
PERSPECTIVE
published: 29 September 2015
doi: 10.3389/fmicb.2015.01036

Frontiers in Microbiology | www.frontiersin.org 1 September 2015 | Volume 6 | Article 1036

Edited by:

John R. Battista,

Louisiana State University, USA

Reviewed by:

Awdhesh Kalia,

University of Texas MD Anderson

Cancer Center, USA

Suleyman Yildirim,

Istanbu Medipol University

International School of Medicine,

Turkey

*Correspondence:

Roger C. Levesque,

Institute for Integrative and Systems

Biology, Université Laval, 1030

Avenue de la Médecine, Quebec,

QC G1E 7A9, Canada

rclevesq@ibis.ulaval.ca

†
These authors have contributed

equally to this work.

Clinical utilization of genomics
data produced by the international
Pseudomonas aeruginosa
consortium
Luca Freschi 1†, Julie Jeukens 1 †, Irena Kukavica-Ibrulj 1†, Brian Boyle 1,
Marie-Josée Dupont 1, Jérôme Laroche 1, Stéphane Larose 1, Halim Maaroufi 1,
Joanne L. Fothergill 2, Matthew Moore 2, Geoffrey L. Winsor 3, Shawn D. Aaron 4,
Jean Barbeau 5, Scott C. Bell 6, Jane L. Burns 7, Miguel Camara 8, André Cantin 9,
Steve J. Charette 1, 10, 11, Ken Dewar 12, Éric Déziel 13, Keith Grimwood 14,
Robert E. W. Hancock 15, Joe J. Harrison 16, Stephan Heeb 8, Lars Jelsbak 17,
Baofeng Jia 18, Dervla T. Kenna 19, Timothy J. Kidd 20, 21, Jens Klockgether 22,
Joseph S. Lam 23, Iain L. Lamont 24, Shawn Lewenza 16, Nick Loman 25,
François Malouin 9, Jim Manos 26, Andrew G. McArthur 18, Josie McKeown 8, Julie Milot 27,
Hardeep Naghra 8, Dao Nguyen 12, 28, Sheldon K. Pereira 18, Gabriel G. Perron 29,
Jean-Paul Pirnay 30, Paul B. Rainey 31, 32, Simon Rousseau 12, Pedro M. Santos 33,
Anne Stephenson 34, Véronique Taylor 23, Jane F. Turton 19, Nicholas Waglechner 18,
Paul Williams 8, Sandra W. Thrane 17, Gerard D. Wright 18, Fiona S. L. Brinkman 3,
Nicholas P. Tucker 35, Burkhard Tümmler 22, Craig Winstanley 2 and Roger C. Levesque 1*

1 Institute for Integrative and Systems Biology, Université Laval, Quebec, QC, Canada, 2 Institute of Infection and Global

Health, University of Liverpool, Liverpool, UK, 3Department of Molecular Biology and Biochemistry, Simon Fraser University,

Vancouver, BC, Canada, 4Ottawa Hospital Research Institute, Ottawa, ON, Canada, 5 Faculté de Médecine Dentaire,

Université de Montréal, Montréal, QC, Canada, 6QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia,
7 Seattle Children’s Research Institute, University of Washington School of Medicine, Seattle, WA, USA, 8 School of Life

Sciences, University of Nottingham, Nottingham, UK, 9Département de Médecine, Université de Sherbrooke, Sherbrooke,

QC, Canada, 10Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec, QC,

Canada, 11Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des Sciences et de Génie, Université

Laval, Quebec, QC, Canada, 12Department of Human Genetics, McGill University, Montreal, QC, Canada, 13 INRS Institut

Armand Frappier, Laval, QC, Canada, 14 School of Medicine, Griffith University, Gold Coast, QLD, Australia, 15Department of

Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada, 16 Biological Sciences, University of

Calgary, Calgary, AB, Canada, 17Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark, 18M.G.

DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada, 19 Antimicrobial Resistance

and Healthcare Associated Infections Reference Unit, Public Health England, London, UK, 20Child Health Research Centre,

The University of Queensland, Brisbane, QLD, Australia, 21Centre for Infection and Immunity, Queen’s University Belfast,

Belfast, UK, 22 Klinische Forschergruppe, Medizinische Hochschule, Hannover, Germany, 23Department of Molecular and

Cellular Biology, University of Guelph, Guelph, ON, Canada, 24Department of Biochemistry, University of Otago, Dunedin,

New Zealand, 25 Institute for Microbiology and Infection, University of Birmingham, Birmingham, UK, 26Department of

Infectious Diseases and Immunology, The University of Sydney, Sydney, NSW, Australia, 27Department of Pneumology,

Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Quebec, QC, Canada, 28Department of

Microbiology and Immunology and Department of Experimental Medicine, McGill University, Montreal, QC, Canada,
29Department of Biology, Bard College, Annandale-On-Hudson, NY, USA, 30 Laboratory for Molecular and Cellular

Technology, Queen Astrid Military Hospital, Brussels, Belgium, 31New Zealand Institute for Advanced Study, Massey

University, Albany, New Zealand, 32Max Planck Institute for Evolutionary Biology, Plön, Germany, 33Department of Biology,

University of Minho, Braga, Portugal, 34 St. Michael’s Hospital, Toronto, ON, Canada, 35 Strathclyde Institute of Pharmacy and

Biomedical Sciences, University of Strathclyde, Glasgow, UK

http://www.frontiersin.org/Microbiology
http://www.frontiersin.org/Microbiology/editorialboard
http://www.frontiersin.org/Microbiology/editorialboard
http://www.frontiersin.org/Microbiology/editorialboard
http://www.frontiersin.org/Microbiology/editorialboard
http://dx.doi.org/10.3389/fmicb.2015.01036
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2015.01036&domain=pdf&date_stamp=2015-09-29
http://www.frontiersin.org/Microbiology
http://www.frontiersin.org
http://www.frontiersin.org/Microbiology/archive
https://creativecommons.org/licenses/by/4.0/
mailto:rclevesq@ibis.ulaval.ca
http://journal.frontiersin.org/article/10.3389/fmicb.2015.01036/abstract
http://loop.frontiersin.org/people/125272/overview
http://loop.frontiersin.org/people/236577/overview
http://loop.frontiersin.org/people/258369/overview
http://loop.frontiersin.org/people/245081/overview
http://loop.frontiersin.org/people/240403/overview
http://loop.frontiersin.org/people/259051/overview
http://loop.frontiersin.org/people/190571/overview
http://loop.frontiersin.org/people/258402/overview
http://loop.frontiersin.org/people/39638/overview
http://loop.frontiersin.org/people/85479/overview
http://loop.frontiersin.org/people/24468/overview
http://loop.frontiersin.org/people/98375/overview
http://loop.frontiersin.org/people/225274/overview
http://loop.frontiersin.org/people/237906/overview
http://loop.frontiersin.org/people/277281/overview
http://loop.frontiersin.org/people/258412/overview
http://loop.frontiersin.org/people/278475/overview
http://loop.frontiersin.org/people/277352/overview
http://loop.frontiersin.org/people/29903/overview
http://loop.frontiersin.org/people/30081/overview
http://loop.frontiersin.org/people/277610/overview
http://loop.frontiersin.org/people/65789/overview
http://loop.frontiersin.org/people/87388/overview
http://loop.frontiersin.org/people/116986/overview
http://loop.frontiersin.org/people/259063/overview
http://loop.frontiersin.org/people/277362/overview
http://loop.frontiersin.org/people/264632/overview
http://loop.frontiersin.org/people/244111/overview
http://loop.frontiersin.org/people/260413/overview
http://loop.frontiersin.org/people/259007/overview
http://loop.frontiersin.org/people/47470/overview
http://loop.frontiersin.org/people/31568/overview
http://loop.frontiersin.org/people/277282/overview
http://loop.frontiersin.org/people/85467/overview
http://loop.frontiersin.org/people/277287/overview
http://loop.frontiersin.org/people/244650/overview
http://loop.frontiersin.org/people/29578/overview
http://loop.frontiersin.org/people/258904/overview
http://loop.frontiersin.org/people/24835/overview
http://loop.frontiersin.org/people/30237/overview
http://loop.frontiersin.org/people/50217/overview


Freschi et al. The international P. aeruginosa consortium

The International Pseudomonas aeruginosa Consortium is sequencing over 1000

genomes and building an analysis pipeline for the study of Pseudomonas genome

evolution, antibiotic resistance and virulence genes. Metadata, including genomic and

phenotypic data for each isolate of the collection, are available through the International

Pseudomonas Consortium Database (http://ipcd.ibis.ulaval.ca/). Here, we present our

strategy and the results that emerged from the analysis of the first 389 genomes. With as

yet unmatched resolution, our results confirm that P. aeruginosa strains can be divided

into three major groups that are further divided into subgroups, some not previously

reported in the literature. We also provide the first snapshot of P. aeruginosa strain

diversity with respect to antibiotic resistance. Our approach will allow us to draw potential

links between environmental strains and those implicated in human and animal infections,

understand how patients become infected and how the infection evolves over time

as well as identify prognostic markers for better evidence-based decisions on patient

care.

Keywords: Pseudomonas aeruginosa, next-generation sequencing, bacterial genome, phylogeny, database,

cystic fibrosis, antibiotic resistance, clinical microbiology

Importance of P. aeruginosa as a Model in
Large-scale Bacterial Genomics

Studies of the genetic structure of microbial populations are
central to understand the evolution, ecology and epidemiology
of infectious diseases. However, numerous studies describing the
genetic structure of pathogen populations are based on samples
drawn mostly and overwhelmingly from clinical collections
(Wiehlmann et al., 2007; Pirnay et al., 2009). This approach has
resulted in a limited view of bacterial pathogens with respect
to the evolutionary history of disease-causing lineages as well
as the development and distribution of antibiotic resistance
genes via the resistome and mobilome (D’Costa et al., 2006;
Perry and Wright, 2013). The environmental bacterium and
opportunistic pathogen P. aeruginosa is a model system in
large-scale bacterial genomics (Gellatly and Hancock, 2013).
It exhibits extensive metabolic adaptability enabling survival
in a wide range of niches including soil, water, plants and
animals. Genome rearrangements and a varying complement
of genes contribute to strain-specific activities but the detailed
molecular mechanisms are still poorly understood (Silby et al.,
2011). Multiple studies, some of which include environmental
isolates, have sought to resolve the population structure of P.
aeruginosa using various typing methods and are not in full
agreement (Kiewitz and Tümmler, 2000; Pirnay et al., 2002,
2009; Wiehlmann et al., 2007; Fothergill et al., 2010; Lam et al.,
2011; Kidd et al., 2012; Martin et al., 2013). Next-generation
sequencing (NGS) coupled with whole genome comparison is
now becoming the new gold standard for understanding bacterial
population structure and offers previously unmatched resolution
for phylogenetic analysis (Hilker et al., 2015; Marvig et al.,
2015; Williams et al., 2015). The combination of NGS with a
more extensive set of strains promises to resolve the population
structure of P. aeruginosa and shed light on the genetic basis of
its adaptability.

Prominent Role of P. aeruginosa in Cystic
Fibrosis Lung Infections

Pseudomonas aeruginosa can cause serious opportunistic
infections in humans, in particular among immunocompromised
individuals, those having cancer, skin burns and wounds, and
most notably, cystic fibrosis (CF) patients (Lyczak et al.,
2000). Although transmission routes are difficult to establish,
it is generally accepted that the lungs of most CF patients
become infected with P. aeruginosa from the environment,
and it is difficult to devise strategies to counter such infections
(Emerson et al., 2002; Hauser et al., 2011). Even though patient
management has increased the median life expectancy of CF
patients to about 50 years (Stephenson et al., 2015), most patients
eventually develop chronic lung infection, which is the main
cause of morbidity and mortality associated with CF. While
there has been significant progress in early eradication therapy
for P. aeruginosa (Lee, 2009; Heltshe et al., 2015), chronic
lung infections remain challenging to eradicate. Indeed, the
basic principles on which clinical bacteriology practices are
based have altered little over the past 50 years and suffer severe
limitations in the context of opportunistic and chronic lung
infections. P. aeruginosa populations often exist in biofilms and
diversify phenotypically in the CF lung (Mowat et al., 2011),
hence antimicrobial susceptibility profiles applied to single
isolates are poorly predictive of therapeutic efficacy (Keays
et al., 2009). Moreover, despite the availability of a number of
completely sequenced and annotated P. aeruginosa genomes
(Stover et al., 2000; Lee et al., 2006; Winstanley et al., 2009;
Roy et al., 2010; Jeukens et al., 2014), knowledge on genome
evolution and the genomic requirements for opportunistic and
CF infections is limited. In fact, sequenced strains reported
to date (www.pseudomonas.com, Winsor et al., 2011) were
randomly selected and are unlikely to reflect population
diversity, hence representing an incomplete snapshot of the
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pathogen, even in the context of CF. Understanding the biology
of P. aeruginosa requires the exploration of nontraditional
niches in the environment and the widest possible repertoire of
opportunistic infections.

The International P. aeruginosa
Consortium (IPC)

The science of genomics applied to opportunistic infections via
whole bacterial genome sequencing promises to transform the
practice of clinical microbiology. With rapidly falling costs and
turnaround times, microbial genome sequencing and analysis
are becoming a viable strategy to understand CF lung infections
as well as other human and animal infections. The objective of
the International P. aeruginosa Consortium (IPC) is to sequence
a minimum of 1000 P. aeruginosa genomes, link the data to
the Pseudomonas Genome Database (www.pseudomonas.com,
Winsor et al., 2011), integrate the information with the
Canadian CF registry and develop a user-friendly pipeline to
study these genomes. Genomics data will support molecular
epidemiology for the surveillance of outbreaks and has the
potential for future genotypic antimicrobial susceptibility testing
as well as the identification of novel therapeutic targets and
prognostic markers. This project is supported by an international
consortium from five continents; its outcomes will have
worldwide dissemination for the benefit of clinical microbiology
and especially for CF patients.

Sequencing Over 1000 P. aeruginosa
Genomes: Objectives and Strategy

By generating a comprehensive genome sequence database truly
representative of the worldwide P. aeruginosa population, we
will:

(1) Assemble a large and representative strain collection, with
associated genome data, useful for antimicrobial testing,
identification of resistance markers, and data mining for new
therapeutic targets;

(2) Develop platforms and pipelines to enable synergy between
genomic and clinical data, which will allow identification of
prognostic markers and stratification of patients, leading to
improvements in patient care;

(3) Transform CF diagnostic microbiology through innovations
in genomics;

(4) Develop user-friendly tools that will enable CF clinicians to
interpret genomic data leading to better informed decisions
on issues of cross infection.

Our working hypothesis is that a high-quality, large-scale
bacterial genome database available through a user-friendly
pipeline will have a major impact on epidemiology, diagnostics
and treatment. A major objective is to identify representative
isolates from groups of closely related genomes to become
reference type isolates and provide reference type genomic data.
To this end, genomes are initially sequenced on an Illumina
MiSeq instrument with an average median coverage of 40. This

first sequencing step will help to determine whether there is
already a good reference genome for each new genome by
investigating both core and accessory genetic material. First,
for conserved regions among isolates, i.e., the core genome, we
will perform phylogenetic analysis and identify single nucleotide
polymorphisms (SNPs). Second, we will determine whether a
new genome significantly contributes to expansion of the full
genetic repertoire of P. aeruginosa (i.e., the pan-genome), for
instance, with at least 0.1% of its genome (about 6000 bp)
representing previously unknown accessory genetic material. It
will also be possible to identify indels and structural variations
among genomes. We will analyze genomes for the presence
of genomic islands using IslandViewer and related genome-
comparison and sequence-composition based tools (Langille
and Brinkman, 2009; Grant et al., 2012; Dhillon et al., 2015).
Finally, each new genome will be characterized based on the
presence/absence of regions of genome plasticity (Klockgether
et al., 2011), the virulence factor (VF) database (Barken et al.,
2008), curated VF data at www.pseudomonas.com, and the
Comprehensive Antibiotic Resistance Database (McArthur et al.,
2013). In light of this information, a limited set of new reference
genomes will eventually be selected for PACBIO RS II sequencing
to enable full assembly and detailed annotation.

The International P. aeruginosa
Consortium Database (IPCD)

The IPC’s strain collection is harbored at the Institute for
integrative and systems biology (IBIS), in Quebec City, Canada.
It currently contains 1514 entries for P. aeruginosa isolates
spanning 135 years back to 1880 and covering 85 locations,
in 35 countries, on five continents. It includes previously
described collections (Pirnay et al., 2009; Stewart et al., 2011;
Kidd et al., 2012) and was assembled with the aim of
representing maximal genomic diversity. To this end, various
criteria were taken into consideration, including geographic
origin, previous genotyping, phenotype, and in vivo behavior.
We envisage that the collection can accommodate over 10,000
isolates.

In order to manage phenotypic and genomic data for the
growing P. aeruginosa collection in addition to sharing this
data, we created the International P. aeruginosa Consortium
Database (IPCD), an open source web application available at
http://ipcd.ibis.ulaval.ca/. It includes isolate identification, host,
researcher, date of isolation, geographical origin, phenotypic
data, anonymized patient information, DNA extraction
details, NGS information and genome assembly. Its structured
vocabulary is being developed further. IPCD currently contains
NGS data and unpublished draft genomes from CF patients and
from most of the other types of known human infections. For
comparative genomics purposes, IPCD also contains animal
infection isolates and environmental isolates from plants, soil
and water. Researchers who provided strains have priority access
to corresponding genome sequences through personal user
accounts, but all genome sequences produced by the IPC will
become publically available.
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The IBIS Bioinformatics Pipeline for
Bacterial Genome Assembly

Analysis software for genome assembly and selection of
additional reference genomes is required to extract relevant
information in a fully automated and reliable fashion without
human intervention. Ideally, this software should be platform
independent and analyze sequence data directly without being
tied to proprietary data formats. This ensures maximal flexibility
and reduces lag time to a minimum. We are currently using an
integrated pipeline for de novo assembly of microbial genomes
based on the A5 pipeline (Tritt et al., 2012) and parallelized on a
Silicon Graphics UV 100 to accommodate data from 96 genomes
and provide assembly statistics in about 30 h. This automated
approach currently results in 20–60 contigs per genome (median
N50 = 415 kb) and is anticipated to improve as sequencing
technology improves.

Phylogeny of P. aeruginosa

P. aeruginosa is well known to have an adaptable genome
(5.5–7Mbps) that enables it to colonize a wide range of
ecological niches; comparative genomics approaches have
identified changes in surface antigens, loss of virulence-associated
traits, increased antibiotic resistance, inserted genomic islands
including phage, and pyocin operons, overproduction of alginate
and the modulation of metabolic pathways. Its genome also has
many regions that exhibit plasticity (Klockgether et al., 2011).
The IPCwill provide fine-scale analyses to evaluate these changes,
allowing the comparison of VFs, loss/gain of function mutations
and antibiotic resistance genes as well as complete core and
accessory genomes.

As a proof of concept for this aim, we used the 389 genomes
that constitute our current sequence dataset, including the
335 draft genomes produced to date by the IPC, to perform
phylogenetic analysis of the core genome using the Harvest suite
(Treangen et al., 2014). We found that P. aeruginosa strains
can be divided into three major groups (Figure 1A), a result
providing concrete support and agreement to previous results
with a limited but diverse set of 55 strains (Stewart et al., 2014).
The tree presented here also provides novel information since
it shows new subgroups and provides unmatched resolution.
The high number of strains included in our analysis and the
fact that these strains come from a wide array of sources
(including environmental, clinical and animal strains, and a wide
geographical spread) may suggest that group 1 strains, including
PAO1, are naturally more abundant than group 2, which includes
PA14. However, it is noteworthy that the opposite conclusion
was reached in a previous typing-based study (Wiehlmann et al.,
2007), and that our dataset is biased toward clinical isolates.
Further, the third major group that includes strain PA7 is now
populated with 12 new strains. Given that phylogenetic analysis
of 389 genomes has produced at least 20 distinct branches, it
is clear that a more extensive survey sequencing approach, as
proposed by the IPC, is required to populate these branches.
Data analysis with Harvest also revealed that the core genome
represents 17.5% of the average P. aeruginosa genome size. This

is much less than what previous studies, which typically do not
include group 3 strains, have reported (e.g., 79% inDettman et al.,
2015), and is due to a combined effect of diversity and number of
strains, as it can be deduced from Figure 1B. Inclusion of sister
species P. resinovorans in this analysis resulted in a drop of core
genome coverage to 2.4%. Figure 1C presents the number of core
genome SNPs.

Linking IPCD with Pseudomonas.com and
the Comprehensive Antibiotic Resistance
Database

The Pseudomonas Genome Database (www.pseudomonas.com;
Winsor et al., 2011) is an established platform for searching
and comparing multiple genome sequences and annotations for
Pseudomonas species. This publically available database hosts
sequence and annotation data including orthologs, function,
expression, cross references, and various predictions for 70
complete Pseudomonas genomes plus draft genomes for more
than 561 additional P. aeruginosa isolates. It provides ongoing
high-quality curated updates to existing annotations based on
community involvement. The IPCD will draw on existing tools
such as Sybil that have been developed for both carrying out
comparative analyses and presenting data over the web (Riley
et al., 2012). Reliable methods for the phylogenetic analysis of
our dataset are used including analysis of core genome SNPs
using Harvest (Treangen et al., 2014). Close attention to the
links between the presence of strain specific genomic islands and
patterns of SNPs in the core genome will help identify diagnostic
sequences and SNP combinations for the development of new
P. aeruginosa typing methods with the highest resolution to
date. This will be done using a combination of de novo island
prediction using IslandViewer (Langille and Brinkman, 2009;
Dhillon et al., 2015) and analysis using the CG View Comparison
Tool (Grant et al., 2012).

As an additional feature, we plan to link IPCD with
The Comprehensive Antibiotic Resistance Database (CARD;
McArthur et al., 2013) available at http://arpcard.mcmaster.ca/,
which provides data for ∼3000 antibiotic resistance genes
and is under continuous curation efforts. Here, for instance,
we used the CARD reference data to detect the presence of
resistance genes through Resistance Gene Identifer searches
(McArthur et al., 2013) on 389 P. aeruginosa strains (Figure 2).
Approximately 40% of the 73 detected resistance genes were
found in a majority of strains, including genes involved in
transport, efflux and permeability as well as genes involved
in beta-lactam resistance. Approximately 60% of the resistance
genes we detected were found only in a restricted group of strains,
particularly for aminoglycoside, macrolide, and sulfonamide
resistance, highlighting the great variability of P. aeruginosa
strains with respect to resistance genes. This variation is now
being unraveled thanks to our extensive sampling. These data
will be used to study and understand the pool of resistance genes
present in clinical strains with a particular focus on CF strains,
and to understand the links between clinical and environmental
strains with respect to these genes.
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FIGURE 1 | (A) Unrooted maximum likelihood tree of 389 Pseudomonas aeruginosa genomes based on SNPs within the core genome as defined by Harvest (100

bootstraps). Strains are divided into three major groups (group 1: blue, group 2: orange and group 3: green). The number of strains for each group is shown. Black

circles represent strains that were already sequenced before this study while white circles represent one or more strains that were sequenced in this study. Group 3

was contracted for visualization purposes; a framed miniature of the true appearance of this tree is presented. The tree in Newick format is available as

Supplementary Data Sheet 1 (B) Total coverage of the P. aeruginosa genome by the core genome for each of the three groups shown in (A), all 389 genomes

(Group 1+ 2 + 3) and a diverse set of 55 strains from Stewart et al. (2014). (C) Total number of core genome SNPs for each of the three groups shown in (A), all 389

genomes (Group 1+ 2 + 3) and a diverse set of 55 strains from Stewart et al. (2014).

Linking Genomic and Clinical Data

It will be essential to match phenotypic and clinical
data (antibiotic resistance, virulence, anonymized clinical
observations) to the genomic data produced. We will categorize
data within the IPCD so that isolates can be sorted by phenotype,
allowing rapid identification of linked genomic signatures
and the development of prognostic approaches to treat CF
infections. The development of a pipeline to initially map

“new” P. aeruginosa genomes will evolve toward becoming a
routine clinical tool for the use of genomic data in CF and could
represent a very powerful sentinel surveillance system. We will
develop tools to rapidly collate data for a given strain type and
produce a concise phenotypic and clinical profile that provides
clinicians with an evidence based decision making platform. The
Canadian CF Registry was created so that data entry could be
standardized in CF clinics across Canada. We will use this system
to link IPCD with clinical data for CF isolates.
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FIGURE 2 | Heat map showing the unique distribution profiles of antibiotic resistance genes for 389 Pseudomonas aeruginosa strains (black: no

sequence matching the protein; green: perfect match to known antimicrobial resistance (AMR) gene sequence; red: variant of known AMR gene

sequence). The heat map was obtained by performing a Resistance Gene Identifier (RGI) analysis against reference sequences of the Comprehensive Antibiotic

Resistance Database (CARD; McArthur et al., 2013). The bar plot shows in how many strains each profile was observed. On the left, proteins are grouped according

to their biological function or the resistance they confer. In rare cases, more than a single copy of a resistance gene may be present within an individual strain. For

those genes with resistance conferred by mutation (labeled with an asterisk), all detected mutations are known from other pathogens and may require functional

verification in P. aeruginosa. Genes labeled as “putative” (“put.” in the figure) are similar to a number of known sequence variants within a family of AMR genes. All

perfect matches to OXA β-lactamases are OXA-50. The complete heat map with the full set of P. aeruginosa strains is available in Supplementary Image 1. The raw

data used to generate the heat map is available as Supplementary Table 1.

Future Genomic Analyses and Biological
Studies of P. aeruginosa

We are committed to continuously improve the IPCD and
pseudomonas.com by adding P. aeruginosa genomes from other
human, animal, and environmental isolates as well as by
enhancing metadata. The consortium has identified a number of
research priorities in the international P. aeruginosa community,
many of which will be long-term projects shared among
members of the consortium as a research working group.
The goal of the IPC is to avoid duplication of efforts in P.
aeruginosa genomics and enhance interest from researchers
having common goals. Additional members are welcome to
join in so that the “depth and breadth” of P. aeruginosa
biology expands beyond what we outlined for the initial
consortium. We also intend to seek collaboration with other
groups to connect our database with those developed for

other Pseudomonad genomes. Finally, the IPC could become a
model for other groups interested in the bacterial genomics of
infectious diseases, as the combination of large-scale genomics
and evolutionary biology tools may lead to new strategies for
countering infections (Little et al., 2012; Casadevall and Pirofski,
2014).
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