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MicroRNAs (miRNAs), the post-transcriptional regulators of gene expression, play key

roles in modulating many cellular processes. The changes in the expression profiles

of several specific miRNAs affect the interactions between miRNA and their targets

in various illnesses, including addiction, HIV, cancer etc. The presence of anti-HIV-1

microRNAs (which regulate the level of infectivity of HIV-1) have been validated in

the cells which are the primary targets of HIV infection. Drugs of abuse impair the

intracellular innate anti-HIV mechanism(s) in monocytes, contributing to cell susceptibility

to HIV infection. Emerging evidence has implicated miRNAs are differentially expressed

in response to chronic morphine treatment. Activation of mu opioid receptors (MOR) by

morphine is shown to down regulate the expression of anti-HIV miRNAs. In this review,

we summarize the results which demonstrate that several drugs of abuse relatedmiRNAs

have roles in the mechanisms that define addiction, and how they interact with HIV.

Keywords: HIV, microRNA, drugs of abuse, cocaine, latency

Introduction

MicroRNAs (miRNAs) are short non-coding regulatory RNAs, approximately 22 nucleotides in
length, which bind to the 3′ untranslated regions (UTR) of messenger RNAs (mRNAs) and interfere
with their translation, thus contributing to a significant post-transcriptional regulatory step in gene
expression (Bartel, 2004; Pilakka-Kanthikeel et al., 2011). One of the important host innate defense
mechanisms against retroviruses, such as HIV, is the presence of intracellular viral restriction
factors. The micro RNAs belong to this group of “restriction factors.” Over 3000 mature miRNAs
have been identified in various species, which highlight their importance in gene regulation. The
effect of miRNA can be either direct or indirect. Host cellular miRNA can target host genes/proteins
involved in the HIV replication or target viral genes to post transcriptionally silence the protein
production. Similarly, viral miRNA (viRNAs) can also either target viral genes, cellular mRNAs
or miRNAs. Since their discovery, miRNAs have been linked to biological processes such as drug
addiction (He et al., 2010; Zheng et al., 2010), pain perception (Kusuda et al., 2011), neuron
development (Gao, 2015), viral infection (Dave and Khalili, 2010; Wang et al., 2011), and opioid
receptor regulation (Wu et al., 2008; Sanchez-Simon et al., 2010). Although the mechanisms not
completely understood, evidences support the notion that HIV-1 down-regulates some of the
cellular anti-HIV-1 miRNAs by inhibiting the proteins involved in its biogenesis and maturation,
as a strategy to persist.

HIV latency is a stage in which proviral DNA integrated in to the host’s genome does not
actively replicate. Even though the mechanisms of establishment and maintenance HIV-1 latency
are not completely understood, it is believed to be a multifactorial process involving different
cellular and molecular mechanisms. miRNA are also reported to be involved in the maintenance of
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FIGURE 1 | Host miRNAs implicated in HIV. Host miRNA that have been identified to have role on HIV replication are shown in the figure, with respect to the cells

where they have major role. The host or viral targets of the miRNAs are indicated by the arrows. miRNAs identified from patient samples were not included in the figure.

HIV latency (Coiras et al., 2009; Van Lint et al., 2013; Battistini
and Sgarbanti, 2014). The miRNA expression profiles seem to
be modulated in HIV-1-infected cells and in patients. In this
review, we summarize the miRNAs that have been reported to
be associated with HIV, their change in expression and how the
drugs of abuse modulate their expression. mi-RNAs that have
been reported to have role in HIV have been summarized in
Figure 1. Functions and other details have been discussed in the
following sections.

Cellular Anti-HIV miRNAs in HIV Infection: In vitro

Observations
miRNAs have shown to limit HIV-1 infection by multiple
mechanisms. They exhibit cell-type-specific expression and
differential expression based on cellular differentiation or
activation states contributing to differential cellular susceptibility
to HIV-1 infection. This feature led the scientists to focus
miRNA as “restriction factor” in the recent past. Few studies
have identified cellular miRNAs that target a set of accessory
genes of HIV-1 or other host genes/proteins involved in the HIV
replication. Lecellier et al. reported for the first time the antiviral
activity of cellular miRNAs, where they showed significantly
enhanced primate foamy virus type 1 (PFV-1) replication by
knock down of miR-32 expression (Lecellier et al., 2005). The
initial studies opened an exciting avenue of research exploring
how to manipulate endogenous miRNAs and alter cellular
susceptibility to HIV-1 infection.

Anti-HIV miRNAs in CD4+T Cell
Hariharan et al. using computational approach, predicted five
human T-cell miRNAs (miR-29a, miR-29b, miR-149, miR-378
and miR-324-5p) targeting the highly conserved regions across
all clades of HIV-1 using computational approach. Among these,
miR-29a and miR-29b target the nef gene, whereas miR-149,
miR-378, and miR-324-5p target vpr, vif, and vpu respectively
(Hariharan et al., 2005). Later Nathans et al. identified 11
miRNAs (miR-29a, 29b, 29c, 149, 147, 138, 513, 516-5p, 581, 644,
and 646) that target 3′ UTR of HIV-1 through target prediction
analysis of nef, vpr, vif, and vpu (Nathans et al., 2009). They
found that the inhibition of miR-29a, b, or c increased HIV-1
production; however, highest effect was associated with miR-29a.

Huang reported five host-coded miRNAs (miR-28, miR-125b,
miR-150, miR-223, and miR-382), that target the 3′ UTR of viral
mRNAs that inhibit HIV-1 infection (Huang et al., 2007). These
anti-HIV miRNAs were differentially expressed in resting vs.
active CD4+T cells in-vitro; significantly higher in resting than
in activated CD4+T cells. These miRNAs were down-regulated
during the activation of resting CD4+T cells, correlating with
HIV-1 susceptibility. These cellular miRNAs were thought to
be contributing to viral latency observed in quiescent cells.
The combination treatment of the five anti-HIV-1 miRNAs
inhibitors were more effective in substantially increasing the
HIV-1 infection compared to the individual inhibitors in resting
CD4+T cells, but not in activated CD4+T cells. These miRNA
inhibitors, however, did not affect cellular proliferation status
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(Huang et al., 2007). miR-125b has been demonstrated to regulate
a network of genes in CD4+T cells that are critical for its
differentiation (Rossi et al., 2011), and responsible for latency
induction in naıve CD4+T cells (Huang et al., 2007; Wang et al.,
2009). Yeung et al. reported a downregulation in miRNA profile
(miR-93, miR-148b, miR-221, and miR-16) in HeLa cells after
HIV-1 protein expression (Yeung et al., 2005).

miR-27b, miR-29b, miR-150, miR-198, and miR-223 are
another group of miRNAs found to be low in resting CD4+T
cells. They seem to be regulating Cyclin T1 protein (Nathans
et al., 2009; Chiang et al., 2012), the expression of which is
required for transactivation by HIV-1 Tat. CD4+T cell activation
resulted in down-regulation of these miRNAs with a subsequent
up-regulation of Cyclin T1, which correlated with enhanced
HIV-1 susceptibility. However, miR-198 does not undergo
downregulation after T cell activation. It is suggested that a
cellular negative-feedback loop is triggered during cyclin T1
upregulation resulting in elevated levels of miR-198 and which
in turn result in subsequent dampening of the induction of
cyclin T1 (Sung and Rice, 2009). miR-27b also acts in a Cyclin
T1-dependent manner, overexpression of which decrease viral
replication (Chiang et al., 2012).

A study by Chiang et al. reported a relationship between miR-
132 andHIV-1 infection. They found significantly lower miR-132
expression in resting CD4+T cells than in activated cells. Ectopic
expression of miR-132 increased the HIV-1 infection in Jurkat T
cells (Chiang et al., 2013), though the exact mechanism behind
this effect and the specific step on the viral life cycle that seems to
be potentiated by miR-132 are not clear. A probable explanation
is that miR-132 overexpression decreases the expression of a
cellular protein MeCP2, inhibition of which augments HIV-1
replication (Leoh et al., 2013). However, the precise role of miR-
132 and MeCP2 in HIV-1 replication has not been identified.
But a study by Desplats et al. reported significantly up-regulated
MeCP2 levels in frontal cortex of patients with neurocognitive
deficits who had latent HIV-1 infection in the brain (Desplats
et al., 2013).

MicroRNAs have also shown to target the receptors and
co-receptors needed for HIV entry, thereby restricting the
viral entry. Orecchini et al. suggested a mechanism by which
Tat manipulate the CD4 receptor, by miR-222 up-regulation
(Orecchini et al., 2014). Further studies are warranted in this
since the effect of prior induction of miR-222 on viral infection
was not investigated by Orecchini et al. Spinello et al. reported a
relationship between miR146a and CXCR4 co-receptor. Resting
CD4+T cells have high expression of miR-146a, which was
downregulated during their activation by PHA. High expression
of miR-146a inhibits the expression of the co-receptor CXCR4,
and prevents the HIV entry in U937 and resting CD4+T cells
(Spinello et al., 2011; Quaranta et al., 2015).

Tat exposure significantly up-regulates miR-217 and miR-
34a, which bind to the 3′ UTR region of SIRT1 mRNA
inhibiting its expression. Lower SIRT1 expression is associated
with an enhancement in HIV-1 Tat-mediated transactivation
(Zhang et al., 2012a,b). Chaudhuri et al. also demonstrated the
functional relevance of cellular miRNAs that target SIRT1 in
their simian immunodeficiency virus (SIV) encephalitis study.

Post-SIV infection, a significant upregulation of miR-142 was
noted that leads to down-regulation of SIRT1, potentially
contributing to SIV replication and SIV-induced encephalitis
(Chaudhuri et al., 2013). Another study showed significant
up-regulation of miR-182 expression by Tat. Higher the miR-
182 expression, the lower is the expression of nicotinamide
phosphoribosyltransferase (NAMPT), which is a regulator of
SIRT1. The down-regulation of NAMPT decreases expression of
SIRT1 levels, which in turn enhanced HIV-1 Tat transactivation
(Chen et al., 2013).

Anti-HIV miRNAs in Monocyte/macrophage
Monocytes, monocyte derived macrophages (MDM) and
monocyte derived dendritic cells (MDDCs) are differentially
susceptible to HIV infection. It is suggested that monocyte
differentiation and HIV-1 susceptibility are linked by a common
set of miRNAs. The five anti-HIV-1 miRNAs (miR-28, miR-125b,
miR-150, miR-223, and miR-382), which Huang et al. previously
reported, were also highly expressed in monocytes similar to
resting CD4 T cells, relating to the refractory nature of monocytes
to HIV infection. They showed that level of HIV infectivity was
inversely correlated with the level of miRNA expression. These
miRNAs were downregulated during the differentiation of
monocytes to MDMs (Wang et al., 2009), correlating with
the increased susceptibility of macrophages to HIV infection
compared to monocytes. Modulating the expression of anti-
HIV miRNAs was sufficient to reverse the severity of HIV-1
infection. For e.g., the suppression of these anti-HIV-1 miRNAs
in monocytes facilitates HIV-1 infectivity, whereas increase of
the antiHIV-1 miRNA expression in macrophages inhibited
HIV-1 replication.

However, a subsequent study by Sisk et al. found only miR-
223 to be down-regulated during the differentiation ofmonocytes
to MDMs. According to them, the rest of the miRNAs were
either higher in MDMs or remain unchanged compared to
monocytes (Sisk et al., 2012). The reason for this contradiction
is not clear. The different platforms for studying miRNAs,
different experimental protocols for the monocyte isolation
and/or the monocyte-to-macrophage differentiation, possible
alterations in abundance ofmacrophage subpopulations etc., may
have contributed to this difference. Recently, a study byMestdagh
P et al. evaluated the different miRNA quantification platform
(Mestdagh et al., 2014).

miR-198 was significantly downregulated upon differentiation
of monocytes to macrophages, unlike during T cell activation
(Sung and Rice, 2009). miR-198 is shown to be capable of
downregulating cycin-T1 protein expression without affecting
cyclin T1 mRNA levels. Low miR-198 expression during
macrophage differentiation in turn results in increased Cyclin T1
expression and enhances HIV-1 replication within macrophages
(Liou et al., 2002).

Anti-HIV miRNAs on Immune Cell Differentiation
In addition to their direct effect on HIV-1 replication, miRNAs
also plays significant roles in host innate immune defense
regulation. Monocyte differentiation into MDDC is regulated
and coordinated by different miRNAs (Wang et al., 2009;
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Noorbakhsh et al., 2010). miR-146a and miR-155 are two
important miRNAs involved in innate immunity by regulating
the acute immune response following toll like receptor (TLR)
stimulation.

TLR3 and TLR4 ligand [poly(I:C) and LPS] stimulation
increase miR-155 in the human monocytic cell line THP1,
primary human macrophages (Swaminathan et al., 2012) and
in murine bone-marrow-derived macrophages (Taganov et al.,
2006; O’Connell et al., 2007). miR-155 participates in the
maturation of human dendritic cells (DC) and dendritic cell-
specific intercellular adhesion molecule-3-grabbing non-integrin
(DC-SIGN) expression through the transcription factor PU.1
(Martinez-Nunez et al., 2009). DC-SIGN, which binds to the
HIV-1 envelope glycoprotein gp120 is important in the process
of trans-infection (Geijtenbeek et al., 2000). Since miR-155
decreases DC-SIGN expression, it has been suggested that miR-
155 could prevent entry of HIV through DC-SIGN binding
(Martinez-Nunez et al., 2009), reducing the HIV infection. The
over-expression and inhibition experiments with miR-155 along
with TLR3 stimulation demonstrated that miR-155 inhibits HIV-
1 at a step prior to the integration of the viral cDNA into the host
genome (Swaminathan et al., 2012).

Anti-HIV miRNAs Affect the Expression of HDFs
Certain cellular miRNAs have been shown to inhibit viral
replication indirectly through alteration of the levels of certain
human proteins, termed “HIV-1 Dependency Factors” (HDFs).
Inhibition HDFs has been shown to affect HIV-1 replication
(Brass et al., 2008; Goff, 2008).

miR-198 is abundantly expressed in monocytes and miR-27b
in resting CD4+T cells. miR-198 and miR-27b reduce cyclin T1
expression thereby inhibiting HIV-1 replication (Sung and Rice,
2009; Chiang et al., 2012). Cyclin T1/CDK9 heterodimer, which
form positive elongation factor B (p-TEFb), is a crucial HDF
for HIV-1 transcription and translation (Rice and Herrmann,
2003; Hoque et al., 2011). Following monocyte to macrophage
differentiation, miR198 expression is decreased and cyclin T1 is
expressed at high levels. Sung et al. provided evidence that miR-
198 over-expression inhibited HIV-1 replication in macrophages
(Sung and Rice, 2009). Chiang et al. later reported that miR-
198 is expressed at very low levels in resting CD4+T cells
and is not modulated upon activation (Chiang et al., 2012),
supporting the concept that miRNAs exert cell-type-specific
effects. Triboulet et al. showed that the miRNA cluster miR-
17/92 down-regulates p200-CREB binding protein associated
factor (PCAF) (Triboulet et al., 2007). PCAF is an important
factor for Tat acetylation and HIV-1 LTR-driven transcriptional
up-regulation (Deng et al., 2000; D’Orso and Frankel, 2009).
Specifically, miR-17-5p and miR-20a over-expression resulted in
PCAF inhibition, which is associated with HIV-1 transcription
inhibition.

As mentioned in the previous section, miR-155 has been
reported to inhibit HIV-1 infection at pre-integration step
(Swaminathan et al., 2012). This inhibition is through reduction
of the levels of three HDFs: (i) lens epithelial-derived growth
factor (LEDGF), (ii) nuclear pore complex protein (Nup)153,
and (iii) ADAM10. LEDGF, a cellular cofactor of HIV-1

integrase, promotes viral integration (Ciuffi et al., 2005);
Nup153 participates in the nuclear import of the HIV-1 pre-
integration complex (Woodward et al., 2009); and ADAM10
facilitate replication at the level of nuclear trafficking (Friedrich
et al., 2011). Swaminathan et al. have shown that miR-155
leads to a combined inhibition of these three HDFs, resulting
in accumulation of late reverse transcripts and significantly
decreasing the viral integration (Swaminathan et al., 2012).

The expression of another well-characterized HDF, purine-
rich element binding protein α (Pur-α) was reported to be
significantly lower in monocytes than in MDDCs, which is
assumed to contribute to the lower susceptibility to HIV-1
infection in monocytes (Gallia et al., 1999; Wortman et al.,
2000). Certain cellular miRNAs targeting Pur-αmRNAhave been
identified. Those miRNAs include miR-15a, miR-15b, miR-16,
miR-20a, miR-93, and miR-106b, which are highly expressed in
monocytes (Shen et al., 2012). The inhibition of these miRNAs
increased the Pur-α expression enhancing the HIV-1 infection in
monocytes.

Table 1 summarizes the list of cellular miRNAs identified
in vitro in relation to HIV/AIDS, the functions of which are
discussed in this review.

Anti-HIV miRNAs in HIV Infection in Patient
Cohorts
Even though few in vitro reports have been published, only
a limited number of studies have been attempted to explore
miRNA profiles in HIV-1-infected patients. Houzet et al. was
one of the few to report miRNA profiling in patient cohort
for the first time (Houzet et al., 2008). They found that
compared to uninfected healthy controls, 59 miRNAs were
down regulated and 4 miRNAs up-regulated in HIV seropositive
individuals. Furthermore, T-cell-specific miRNAs miR-150, miR-
191, miR-223, miR-16, and miR-146b were down-regulated in all
seropositive individuals, when they explored miRNA changes in
specific subsets of HIV-1 susceptible cells. Among these, miR-
150 and miR-223 are signature anti-HIV-1 miRNAs that have
been reported to directly inhibit HIV-1 transcription (Huang
et al., 2007). Huang et al. demonstrated an enhancement in
HIV-1 production when all five of the “anti-HIV-1 miRNAs”
(miR-28, miR-125b, miR-150, miR-223, and miR-382), they
identified in vitro were inhibited in resting CD4+T cells from
cART treated patients with undetectable viremia (Huang et al.,
2007).

Witwer et al. described the down-regulation of miR-125b,
miR-150, and miR-29 in both elite suppressors and viremic
patients, compared to uninfected controls (Witwer et al.,
2012). miR-155, which inhibit HIV-1 infection in macrophages
(Swaminathan et al., 2012), was significantly higher only in
viremic patients as compared to ES or healthy controls. miR-
9, miR-34a, and miR-181 were up-regulated in viremic patients.
In vitro data showing the up-regulation of miR-34a by the
Tat, with subsequent down-regulation of SIRT1 and enhanced
viral translation supports the increase in miR-34a (Zhang et al.,
2012a). In a subsequent study, Witwer et al. found lower miR-
125b, miR-31, miR-146b, and miR-29a expression in HIV-1-
infected ART naïve patients (Witwer and Clements, 2012).
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TABLE 1 | Cellular mi-RNAs identified in HIV: in vitro reports.

microRNA Target Function References

miR-29a, miR-29b Nef Decrease HIV infection Coiras et al., 2009; Van Lint et al., 2013

miR-149 Vpr Decrease HIV infection Coiras et al., 2009; Van Lint et al., 2013

miR-324 Vif Decrease HIV infection Coiras et al., 2009; Van Lint et al., 2013

miR-378 vpu Decrease HIV infection Coiras et al., 2009; Van Lint et al., 2013

miR-29c Decrease HIV infection Van Lint et al., 2013

miR-149, miR-147, miR-138,

miR-513, miR-516, miR-518,

miR-581, miR-644, miR-646

3′ UTR Decrease HIV infection Van Lint et al., 2013

miR-28, miR-125b, miR-150,

miR-223, miR-382

3′ UTR Latency induction in Naïve T-cells Lecellier et al., 2005

miR-125b Genes necessary for T-cell

differentiation

Latency induction in Naïve T-cells Hariharan et al., 2005; Lecellier et al., 2005;

Nathans et al., 2009

miR-93, miR-148b, miR-221, miR-16 Decrease HIV infection Huang et al., 2007

miR-27b, miR-29b, miR-150,

miR-198, miR-223

Cyclin-T1 Restricts HIV replication Wang et al., 2009; Rossi et al., 2011;

Chaudhuri et al., 2013; Van Lint et al., 2013

miR-132 Decreases MeCP2 Increases HIV infection Yeung et al., 2005; Chiang et al., 2012

miR-222 CD4 receptor Repress CD4 expression in infected

cells

Chiang et al., 2013

miR-146a CXCR4 Prevents HIV entry Desplats et al., 2013; Leoh et al., 2013

miR-217, miR-34a, miR-142 SIRT1 Increase HIV infection Spinello et al., 2011; Orecchini et al., 2014;

Quaranta et al., 2015

miR-182 NAMPT, SIRT1 Increase HIV infection Zhang et al., 2012a

miR-155 DC-SIGN expression, DC maturation Reduce HIV infection, Noorbakhsh et al., 2010

Targets HDFs (LEDGF, Nup153 and

ADAM10)

Reduce viral integration Sisk et al., 2012

miR-17/92, miR-20a PCAF Inhibit HIV replication Brass et al., 2008

miR-15a, miR-15b, miR-16,

miR-20a, miR-93, miR-106b

Pur-α Low susceptibility to HIV infection in

monocytes

Woodward et al., 2009

Duskova et al. have noted in their study in PBMCs that
chronically HIV-1-infected patients have significantly increased
miR-19b, miR-146a, miR-615-3p, miR-382, miR-34a, miR-144,
and miR-155 compared to uninfected healthy controls (Duskova
et al., 2013).

A study by Bignami et al. found 23 differentially expressed
miRNAs between exposed uninfected (EU) and healthy
individuals (Bignami et al., 2012). miR-28-5p, miR-125b, and
miR-223 were significantly lower in resting CD4+T cells from
EU individuals. Eventhough many miRNAs were differentially
expressed between HIV-1 infected patients and EU, Bignami
et al. found only miR-155 to be significantly higher in LTNP
than in naive HIV-1 patients and MEU (Bignami et al.,
2012). Seddikki et al. showed a high expression of miR-155
in effector/memory Tregs compared to both naïve Tregs and
naive CD4 T cells (Seddiki et al., 2013). Later on, they further
found significantly lower expression of miR-9 in CD4+T
cells from chronically infected HIV-1 patients as compared
to uninfected healthy individuals or LTNP (Seddiki et al.,
2013). The function of miR-9 is to bind to and inhibit the
expression of B lymphocyte-induced maturation protein-1
(BLIMP-1). The BLIMP-1 expression was significantly increased
in HIV-1 patients, corresponding to the lower level of miR-9,
thereby uncovering a potential role for miR-9 in HIV-1-infected
patients.

Reynoso et al. described that plasma miRNA profile can
discriminate between elite controllers (EC) and chronic HIV
infected patients (CH). They found 49 miRNAs differentially
expressed between EC from CH, suggesting that higher
miRNA present in EC contribute to a successful defense
against HIV progression to AIDS compared to CH. The
plasma expression levels of miR-29b-3p, miR-33a-5p, and
miR-146a-5p were higher in EC than CH, in accordance
to recent studies in PBMC. miR-29b-3p is known to target
Nef (Ahluwalia et al., 2008) and an association between Nef
function and slower progression to AIDS has been established
(Cruz et al., 2013). No significant differences were observed
between elite controllers and healthy donors; however, 16
miRNAs were different in the plasma of chronic infected vs.
healthy donors (Reynoso et al., 2014). miR-18b-5p, miR-126-
3p, let-7d-3p, and miR-18a-5p correlated positively and miR-
424-5p and miR-34a-5p correlated negatively with CD4+T
cell counts.

miRNA in Neuro-AIDS
A subset of individuals infected with HIV-1 develops HIV-
associated neurocognitive disorders (HAND) at later stage of
the disease even after successful antiretroviral therapy. It is
accepted that HAND results from an indirect neurotoxicity,
since HIV does not infect neurons in the brain. Activation of
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macrophages/microglia is a key player in the development
and progression of neuro-AIDS. HIV induced miRNA
dysregulation in brain targets diverse biological processes,
including neuroinflammation, metabolic processes, and cell
death. Micro-RNAs that have been reported in neuroAIDS are
listed in Table 2.

Postmortem brains of HIV/SIV-infected humans and
monkeys had high miR-21, miR-142-3p, and miR-142-5p
(Yelamanchili et al., 2010) compared to uninfected. Myocyte
enhancer factor 2C (MEF2C), a CNS transcription factor, is a
target of miR-21 in neurons. Repression of MEF2C by miR-21,
is a potential pathogenic factor in neurodegenerative disorders
such as HAD and HAND (Yelamanchili et al., 2010). Similar
to CD4 T cells (Motsch et al., 2007), HIV-1-infected primary
human fetal microglia also expresses increased level of miR-146a
(Rom et al., 2010) during viral infection. In cultured microglia,
a negative correlation exists between miR-146a and monocyte
chemotactic protein-2 (MCP-2), which is a ligand for C–C
chemokine receptor type 5 (CCR5). i.e., increased expression
of miR-146a leads to MCP-2 inhibition. However, they did
not find any interference with viral replication with activity of
miR-146a.

Six miRNAs (374, 128a, 128b, 100, 25, and 99a) were
upregulated and seven miRNAs (let-7e, 298, let-7f, let-7c, let-7b,
320, and 214) were downregulated in rat primary cortical neurons
exposed to Tat (Eletto et al., 2008). Tat mediated increase in miR-
128a activity in neurons leads to a reduction in synaptosomal-
associated protein 25 (SNAP25) expression, a key regulator of
membrane fusion (Berkhout, 2008; Eletto et al., 2008). This
suggests that Tat-mediated upregulation of miR-128a could lead
neuronal damage.

The expression of miR-219, miR-125a, and miR-22 has been
reported to be high in HIV or HIV/major depressive disorder
(MDD) (Tatro et al., 2010). miR-125a and miR-22 expression in
turn leads to decreased protein translation of interferon-induced
transmembrane protein 3 (IFITM3), and soluble tumor necrosis
factor receptor (sTNFR1A) in primary human neuronal cultures.
IFITM protein is shown to inhibit HIV replication (Lu et al.,
2011). TNFR1A is involved in neuroinflammation. miR-219 was
shown to modulate NMDA receptor-mediated neurobehavioral
dysfunction (Kocerha et al., 2009). Noorbakhsh et al. have
detected altered expression of miR-129, miR-129-3, and miR-130
in HIV encephalitis (HIVE) brains. Caspase-6, -7, -8, and -9 were
associated with multiple miRNAs that were suppressed in HIVE
brains (Noorbakhsh et al., 2010).

TABLE 2 | mi-RNAs in NeuroAIDS.

microRNA Target References

miR-21 MEF2C Seddiki et al., 2013

miR-146a MCP-2 Cruz et al., 2013

miR-128a SNAP25 Yelamanchili et al., 2010;

Reynoso et al., 2014

miR-125a, miR-22 IFITM3, sTNFR1A Rom et al., 2010

miR-219 NMDA receptor Eletto et al., 2008

Effect of Drugs of Abuse on Anti-HIV miRNA

Expression
Intravenous drug users (IVDU) have a higher incidence of HIV
in the United States and other regions in the world. Drugs of
abuse are an extremely complex system, with many unknowns
and/or missing links to be filled up. Drugs of abuse such as
amphetamines, cocaine, marijuana, and opiates may contribute
to the increased susceptibility to HIV infection and disease
progression, by manipulating different genes or proteins that
are needed for the HIV infection/replication. This is a well-
established field, which have been published and reviewed in the
past. Few examples include: (a) the upregulation of chemokine
receptors (CCR5, CXCR4 etc.,), which are the co-receptors for
HIV entry, (b) up-regulation of DC-SIGN in astrocytes and
dendritic cells, (c) increased production of IL-10 by cocaine in
macrophages which aids in HIV-1 replication, (d)Meth decreases
CC chemokine expression by dendritic cells etc., (Li et al.,
2002; Fiala et al., 2005; Nair et al., 2005; Reynolds et al., 2006;
Dhillon et al., 2007; Liang et al., 2008; Shapshak et al., 2011).
In addition to the co-receptor or entry receptor modulation,
in vitro and animal model experiments have also shown that drug
use affect immunologic components that, in turn, influence HIV
disease progression. Cocaine has shown to disrupt the immune
functioning (reviewed by Baldwin et al., 1998; Hauser and Knapp,
2014; Pandhare et al., 2014; Parikh et al., 2014). These drugs
have also been reported to alter the expression of some anti-HIV
miRNAs, which are listed in Table 3.

Morphine exposure has been shown to change the expression
of cellular anti-HIV miRNAs in monocytes in vitro. The
expression of four IFNα/β inducible anti-HIVmiRNAs (miRNA-
28, miRNA-125b, miRNA-150, and miRNA-382) were decreased
in monocytes treated in vitro with morphine, compared to
untreated cells (Wang et al., 2011). These miRNAs were
correlated with the susceptibility of monocytes to HIV-1
infection, demonstrating a plausible mechanism for morphine-
mediated enhancement of HIV infection of monocytes. Same
miRNAs were lower in PBMCs from uninfected, heroin abusing

TABLE 3 | Drugs of abuse and anti-HIV miRNAs.

Drugs Effect on mi-RNA

expression

References

Morphine Decrease miR-28,

miR-125b, miR-150,

miR-382

Wang et al., 2011

Increase miR-181b Dave and Khalili, 2010

Decrease miR-15b

Decrease miR-155 and

miR-20a

Dhillon et al., 2007

Cocaine Decrease miR-155 and

miR-20a

Fiala et al., 2005

Decrease miR-146a Kocerha et al., 2009

Decrease miR-125b Li et al., 2002

Methamphetamine Increase miR-28, miR-125b,

miR-150, miR-223

Shapshak et al., 2011

No change in miR-296
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individuals compared to healthy, non-abusing individuals,
corresponding to in vitro findings. Another anti-HIV miRNA,
miR-223, was not affected by morphine, the reason for which is
not clear. In vivo investigations using PBMCs from the heroin-
dependent subjects also showed the same results for miR-223
expression.

Dave and Khalili reported 26 differentially expressed
miRNA in human MDMs treated with morphine; with miR-
15b expression showing greatest increase and miR-181b
greatest decrease (Dave and Khalili, 2010). Morphine induces
inflammation and oxidative stress in immune cells through
regulating the miR-15b and 181b, thereby contributing to the
AIDS progression.

Drugs of abuse have shown to upregulate the expression of
CXCR4, which facilitate the entry of HIV into CD+4 T cells
resulting in increased infection of X4-tropic HIV-1 (Steele et al.,
2003). We, in our preliminary in vitro experiments saw that
cocaine down-regulated miR146a thereby increasing CXCR4
expression (Pilakka-Kanthikeel et al., 2012). We have also shown
that cocaine andmorphine significantly down-regulatedmiR-155
andmiR-20a inMDDC, thereby enhancing the HIV-1 infectivity.
Cocaine or morphine induced effect on HIV infectivity was
reversed by transfection of MDCC with miR155 mimic (Napuri
et al., 2012, 2013).

miR-125b is a member of anti-HIV-1 miRNA family that
targets the 3′-UTR of HIV-1 transcripts and inhibit viral
translation, a post entry step (Rossi et al., 2011). Cocaine, was
also shown to inhibit miR-125b in CD4+T cells, which in turn
enhances HIV-1 replication (Mantri et al., 2012). The over-
expression of miR-125b decreases HIV-1 replication, suggesting
a key role for miR-125b in the cocaine-induced enhancement of
HIV-1 replication in CD4+T cells.

METH has been shown to increase HIV-1 replication in
various HIV-1 permissive cells, including dendritic cells (DCs)
(Nair et al., 2009) and monocyte-derived macrophage (Liang
et al., 2008). Toussi et al. showed enhancement of HIV-1
replication of R5 tropic JR-CSF HIV-1 in human CD4+T cells
and in the peripheral CD4+T cells of JR-CSF/hu-CycT1 HIV-
1 transgenic mouse, with METH treatment upto 150mmol/L
(Toussi et al., 2009). In contrast to these reports, a recent study
by Mantri et al. showed that METH inhibits HIV-1 replication
by up-regulating the cellular anti-HIV-1 miRNAs (miR-28-5p,

miR-125b, miR-150, and miR-223) in primary CD4+T cells
(Mantri et al., 2014). The expression of the anti-viral miR-296-5p
was not affected by METH in primary CD4+T cells.

Conclusion and Future Directions

Taken together, the present findings suggest that cell type specific
expression of intracellular anti-HIV miRNAs play a role in
making cells more or less susceptible to HIV infection. miRNAs
have been suggested to play role in maintaining the HIV latency,
the transition from latency to activation, the reduction of virion
production etc. However, the interaction of the host miRNA
with HIV-1 is still at a budding stage. A complete cure for
HIV-1 is possible only when HIV-1 gene is silenced or completely
eliminated from every latently infected cell. Identifying the role of

miRNAs associated with HIV-1 latency could help in developing
new strategies to intervene the mechanism of viral persistence.
Also, more studies on the impact of drugs of abuse on anti-HIV
miRNA expression, and strategies to block their effect on miRNA
expression will help in developing therapeutics for drug addiction
by manipulating the actions of miRNA.

An interesting avenue for future research that has not yet
been explored is to investigate if HIV-1 modulates the expression
of cellular miRNAs that can alter the expression of restriction
factors. Interestingly, miR-181 (miR-181- a,b,c and -d) has
been predicted to bind to and potentially inhibit the HIV-1
restriction factor sterile alpha motif and histidine/aspartic acid
domain-containing protein 1 (SAMHD1).We and another group
recently shown miR181a and miR-155 regulate SAMHD1 (Jin
et al., 2014; Pilakka-Kanthikeel et al., 2015a,b). Earlier, Gottwein
et al. reported a viral miR-K12-11, an ortholog of cellular miR-
155, to target SAMHD1 (Gottwein et al., 2007). More studies
are warranted to study the role of miRNAs that regulate the
HIV restriction factors and how drugs of abuse interact with
them.
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