rab proteins are highly
compartmentalized GTPases in organelle membranes. They
coordinate consecutive stages of intracellular transport, such as
vesicle formation and motility, or tethering of vesicles to their
target membranes (Zerial and McBride, 2001). On the TGN, the
C-terminal REDL motif of PE (aa 609-612) binds to the KDEL
receptor and the toxin is transported to the ER in a retrograde
manner (Kreitman and Pastan, 1995; Jackson et al., 1999). The
KDEL-receptor cycles between the TGN and the ER via Golgi
cisternae and is originally responsible for the recycling of cellular
proteins bearing KDEL or KDEL-like sequences (Cancino et al.,
2013).

Lipid-Dependent Sorting Pathway

Pseudomonas Exotoxin A can also use the lipid-dependent
sorting pathway to reach the ER. In this pathway, CD91 bound PE
associates with detergent-resistant microdomains (DRM), which
facilitates the cellular uptake of the toxin-receptor complex via
caveolin-mediated internalization. The receptor-toxin complex is
then transported via caveosomes into early endosomes (EE) in
a Rab5-dependent manner (Smith et al., 2006). After cleavage
in the EE, the 37 kDa PE fragment can reach the TGN by
a pathway, which was shown to be independent from Rab9.
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Then a Rab6-controlled lipid-dependent sorting pathway is used
for trafficking to the ER (White et al, 1999; Smith et al,
2006).

ER-Associated Protein Degradation Pathway
Pseudomonas Exotoxin A uses the cellular ER-associated protein
degradation pathway (ERAD) to get from the ER into the cytosol
(Ogata et al., 1990; Theuer et al., 1993). Sequences inside the
PE-domain II induce the translocation of the 37 kDa fragment
via the Sec61p translocon, which normally serves as a channel
to dislocate unfolded or misfolded proteins for subsequent
proteasomal degradation (Hazes and Read, 1997; Koopmann
et al., 2000).

ADP-Ribosylation of eEF-2

In the cytosol the 37 kDa PE fragment exerts its enzymatic activity
and ADP-ribosylates the eukaryotic elongation factor-2 (eEF-2)
on the ribosomes (Iglewski et al., 1977). eEF-2 belongs to the
GTP-binding translation elongation factor family and promotes
the GTP-dependent translocation of mRNA from the ribosomal
A-site to the P-site (Proud, 1994).

The ADP-ribosylation mechanism of PE was studied in detail
and it turned out that it follows an Sy1 nucleophilic substitution
mechanism (Beattie et al., 1996; Armstrong et al., 2002; Jorgensen
et al., 2005; Figure 2). Initially, the PE-fragment binds to NAD™
and interacts via the so-called “active-site loop L4” (aa 483-490
of domain III) with eEF-2 (Yates and Merrill, 2004). Afterward
it facilicates the cleavage of the glycosidic bond (C-N) between
the nicotinamide and N-ribose of NADT. This results in a
reactive oxacarbenium intermediate, which in turn is stabilized
by residue E-553 of the PE-fragment (Li et al., 1996; Jorgensen
et al.,, 2005). This step is followed by a nucleophilic attack of
eEF-2, based on its nucleophilic residue diphthamide, a post-
translationally modified histidine residue (2-(3-carboxyamido-3-
[trimethylammonio]propyl) histidine) (Ortiz and Kinzy, 2005).
The ADP-ribose group is subsequently transferred to the N3 atom
of the diphthamide imidazole ring, which results in the ADP-
ribosylated eEF-2 protein (Armstrong et al., 2002; Jorgensen et al.,
2005).

The ADP-ribosylation inactivates eEF-2 and the protein
biosynthesis of the host cell comes to a standstill. As a
consequence, apoptosis is induced and the host cell irreversibly
dies. In cervix carcinoma cells, a decrease of cdc2 and cyclin
B expression as well as an increase of the regulator protein
14-3-3 delta was observed. This suggests that PE induces cell
cycle arrest, which is followed by apoptosis (Chang and Kwon,
2007). In mouse embryo fibroblasts, the regulation of pro-
and anti-apoptotic proteins after PE intoxication was examined.
In these cells, a rapid degradation of Mcl-1 was observed,
which unleashed Bak to activate apoptosis (Du et al., 2010).
In human mast cells, PE provoked the activation of caspase-8
and the down-regluation of FLIPs (Fas-associated death domain
protein (FADD)-like interleukin-1p-converting enzyme (FLICE)
(Caspase-8) inhibitory protein), giving evidence that PE can also
activate the extrinsic apoptotic pathway (Jenkins et al., 2004).

The intoxication of PE only takes a short time. In studies,
which examined PE uptake into rat liver, a rapid association of

PE with plasma membranes after 5-30 min, an internalization
within endosomes after 15-60 min, and a translocation into the
cytosolic compartment after 30-90 min was measured (El Hage
etal., 2010).

The intoxication pathways of PE are not fully elucidated yet.
There is evidence that there is a further processing pathway
for internalized PE, involving endosomal cathepsins B and D,
resulting in a production of PE fragments that may contribute
to cytotoxicity (El Hage et al.,, 2010). Moreover, genome-wide
genetic screening identified hitherto unknown host factors for
intracellular trafficking. A prime example is GPR107, an orphan
G-protein coupled receptor, which, like the KDEL receptor, is
located to the TGN and facilitates the retrograde transport of PE
(Tafesse et al., 2014). Since there are differences of PE trafficking
in different cell lines, it is presumed that the choice between the
pathways seems to be dependent from the expression of host
factors that are present in the cells.

Evolutionary Aspects of Intoxication

Bacteria and their hosts have coexisted for several millions of
years. Over this time, bacteria developed a wide spectrum of
adaptation to optimize infection and survival. One important
mechanism P. aeruginosa developed, is the quorum sensing
(QS) for intercellular communication. QS allows the bacteria
to recognize the population density by sensing and measuring
the accumulation of specific small signaling molecules that are
secreted by the members of the colony. The bacteria now act
as a community to perform tasks, which would be impossible
for individual cells, e.g., cooperative activation of bacterial gene
expression, biofilm formation, influence on the behavior of host
cells, or the adequate production of virulence factors (Nguyen
and Singh, 2006; Holm and Vikstrom, 2014).

Moreover, genome sequencing of bacterial pathogens and
molecular analyses of intoxication pathways have shown how
bacteria evolved via mutational changes, a mechanism, which is
known as pathoadaptation.

Interestingly, the pathoadaptation of P. aeruginosa is
exemplarily reflected in its virulence factor PE, which was
structurally and functionally optimized especially in view of
binding, processing, routing and toxicity (Marvig et al., 2015).

Both termini of the PE protein were formed for effective
binding of target molecules. The N-terminus is able to specifically
bind to the abundantly expressed CD91 antigen, which enables
PE to reach many different host cells (Kounnas et al., 1992).
The-C-terminus, containing the KDEL-like sequence, facilitates
the retrograde transport of PE to the ER by binding to the
KDEL-receptor (Kreitman and Pastan, 1995; Jackson et al,
1999).

Pseudomonas Exotoxin A developed specific aa motifs to be
effectively processed by components of the host cell. For example,
the C-terminus can be cleaved by plasma carboxypeptidases
to form the KDEL-like sequence for subsequent intracellular
trafficking (Hessler and Kreitman, 1997). Moreover, the molecule
can be cleaved by furin, presumably to facilitate subsequent
trafficking. Interestingly, the unfolding step in the EE for furin
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cleavage is also discussed to lead to a masquerade of the PE
molecule as an unfolded/misfolded protein to be successfully
transported to the cytosol (Pelham et al., 1992). PE is also able to
exploit different intracellular routes controlled by both protein-
and lipid-sorting signals. Especially, routing via caveasomes and
the lipid-dependent pathway may contribute to protect the PE
molecules against lysosomal degradation (Smith et al., 2006).

The toxicity of PE is marked by an induction of apoptosis
in the host cells by specifically ADP-ribosylating the residue
diphthamide. Diphthamide is named on the basis of the
fact that it is also the target of Diphteria toxin produced
by Corynebacterium diphteriae (Abdel-Fattah et al, 2013).
Diphthamide is highly conserved among archaea and eukaryotes
and was exclusively described in eEF-2 (Ortiz and Kinzy, 2005; Su
etal., 2013). It represents an “Achilles heel” of the host cell, since
its modification (ADP-ribosylation) can lead to the complete
inhibition of protein biosynthesis and induction of programmed
death.

Even the ADP-ribosylation mechanism of PE represents
a good example for the evolutionary adaption of PE. X-ray

structure analyses showed evidence that PE mimics the
normal interaction between eEF-2 and the eukaryotic 80S
ribosome, because a striking similarity was observed between
the orientation of PE-bound £-TAD (a non-hydrolysable NAD™
analog) and the phosphate backbone of two nucleotides in
a conformational switch of 18§ rRNA, with respect to the
interaction with eEF-2. By optimizing this mimicry during
evolution, PE minimizes the probability that the target organism
could evolve resistance toward the invading toxin, because
coordinated mutations in regions of eEF2 and the ribosome
would be required that are crucial for function (Jorgensen et al.,
2005).

Pseudomonas Exotoxin A evolved into a highly specific and
toxic molecule; however, the optimization process seems to go
on. Structural data suggest that there is no high-valency binding
of PE to its receptor (Wedekind et al., 2001). Furthermore, lack
of basic residues at the -2 aa position of the furin cleavage
site could lead to less rapid cleavage by furin than proteins
having the typical RX (K/R) R sequence (Gordon and Leppla,
1994). Moreover, many PE molecules are degraded in lysosomes
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and therefore it is necessary for the toxin to be in a sufficient
concentration in the extracellular space for effective killing
(Hessler and Kreitman, 1997).

Taken together, PE represents a remarkable molecule, which
provides deep insight into pathoadaptive processes. Knowledge
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