
ORIGINAL RESEARCH
published: 13 October 2015

doi: 10.3389/fmicb.2015.01130

Frontiers in Microbiology | www.frontiersin.org 1 October 2015 | Volume 6 | Article 1130

Edited by:

Olga Lage,

University of Porto, Portugal

Reviewed by:

Alison Buchan,

The University of Tennessee, Knoxville,

USA

Li Sun,

Chinese Academy of Sciences, China

Olivier de Clerck,

Ghent University, Belgium

*Correspondence:

Suhelen Egan

s.egan@unsw.edu.au

Specialty section:

This article was submitted to

Aquatic Microbiology,

a section of the journal

Frontiers in Microbiology

Received: 05 June 2015

Accepted: 28 September 2015

Published: 13 October 2015

Citation:

Gardiner M, Fernandes ND,

Nowakowski D, Raftery M,

Kjelleberg S, Zhong L, Thomas T and

Egan S (2015) VarR controls

colonization and virulence in the

marine macroalgal pathogen Nautella

italica R11. Front. Microbiol. 6:1130.

doi: 10.3389/fmicb.2015.01130

VarR controls colonization and
virulence in the marine macroalgal
pathogen Nautella italica R11

Melissa Gardiner 1, Neil D. Fernandes 1, Dennis Nowakowski 1, Mark Raftery 2,

Staffan Kjelleberg 1, 3, Ling Zhong 2, Torsten Thomas 1 and Suhelen Egan 1*

1 School of Biotechnology and Biomolecular Sciences, Centre for Marine Bio-Innovation, The University of New South Wales,

Sydney, NSW, Australia, 2Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical Centre, The University of New

South Wales, Sydney, NSW, Australia, 3 Singapore Centre on Environmental Life Sciences Engineering, Nanyang

Technological University, Singapore, Singapore

There is increasing evidence to suggest that macroalgae (seaweeds) are susceptible to

infectious disease. However, to date, little is known about the mechanisms that facilitate

the colonization and virulence of microbial seaweed pathogens. One well-described

example of a seaweed disease is the bleaching of the red alga Delisea pulchra, which

can be caused by the bacterium Nautella italica R11, a member of the Roseobacter

clade. This pathogen contains a unique luxR-type gene, varR, which we hypothesize

controls its colonization and virulence. We show here that a varR knock-out strain is

deficient in its ability to cause disease in D. pulchra and is defective in biofilm formation

and attachment to a common algal polysaccharide. Moreover complementation of the

varR gene in trans can restore these functions to the wild type levels. Proteomic analysis

of bacterial cells in planktonic and biofilm growth highlight the potential importance of

nitrogen scavenging, mobilization of energy reserves, and stress resistance in the biofilm

lifestyle of N. italica R11. Moreover, we show that VarR regulates the expression of a

specific subset of biofilm-associated proteins. Taken together these data suggest that

VarR controls colonization and persistence ofN. italicaR11 on the surface of amacroalgal

host and that it is an important regulator of virulence.

Keywords: bacterial biofilms, Delisea pulchra, seaweed disease, macroalgae, microbial interactions, quorum

sensing, solo LuxR-type regulator

INTRODUCTION

Macroalgae are major habitat formers and contribute to the primary production in temperate
marine ecosystems (Jones et al., 1994; Phillips, 2001; Smale et al., 2011). However, there is
evidence to suggest that microbial disease is a possible factor contributing to the decline of
healthy, macroalgal populations (Correa, 1996; Connell et al., 2008; Wernberg et al., 2009, 2011;
Gachon et al., 2010; Campbell et al., 2011). Environmental changes, including increasing seawater
temperatures, can reduce innate defense strategies in macroalgal hosts (Potin et al., 2002; Goecke
et al., 2010), and evidence also suggests that this results in susceptibility to colonization and
infection by pathogens (Harvell et al., 1999; Gachon et al., 2010; Campbell et al., 2011; Case
et al., 2011; Koch et al., 2013). Whilst very little is known regarding the specific virulence
mechanisms employed by seaweed pathogens, suitable models are being developed to address this
issue (Hollants et al., 2013; Egan et al., 2014).
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One of the best-studied models for disease in macroalgae is
the bacterial-induced bleaching of the red alga Delisea pulchra
(Campbell et al., 2011; Case et al., 2011; Fernandes et al.,
2011; Gardiner et al., 2015), which has significant negative
consequences for the health and fecundity of the algal population
(Campbell et al., 2014). Two bacterial pathogens, Nautella italica
R11 (formerly Ruegeria sp. R11) and Phaeobacter sp. LSS9,
have been identified to induce the bleaching disease in vivo
and in vitro (Campbell et al., 2011; Fernandes et al., 2011),
and for N. italica R11 the infection process was shown to be
temperature dependent (Case et al., 2011). Comparative genome
analysis of these two pathogens revealed the presence of a
gene with homology to LuxR-type transcriptional regulators
(termed varR here), which was absent from other closely related,
non-pathogenic strains (Fernandes et al., 2011). The protein
encoded by N. italica R11 varR (EEB72782) possesses the
autoinducer-binding (pfam03472) and transcriptional-activator
(pfam00196) domains characteristic of LuxR-type response
regulators (Fernandes et al., 2011).

Quorum sensing (QS) systems, including LuxR-type QS, can
mediate host colonization and disease induction in several well-
studied pathogenic bacteria by coordinating the expression of
virulence genes in bacterial populations (Parsek and Greenberg,
2000; Fuqua and Greenberg, 2002; von Bodman et al., 2003;
Ham, 2013). The classical LuxR-type QS system involves the
LuxI-dependent production of an acylated-homoserine lactone
(AHL) signal molecule that binds a response regulator (LuxR)
under high cell density and modulates expression of genes
under QS control (Fuqua and Greenberg, 2002). However, a
subfamily of luxR-type genes that are not genetically adjacent
to a luxI gene, termed solo luxRs (Subramoni and Venturi,
2009a) are widespread in Proteobacteria species (Case et al.,
2008; Patankar and González, 2009; Subramoni and Venturi,
2009b). Characterized examples of solo LuxR proteins have a
range of ligands; from AHLs produced by non-adjacent luxI
genes (Marketon et al., 2003; Lequette et al., 2006; McIntosh
et al., 2008), to host derived, non-AHL small molecules (Zhang
et al., 2007; Ferluga and Venturi, 2009; Subramoni et al., 2011;
González and Venturi, 2013; Patel et al., 2013). In addition, solo
LuxR-type regulators can function in the absence of a signal
molecule (Cox et al., 1998). The N. italica R11 varR gene is not
located within an operon and, has the genomic characteristics
of a solo luxR as it is not adjacent to either of the two luxI
homologs possessed by this bacterium (Fernandes et al., 2011).
The conservation of varR across the two characterizedmacroalgal
pathogens is particularly relevant here as the chemical defense
molecules (i.e., furanones) produced by D. pulchra are AHL-
antagonists and bacterial bleaching is environmentally linked
to a decrease in algal furanone concentration under increased
seawater temperatures (de Nys et al., 1993; Manefield et al., 2002;
Campbell et al., 2011).

Colonization of host surfaces facilitates bacterial interactions
with macroalgae (Egan et al., 2013), and biofilm formation is a
prerequisite in the pathogenesis of N. italica R11 (Case et al.,
2011). We therefore hypothesized that varR may have a key role
in the infection and/or colonization of N. italica R11. Using
a combination of allelic exchange mutagenesis, physiological

characterization, and high-throughput proteomics, we show here
that VarR regulates several aspects of colonization during N.
italica R11 pathogenesis. This is the first study to demonstrate a
functional role for a luxR-like regulator in a bacterial-induced,
macroalgal disease and speaks to the importance of surface
colonization bymarine bacterial pathogens in the health outcome
of macroalgae.

MATERIALS AND METHODS

Media and Growth Conditions Used in this
Study
Escherichia coli strains were grown in LB medium supplemented
with kanamycin (85µg ml−1), chloramphenicol (34µg ml−1),
or gentamicin (50µg ml−1) as appropriate (Table S1). For
the hemA autotrophic E. coli ST18 strains (Table S1) the
media was supplemented with aminolevulinic acid (ALA; 50µg
ml−1; Thoma and Schobert, 2009). N. italica R11 strains were
maintained at room temperature in marine broth 2216 (Difco,
Becton Dickson USA) with the addition of chloramphenicol
(2.5µg ml−1), or gentamycin (50µg ml−1), or both as
appropriate (Table S1). The bacterial cultures used for biofilm
analysis, attachment assays, and proteomics experiments were
grown in bromide-deficient artificial seawater (Br-ASW; Case

et al., 2011) supplemented with 10% half strength marine broth
(Difco, Becton Dickson USA), termed seawater minimal media
(SMM).

Mutagenesis and Complementation of
VarR in N. italica R11
A N. italica R11 varR allelic replacement mutant strain, termed
1varR here, was constructed by combining the Splicing
by Overlap Extension PCR (SOE-PCR) strategy (Horton,
1995) (Table S2) with bi-parental conjugation (Thoma and
Schobert, 2009). Experimental details are provided within
the Supplementary Materials and Methods; in short, a single
homologous recombination event between the SOE-PCR
fragment and the genome of the N. italica R11 generated the
chloramphenicol resistant mutant strain, 1varR. Doubling times
for the wild type (WT) and 1varR strains were 128 ± 20 and
124 ± 10min, respectively, and not statistically different from
each other (p = 0.46, Students t-test).

The 1varR strain was complemented with the WT varR gene
cloned into the broad-host-range plasmid vector pBBR1 MCS-
5 (Kovach et al., 1995) in E. coli ST18. Bi-parental conjugation
was employed to deliver theWT gene into the1varR recipient to
yield a complemented strain (C1varR; Supplementary Materials
and Methods).

D. pulchra In vitro Infection Assays
The infection assay of laboratory-cultured algae was performed
as outlined by Case et al. (2011) with minor modifications.
Briefly, D. pulchra spores were grown in Br-ASW for 6 weeks to
generate chemically undefended (furanone-deficient) sporelings.
Epiphytic bacteria were removed by treating the sporelings
with penicillin G (10µg ml−1), streptomycin (10µg ml−1),
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and kanamycin (20µg ml−1) overnight prior to the assay.
The sporelings were then rinsed extensively with Br-ASW to
remove antibiotics. The rinsed D. pulchra sporelings were then
inoculated with 106 CFU ml−1 of N. italica R11 WT, 1varR, or
C1varR that had been grown for 16 h and rinsed three times
with Br-ASW. The assays were performed in triplicate using
Costar R© six well plates (Corning, USA) and incubated at 24◦C
with shaking at 25 rpm for 5 days. Characteristic symptoms of
biofilm formation, bleaching and invasion were observed with
an Olympus BX5OF-3 light microscope (Olympus, Japan). At
least five randomly selected fields of view at 45-foldmagnification
were examined. Disease was defined by the damaged caused
to the algal tissue, including fading or bleaching of algal cells,
and bacterial invasion associated with a pronounced biofilm.
Invasion was defined as the presence of bacteria between and/or
within algal cells. Bleaching or fading was defined as localized
loss of photosynthetic pigments in algal cells when colonized by
bacterial biofilms. Triplicate un-inoculated D. pulchra sporelings
incubated at 24◦C for 5 days were employed in each experiment
as controls.

Attachment to Carrageenan
The κ-carrageenan matrix was prepared by dissolving a 5% w/v
solution of κ-carrageenan (Sigma-Aldrich) in 50% ASW:50%
phosphate buffered saline (PBS) v/v and autoclaving 24 h prior
to use. After the solution had cooled to 80◦C, 50µl was added to
polystyrene Costar R© 96 well plate (Corning) and the gel matrix
was solidified at 4◦C. The N. italica R11 strains were grown to
an OD (Abs600nm) = 1, washed twice and re-suspended in sterile
ASWbefore 50µl aliquots were added to respective wells of the κ-
carrageenan-coated well plate. The plate was incubated for 6 h at
25◦Cwith gentle shaking (60 rpm) before non-attached cells were
removed by gently rinsing the wells six times with sterile PBS.
Twenty-five microliters of a 200µg ml−1 solution of trypsin was
then added to each well and the plate incubated at 37◦C for 5min
to detach cells, which were then counted by dark fieldmicroscopy
as described previously (Gardiner et al., 2014). Triplicate wells of
a κ-carrageenan coated well plate were inoculated with individual
N. italica R11 strains, and the experiment was replicated three
times. Statistical significance was assessed using an ANOVA in
GraphPad Prism 4.

Analysis of Biofilm Formation
N. italica R11 WT, 1varR, and C1varR were grown in
a continuous flow-through biofilm flow cell to allow the
development of biofilms on glass slides for analysis by confocal
microscopy. Flow cells (three channels each) were prepared
according to themethod outline inMai-Prochnow (2007). Silicon
tubing was used to connect the flow cell to the media source,
with SMM supplied at a continuous flow rate of 0.2mm s−1.
Each channel of the flow cell was inoculated with 0.5ml of cells
grown to an OD (Abs600) = 0.6 and the flow cells were inverted
for 1 h to allow for attachment. The three dimensional structure
of biofilms formed at 24, 48, and 72 h post inoculation were
visualized using a Fluoview FV1000 Confocal Laser Scanning
Microscope (Olympus, USA). The adherent cells were stained
with LIVE/DEAD BacLight bacterial viability kit (Molecular

Probes, Invitrogen, USA) and dual 488/543 nm filters were used
to visualize both live (green) and dead (red) cells using a Z-stack.
Five fields of view were captured for each replicate experiment,
with a total of three independent experiments conducted for
each strain. Images were processed using IMARIS software
(Bitplane AG, Switzerland) to calculate the biofilm thickness and
biofilm volume for each field of view. Statistical significance was
assessed using a univariate permutational MANOVA (with a
Euclidean distance resemblance matrix) and pairwise analysis of
the interactions in PRIMER 6 (PRIMER-E Ltd).

Proteomic Analysis of N. italica R11 WT
and 1varR under Planktonic and Biofilm
Growth
The biofilm-associated and planktonic proteome for N. italica
R11 WT and 1varR strains were profiled using iTRAQ™
(AB SCIEX, USA) labeled quantitative mass spectrometry. Ten
milliliter planktonic cultures of the N. italica R11 strains were
grown for 72 h until they reached stationary phase, and cells
harvested by centrifugation and re-suspended in 100µl ice-cold,
molecular-biology grade water (MBW; Eppendorf) by vortexing
for 60 s. Cell lysis was confirmed by plating the suspension on half
strength MB agar plate and monitoring growth at RT for 3 days.
For the biofilm experiments, planktonic cultures were grown
as described above, 100µl was then harvested, re-suspended
in fresh media, and used to inoculate 10 cm of Masterflex R©

platinum-cured silicone tubing L/S R© 16 with an inner diameter
of 3.2mm (Cole-Parmer Instrument Co., USA). The tubing
was connected to a peristaltic pump (model 323 S; Watson
Marlow Bredel pump, England) that was switched on following
incubation for 1 h to facilitate attachment of the cells to the
tubing. SMMwas delivered through the continuous flow-through
biofilm system at a flow rate of 0.2mm s−1 for 72 h. To harvest the
biofilm cells the tubing was aseptically cut and loosely attached
cells were discarded by gently rinsing three times, before the
biofilm biomass was lysed as described above for the planktonic
cells. One hundred microliters of the crude protein extracts from
N. italica R11 WT and 1varR cells grown under planktonic
or biofilm conditions (referred to herein as WT biofilm, WT
planktonic, 1varR biofilm, and 1varR planktonic) were labeled
with iTRAQ™ reagents and quantified using mass spectrometry
in triplicate independent experiments. The reduction, alkylation
and trypsinization of the crude protein extracts, and subsequent
peptide labeling with iTRAQ™ reagents (AB SCIEX, Foster
City, USA) was performed as described previously (Matallana-
Surget et al., 2009; Supplementary Materials and Methods). The
labeled peptides were purified using strong cation exchange
(SCX) chromatography, desalted, and dissolved in 0.05%
HFBA (heptafluorobutyric acid)/1% formic acid (Supplementary
Materials and Methods). The purified peptides were quantified
using a QStar Elite mass spectrometer (AB SCIEX, USA) and
duplicate LC-MS/MS runs were conducted for each iTRAQ™
experiment (Supplementary Materials and Methods). The
combined data were processed using the Paragon™ algorithm
in ProteinPilot™ 3.0 software (AB SCIEX, USA; Supplementary
Materials and Methods) and each MS/MS spectrum was
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compared to the N. italica R11 genome. Protein quantification
was determined using the ratios of the areas under the mass
spectrometry peaks at 114, 115, 116, and 117 Da (corresponding
to the iTRAQ™ 4-plex labels bound to the peptides from each
of the four biological samples). The following criteria were used
to identify differentially expressed proteins: an unused protein
score >1.3 (corresponding to a confidence limit of 95%), at least
two unique peptides detected, and p < 0.05 (Student’s t-test,
assuming equal variance). Proteins were considered differentially
expressed when detected with significance in at least two of
the total three biological replicates. The number of differentially
expressed proteins was then compared to the predicted proteome
of N. italica R11 using IMG/ ER (Taxon ID 647533206;
Markowitz et al., 2012). Differentially expressed proteins were
reported as the GenBank accession numbers from the Ruegeria
sp. R11 genome entry (NZ_DS999055) and the COG annotations
for these translated gene entries were reported as given in the
NCBI database (Altschul et al., 1990).

RESULTS

N. italica R11 1varR Shows Reduced
Virulence against D. pulchra and is
Impaired in Biofilm Formation
In order to investigate the role of varR in the virulence of
the macroalgal pathogen N. italica R11, an allelic replacement
mutant was generated and subsequently tested in an in vivo
infection assay for D. pulchra. N. italica R11 WT formed a thick
biofilm on chemically undefended D. pulchra thalli, invasion
of algal tissue and/or cells and evidence of algal cell damage
and bleaching (Figure 1A, Supplementary video 1), consistent
with previous observations (Case et al., 2011). For D. pulchra
sporelings inoculated with the N. italica R11 1varR strain,
biofilm formation on the surface of the sporelings was reduced
and no tissue invasion or bleaching was observed in any of the
replicates (Figure 1B, Supplementary video 2). This outcome was
not due to polar effects of the knock-out as the WT phenotypes
of invasion, biofilm formation, and tissue damage were recovered
in the trans-complemented strain C1varR carrying the plasmid
pBBR1-varR_wt (Figure 1C, Supplementary video 3). These data
suggest that VarR regulates the virulence of N. italica R11 in
chemically undefended D. pulchra.

Previous reports have proposed that colonization is an
important virulence factor for N. italica R11 (Case et al., 2011),
and given the impaired pathogenicity exhibited by N. italica
R11 1varR, we investigated surface attachment and biofilm
formation in this strain. We first analyzed the attachment of N.
italica R11 1varR to the sulfated polysaccharide κ-carrageenan,
which is an abundant biological polymer in the cell wall matrix
of red macroalgae (Fredericq et al., 1996). When compared
to the WT strain, the N. italica R11 1varR mutant exhibited
a significantly reduced capacity (p < 0.05) to adhere to κ-
carrageenan coated surfaces after 6 h (Figure 2). Furthermore,
the WT phenotype was restored when the 1varR strain was
complemented (i.e., strain C1varR vs. WT; p > 0.05; Figure 2).
These results show that VarR contributes to the adhesion of N.

FIGURE 1 | Representative micrographs of D. pulchra sporelings

inoculated with N. italica R11 WT (A), 1varR (B), and the 1varR strain

complemented with WT varR (C1varR) (C). Sporelings inoculated with WT

or C1varR bacteria show signs of infection and disease consistent with

previous reports (Case et al., 2011). These include damage and

bleaching/fading of algal cells (as denoted by f), the presence of a thick biofilm

(as denoted by b), and the invasion of bacteria within algal tissue and/or algal

cells (as denoted by i) as observed in a and c. The varR allelic exchange

mutant (B) exhibited no capacity to cause bleaching or damage to the algal

cells, nor was there evidence of bacteria invading the algal tissue or cells

(across the triplicate experiments). Moreover sporelings inoculated with 1varR

(B) were relatively free from bacterial biofilms with only the occasional thin

biofilm being observed (C). Scale bar = 10µm.

italica R11 to biological polymers likely encountered during the
colonization of D. pulchra.

Given the reduced attachment phenotype displayed by N.
italica R11 1varR, we further investigated biofilm progression
in this strain. Biofilms were established on glass slides within
a continuous flow-through cell and visualized using Confocal
Laser Scanning Microscopy every 24 h for 3 days. The biofilm
characteristics of N. italica R11 1varR were different to that of
the WT strain (Figure S1) with a significant reduction in biofilm
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FIGURE 2 | Attachment to κ-carrageenan for N. italica R11 1varR

(small squares) compared to WT (solid fill) and C1varR (large squares)

after 6 h incubation. The number of cells attached per mm3 was determined

using direct counts of attached bacteria in a Helber bacterial counting

chamber. Error bars represent standard deviation, n = 9. Significance was

assessed using an ANOVA. Attachment of 1varR was significantly reduced

compared to both WT and C1varR (p < 0.05) as denoted by *.

thickness at each time point analyzed (Figure 3A, p < 0.05) and
a significantly lower average biofilm volume after 48 h of growth
(Figure 3B, p < 0.05). In contrast, the biofilm characteristics
of N. italica R11 C1varR were indistinguishable from the WT
(thickness in Figure 3A: p > 0.05 and volume in Figure 3B, p >

0.05) at any of the time points observed. Overall, the development
of biofilms by N. italica R11 1varR was delayed compared to the
WT, and VarR appears to be involved in mediating the formation
of cellular aggregates during biofilmmaturation inN. italica R11.

The Biofilm Proteome for N. italica R11 WT
To obtain further insight into the molecular mechanisms that are
important for colonization and virulence of the algal pathogen,
we performed global expression analysis (proteomics) on surface
associated N. italica R11. Mass spectrometry analysis identified
3038 unique proteins, corresponding to 83% of the predicted
proteome of N. italica R11. As the gene varR likely encodes for a
transcriptional regulator and the 1varR strain displays reduced
capacity to infect D. pulchra and form biofilms in vitro, we
first determined the proteins that are generally important during
surface-attached biofilm growth using iTRAQ™ labeling, and
then investigated the proteins that are under the control of VarR.

The protein expression profile for N. italica R11 WT cells
grown under biofilm conditions (WTB) was markedly different
to that of the planktonically grown cells (WTP). A total of 125
proteins were differentially expressed inWTB compared to WTP
(p < 0.05, Figure 4, Table S3). The differentially expressed
proteins were assigned to a range of functions (Figure 4), with
the majority of proteins up-regulated in biofilm assigned to
Clusters of Orthologous Groups (COG) categories associated

FIGURE 3 | Characterization of biofilm thickness (A) and volume (B) for

N. italica R11 WT, 1varR, and C1varR at 24h (solid fill), 48 h (small

diamonds), and 72h (large diamonds) post inoculation on a glass

surface. Quantification of biofilm characteristics was performed for Z-stack

images using IMARIS software and the data analyzed using a PERMANOVA.

Error bars represent standard deviation, n = 45; * denotes a significant

difference at the corresponding time point, p < 0.05.

with nutrient uptake (COG E, I, P, and Q; e.g., EEB69622 and
EEB69952), stress adaptation (COG O and P; e.g., EEB70501
and EEB7283) and protein turnover (COG O; e.g., EEB72870
and EEB71705; Table S3). In contrast, proteins involved in
protein translation (COG J; e.g., EEB70057), cell motility (COG
N; EEB71824), and signal transduction mechanisms (COG
T; EEB70997) were generally down-regulated in biofilm cells,
suggesting these functions are less important for biofilm cells
(Table S3).

Eighteen percent of the differentially expressed proteins are
categorized as either having a predicted function only (COG
R, Figure 4) or exhibit no homology to characterized proteins
(COG S, Figure 4; Table S3). All of the proteins assigned
to COG S (uncharacterized) were up-regulated in wild type
biofilm cells (WTB), suggesting that they may have a yet-
unrecognized function in biofilm cells. A general trend was
the abundance of ABC-type transporter proteins in biofilm
relative to planktonic cells. In particular transporters for
amino acids (e.g., EEB70113 and EEB72013), ions (EEB69252),
secondary metabolites (EEB69518), and uncharacterized solutes
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FIGURE 4 | Functional annotation of iTRAQTM-labeled proteins found to be up-regulated (black bars) or down-regulated (gray bars) in WT biofilm cells

(WTB) compared to the planktonically grown cells (WTP) (Student’s t-test, p < 0.05). The GenBank accession number and annotation for each of the 125

proteins are given in Table S3. The COG categories were assigned to proteins based on annotation in the NCBI database.

(e.g., EEB72081 and EEB70354) were over represented in biofilm
cells (Table S3).

The most differentially expressed protein identified in
this study, EEB69472 (up-regulated 25-fold biofilm cells),
has similarity (41%; with 20% protein identity) to the
polyhydroxyalkanoate (PHA) associated (phasin) protein of
Cupriavidus necator (formally Ralstonia necator) (AF314206).
Other proteins with homology to factors involved in PHA
metabolism were also up-regulated in WTB, including an acetyl-
CoA acetyltransferase (EEB71680) and a PHA depolymerase
(EEB71107), with 76.8 and 60.7% protein similarity to their
respective C. necator proteins (AEI76812 and AEI79943).

The N. italica R11 1varR Mutant Exhibits
Differential Protein Expression Relative to
the WT
Having defined the “biofilm-associated” proteome for N. italica
we next analyzed the proteome of the 1varR strain grown under
both planktonic and biofilm conditions relative to N. italicaWT.
Eighteen proteins assigned to COG categories associated with
cellular biogenesis and metabolism were differentially expressed
in planktonically grown 1varR cells (1VP) compared to wild
type planktonic (WTP) cells (Table S4). The 1varR biofilm cells
(1VB) showed 24 proteins differentially expressed relative to
the WT biofilm counterparts (WTB) (Table S5). Five proteins
were differentially expressed in 1varR relative to the WT under
both biofilm and planktonic growth conditions (Tables S4,

S5 underlined accession numbers); including, for example the
acetyl-CoA acetyltransferase (EEB71680) described above, which
was down-regulated more than six-fold in 1varR cells under
both growth conditions relative to the WT.

The proteins with the highest fold increase in 1VB relative to
WTB were assigned to COG categories associated with protein
translation (COG J), membrane integrity and transport (COG
Q, M), and cell motility (COG N, T; Table S5). In contrast,
the majority of proteins significantly down-regulation in 1VB
(and thus positively regulated by VarR) were annotated as factors
involved in carbon, amino acid and lipid metabolism and ABC-
type transport systems (COG C, E, I; Table S4). Moreover, several
proteins down-regulated in 1VB have no known homology or
homology to uncharacterized proteins only (COG R, S; Table S5).

Analysis of the proteomic data for both 1varR and WT
revealed that 70% of the proteins differentially expressed in
1VB compared to WTB (Table S5, denoted by ∧) were
also detected in the WT biofilm proteome data (Figure 4,
Table S3). Interestingly, these overlapping proteins showed the
same relative trend in expression (up or down) in 1VB and
WTP when both were compared to WTB, suggesting they are
controled by VarR under biofilm conditions (Figure 5). For
example, 11 of the proteins that were down-regulated in 1VB
relative to WTB (Table S5) were also up-regulated in the WT
under biofilm growth (Table S3) (Figure 5; down-regulated in
WTP accordingly). These VarR-regulated proteins, include the
PHA-associated proteins outlined above (EEB70651, EEB71680,
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FIGURE 5 | Proteins both differentially regulated in the N. italica R11

biofilm proteome (Table S3) and also predicted to be regulated by

VarR. Seventeen of the proteins that were differentially expressed in 1varR

biofilm cells (1VB) relative to the wild type (WTB) (Table S5: 11, up; 6, down)

were also differentially expressed in WTB relative to WT planktonic cells (WTP)

cells. The bars on the graph indicate the average fold change in either 1VB

relative to WTB (black bars) or WTP relative to WTB (gray bars) where the

protein was detected in more than two biological replicates (Student’s t-test,

p < 0.05). The respective protein expression value in WTB cells was employed

as the baseline level to highlight a similar trend in expression in 1VB and WTP.

The GenBank accession number and Clusters of Orthologous Groups (COG)

category are given for each protein. The COG categories are identified by

letters as follows: C, energy production and conversion; E, amino acid

transport and metabolism; I, lipid transport and metabolism; J, translation; M,

cell wall/membrane/envelope biogenesis; N, cell motility; R, general function

prediction only; S, function unknown; T, signal transduction mechanisms.

EEB71107, and EEB69472), a putative periplasmic lipoprotein
(EEB70321), proteins involved in amino acid transport and
metabolism (EEB69952 and EEB72013), and a PrkA serine
protein kinase (EEB70997; Table S5).

DISCUSSION

The LuxR-type Protein varR Contributes to
the Colonization and Virulence of
N. italica R11
Here we show that the mutation of a luxR-type gene in N. italica
R11, termed varR, reduces the capacity of this bacterium to infect

D. pulchra in vivo (Figure 1), demonstrating a role for VarR as
a virulence factor. Global regulatory mechanisms, such as QS,
play a key role in the coordinated expression of virulence genes
in mammalian and plant systems, where they control features
such as toxin and exoenzyme production, motility, colonization,
and biofilm development (de Kievit and Iglewski, 2000; Antunes
and Ferreira, 2009; Ham, 2013). Here we add to this knowledge
by demonstrating that, similar to QS regulation of virulence
in animal- or phyto-pathogenic bacteria (von Bodman et al.,
2003; Lang and Faure, 2014), a luxR-type protein contributes
to the pathogenesis of a seaweed (macroalgal) pathogen. It
should be noted however that whilst VarR does contain an AHL-
binding domain (Fernandes et al., 2011), solo LuxR proteins from
other bacteria have been shown to respond to host metabolites
(González et al., 2013; Patel et al., 2013). Thus, future studies
should also consider the influence of D. pulchra metabolites in
mediating virulence of N. italica R11.

Our results show that loss of VarR function in N. italica
R11 reduces the pathogens ability to attach to κ-carrageenan,
a typical surface polymer of red macroalgae (Fredericq et al.,
1996), and to form biofilms under laboratory flow cell conditions.
Reduced pathogenicity of N. italica R11 1varR may thus be
the result of a decreased capacity of this strain to successfully
colonize algal surfaces due either to an impaired interaction
with surface biopolymers and/or the transition to a biofilm life-
style. These findings are in line with previous observations that
colonization by N. italica R11 is a key stage in pathogenesis
of D. pulchra (Campbell et al., 2011; Case et al., 2011). In
other bacterial pathogens, LuxR-type regulators also function
as virulence determinants by facilitating the transition from
a planktonic to a sessile (biofilm) lifestyle in the presence
of a susceptible host (de Kievit and Iglewski, 2000; Joo and
Otto, 2012; Ham, 2013). These regulatory proteins specifically
facilitate the coordinated expression of proteins that mediate the
discrete stages of colonization, including attachment and biofilm
maturation (Parsek and Singh, 2003; Koutsoudis et al., 2006;
Dickschat, 2010), all of which are likely important factors for a
pathogenic interaction between N. italica R11 and D. pulchra.

N. italica R11 Exhibits Differential Protein
Regulation under Biofilm Growth
Comparative and quantitative proteomics was used to provide
insight into the molecular factors that facilitate biofilm formation
in N. italica R11 and identified a subset of biofilm-associated
proteins that are (directly or indirectly) regulated by VarR.
The proteomic data demonstrated that 3.4% of the predicted
proteome of N. italica R11 is differentially expressed between
planktonic and biofilm conditions. This is consistent with other
studies where between 1 and 9% of the predicted proteome
is differentially expressed under biofilm conditions relative to
planktonic growth (Whiteley et al., 2001; Schembri et al., 2003;
de Souza et al., 2004; Mukherjee et al., 2011; Silva et al., 2011).

A general trend observed in the proteomic data was the up-
regulation of proteins associated with substrate catabolism and
nutrient acquisition, and the simultaneous down-regulation of
factors responsible for protein translation and biogenesis, in
WT biofilm cells (WTB) compared to cells grown planktonically
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(WTP). These data suggest that N. italica R11 biofilm cells
have an altered biosynthetic and metabolic activity compared to
planktonic cells, a finding that is consistent with other “omics”
studies on bacterial biofilms (Waite et al., 2006; Shemesh et al.,
2007; Lo et al., 2009; Clark et al., 2012).

The up-regulation of cellular transport factors, including
numerous ABC-type transport proteins that facilitate the uptake
of both organic (e.g., EEB72013, COG E), and inorganic (e.g.,
EEB70756, COG P) substrates, suggests that N. italica R11 cells
are proficient at nutrient scavenging during biofilm growth
(Figure 4). A predisposition for nutrient scavenging has been
frequently reported for Roseobacter members (Moran et al.,
2007; Christie-Oleza et al., 2012; Thole et al., 2012), and
is interesting given that uptake and utilization of algal host
metabolites was previously highlighted as a potential virulence
factor in N. italica R11 based on genomic data (Fernandes
et al., 2011). Moreover, the 10-fold overrepresentation of an
ABC-type zinc/manganese/iron substrate binding protein (e.g.,
EEB70756 among other uptake factors; Table S3) suggests that
N. italica R11 increases the expression of these transporters to
cope with a potential metal ion limitation in the biofilm. A similar
response has been reported for other bacterial pathogens, such as
Mycobacterium smegmatis (Ojha and Hatfull, 2007; Monds and
O’Toole, 2009).

Stress resistance has an important role in the persistence
of biofilm cells in many bacterial species (Branda et al.,
2005; Seneviratne et al., 2012), and up-regulation of proteins
involved in oxidative stress resistance are frequently observed
for biofilm cells (Tremoulet et al., 2002; Beloin et al., 2004;
Shemesh et al., 2007; Pham et al., 2010; van Alen et al.,
2010; Giaouris et al., 2013). Similarly, cellular detoxification
and stress resistance enzymes, such as superoxide dismutase
(SOX) (EEB72831), DsbA oxidoreductase (EEB70350), and a
peroxiredoxin (EEB70501), were over-represented in the N.
italica R11 biofilm proteome (Table S3). Antioxidant proteins
facilitate the detoxification of reactive oxygen species (ROS), and
the 15-fold increase in SOX observed in wild type biofilm (WTB)
cells suggests an increase in ROS within biofilms that is likely
due to limited gas diffusion (Costerton et al., 1995; Stewart and
Franklin, 2008; Seneviratne et al., 2012). Recent work has further
demonstrated a role for an antioxidant enzyme, glutathione
peroxidase (GpoA) in the stress resistance and virulence of N.
italica R11 (Gardiner et al., 2015), however this protein was
not observed here to be differentially regulated in biofilm cells.
It is possible that GpoA is either constitutively expressed or
that this enzyme is only differentially expressed in response to
specific growth conditions not tested here (i.e., host-associated
conditions).

varR Controls the Expression of a Subset
of Biofilm-associated Proteins in
N. italica R11
LuxR-type proteins regulate the expression of traits involved
in biofilm maturation and growth in a range of bacteria
(Huber et al., 2001; Croxatto et al., 2002; Koutsoudis et al.,
2006; Dickschat, 2010); and the data presented here suggests a

similar role for VarR in N. italica R11. Quantitative proteomics
demonstrated that the majority of proteins that are indirectly or
directly under the control of VarR are also differentially expressed
under biofilm conditions in N. italica R11 (Figure 5).

Chemosensory proteins, such as MCP’s (methyl-accepting
chemotaxis protein), facilitate chemotaxis, and the movement
of motile cells toward external stimuli including surfaces
(Wadhams and Armitage, 2004). A putative MCP (EEB69630)
was negatively regulated by VarR, exhibiting the same relative
trend in expression in the varR mutant biofilm cells (1VB) as in
wild type planktonic (WTP) cells (Figure 5, Table S5), indicating
that VarR suppresses the expression of this MCP during biofilm
growth. In addition, the proteomics data (Figure 5, Tables
S3–S5) show that VarR positively affects the expression of a
putative serine protein kinase (PrkA-like protein) (EEB70997)
that was also overrepresented in the biofilm proteome (Table
S3). Serine protein kinase enzymes are important for bacterial
surface colonization, particularly during biofilm maturation (Liu
et al., 2011; Mikkelsen et al., 2011), and have a key role in
the function of generalized two-component signal transduction
(TCST) systems (Krell et al., 2010; Hunke et al., 2012). The
observation that VarR regulates the expression of putative signal
transduction proteins is in line with observations for other
bacterial species such as Pseudomonas aeruginosa, where LuxR-
type QS systems are linked to multiple regulatory mechanisms,
including TCST (Ferrières and Clarke, 2003; Damron et al.,
2012). Taken together, the available data show that VarR regulates
that expression of traits that facilitate biofilm maturation as well
as proteins with the potential to influence signal transduction and
downstream gene expression.

This study identified that the majority of proteins, likely
to be important for biofilm-associated growth in N. italica
R11 are in fact (directly or indirectly) regulated by VarR
(Figure 5). For example, the expression profile of numerous
PHA-associated proteins in varR mutant biofilm cells (1VB)
reflected the expression levels observed in planktonically grown
WT cells (EEB69472, EEB71107, EEB70651, and EEB71680;
Figure 5). Two of these proteins, a phasin family protein
(EEB69472) and an acetyl-CoA acetyltransferase (EEB71680)
appear to be positively regulated by VarR in N. italica R11
irrespective of growth conditions (Tables S4, S5). PHAs are bio-
polyesters that accumulate in the cytoplasm of bacterial cells
and provide protection against nutrient stress during biofilm
growth by serving as readily accessible carbon and energy
reserves (Pham et al., 2004; Campisano et al., 2008; Tribelli and
Lopez, 2011; Berlanga et al., 2012; Escapa et al., 2012). LuxR-
type regulators have been shown to regulate the expression of
PHA-associated enzymes (Miyamoto et al., 1998) and proteins
(Chambers et al., 2006), and have been found to be differentially
expressed during the different stages of biofilm growth in P.
aeruginosa (Campisano et al., 2008). Based on the available
data, we propose that VarR regulates the accumulation and/or
metabolism of PHA’s in N. italica R11, and that the use of
these bio-polyesters as energy reserves may be important for
the survival and persistence of this pathogenic bacterium under
the dynamic conditions likely encountered on its algal host
surface.
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In summary, the data presented here demonstrates a role for
the N. italica R11 LuxR-type protein VarR in attachment, biofilm
maturation, and infection of the red macroalga D. pulchra.
Proteomics demonstrated that VarR controls the expression
of a subset of biofilm-associated proteins involved in cellular
functions, including nutrient scavenging, and could provide N.
italica R11 with an advantage during growth and colonization
of D. pulchra. Moreover, four of the proteins that are directly
or indirectly regulated by VarR have no significant homology
to previously uncharacterized proteins (Figure 5, Table S5:
EEB69264, EEB69320, EEB70321, EEB69472), and these proteins
constitute candidate novel virulence factors that warrant further
investigation (e.g., with immunohistology or Western blot to
define localization).

Despite decades of research of model human and plant
pathogens, there is still little understanding of the factors that
make a bacterium pathogenic (Brown et al., 2012; Casadevall
and Pirofski, 2014; de Lorenzo, 2015). Here we show that the
LuxR-type protein, VarR, that is unique to the Roseobacter strains
capable of causing algal disease (Fernandes et al., 2011) acts to
control important aspects of host colonization and virulence in
N. italica R11. Intriguingly neither previous genomic (Fernandes
et al., 2011) nor the current proteomic analysis have shown
N. italica R11 to possess a unique set of bacterial virulence
factors, which would be expected in the classical view of bacterial
pathogenesis (Gal-Mor and Finlay, 2006; Jones and Oliver, 2009;
Vrancken et al., 2013). Rather it would appear that the capacity
for N. italica R11 to cause harm to its algal host is mediated
at the level of gene regulation of several functions, likely in
response to environmental or host conditions. This perspective

is consistent with a contemporary view of pathogenesis that
identifies virulence to be more complex than the presence of
specific bacterial determinants (Casadevall and Pirofski, 2001,
2002), and as exemplified in a recent study of the pathogen
P. aeruginosa where neither the origin of the strain (i.e.,
environmental or medical) nor the predominance of known
virulence traits in the genome were found to be predictors of the
ability of a particular strain to cause disease (Hilker et al., 2015).

To conclude, the pathogen–host interaction betweenN. italica
R11 and D. pulchra provides a model framework of virulence
in bacterial pathogens that is influenced by the environmental
context (i.e., host defense capacity) and ability of the pathogen
co-ordinate gene expression (i.e., via VarR). This model not only
provides insight into the factors that may be contributing to
the decline of macroalgal species in the context of a changing
environment, but also enhances understanding of the global
factors that mitigate microbial disease in marine ecosystems.
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