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The nutritional manipulations of the rumen microbiome to enhance productivity and
health are rather limited by the resilience of the ecosystem once established in the
mature rumen. Based on recent studies, it has been suggested that the microbial
colonization that occurs soon after birth opens a possibility of manipulation with
potential to produce lasting effects into adult life. This paper presents the state-
of-the-art in relation to early life nutritional interventions by addressing three areas:
the development of the rumen as an organ in regards to the nutrition of the new-
born, the main factors that determine the microbial population that first colonizes and
establishes in the rumen, and the key immunity players that contribute to shaping
the commensal microbiota in the early stage of life to understand host-microbiome
specificity. The development of the rumen epithelium and muscularization are differently
affected by the nature of the diet and special care should be taken with regards to
transition from liquid (milk) to solid feed. The rumen is quickly colonized by all type
of microorganisms straight after birth and the colonization pattern may be influenced
by several factors such as presence/absence of adult animals, the first solid diet
provided, and the inclusion of compounds that prevent/facilitate the establishment
of some microorganisms or the direct inoculation of specific strains. The results
presented show how early life events may be related to the microbial community
structure and/or the rumen activity in the animals post-weaning. This would create
differences in adaptive capacity due to different early life experiences and leads to
the idea of microbial programming. However, many elements need to be further
studied such as: the most sensitive window of time for interventions, the best means
to test long term effectiveness, the role of key microbial groups and host-immune
regulations.

Keywords: early life, microbial colonization, rumen development, rumen microbiome, weaning

INTRODUCTION

The forestomachs of ruminant animals contain a great diversity of prokaryotic (bacteria, archaea,
virus) and eukaryotic (protozoa and fungi) micro-organisms that together breakdown and ferment
the feed ingested by the host animal (Dehority, 2003). In the last decades there have been
significant efforts to develop compounds that may shift the rumen fermentation toward more
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efficient metabolic pathways by targeting key groups of
microorganisms (i.e., archaea in case of methanogenesis, Hart
et al., 2008). However, the utility of such compounds often
appears limited as results are often inconsistent or short-lived.
This is mainly due to the difficulty in modifying a well-
established and fully matured microbial ecosystem in the rumen
of adult animals. There is ample evidence of a strong host-
microbiota specificity (Kittelmann et al., 2014), implying that
after any alteration (i.e., rumen digesta swapping, exogenous
bacteria application or antibiotic treatment), once ceased, the
microbial community composition and fermentation profile
will return to the original pre-treatment composition (Weimer
et al., 2010). The developing rumen in the new-born provides a
unique opportunity for potential manipulation of such a complex
microbial ecosystem.

Early experience ingesting feeds increases preference for and
later consumption of those feeds by animals (Provenza and
Balph, 1990). Early dietary experiences have a greater and more
lasting effect than those occurring later in life (Distel et al.,
1994). Different processes (neurological, morphological, and
physiological) may be involved during early in life and can be
altered so that animals can better manage in the environment in
which they are reared from birth.

Li et al. (2012), based on 454-pyrosequencing of 16S
rDNA, reported that a total of 170 bacterial genera exists in
the developing rumen of 14 days old calves, and that the
microbiota was responsive to dietary modifications as well
as physiological changes in the host. Earlier work reported
that forage or concentrate diets fed around weaning had an
impact on the bacterial population that established in the
rumen (Eadie et al., 1959); however, the impact that this
differentiation might have later in life on the rumen microbial
ecosystem remained to be determined. Recent studies (Yáñez-
Ruiz et al., 2010; Abecia et al., 2013, 2014a) suggested that
it would indeed be possible to promote different microbial
populations establishing in the rumen of the young animal by
manipulating the feeding management early in life that persisted
in later life. This would create differences in adaptive capacity
due to different early life experiences, leading to the idea of
microbial programming. However, despite significant research
effort, there is still a lack of understanding of the mechanisms
governing microbial/host cell interactions, the development of
the rumen and its microbial community, and the implications
for the host when microbial colonization patterns are altered,
especially the long-term effects. This paper will critically review
the information published on: (i) the development of the
rumen as an organ in regards to the nutrition of the new-
born, (ii) the factors (maternal, dietary, etc.) that determine
the microbial population that first colonizes and establishes in
the rumen and (iii) the key immunity players that contribute
to shaping the commensal microbiota in the early stage of
life to understand host-microbiome specificity. The aim of
the review is to evaluate the importance of the multiple
factors in shaping the rumen microbiome and the potential
of early life rumen microbial programming based on current
research and to identify gaps of knowledge for future research
studies.

THE DEVELOPMENT OF THE RUMEN AS
AN ORGAN AND THE INFLUENCE OF
THE DIET

Young ruminants present at birth an undeveloped reticulo-
rumen, therefore, until the system is fully matured they function
as monogastrics fed on milk-based diets that are not digested
in the rumen but in the abomasum (Church, 1988; Davis
and Drackley, 1998). As stated by Heinrichs (2005) ‘a smooth
transition from a monogastric to ruminant animal, with minimal
loss in growth, requires the development of the reticulo-rumen
and its associated microbial population for efficient utilization of
dry and forage-based diets’.

Development of the rumen is an important physiological
challenge for young ruminants (Jiao et al., 2015). It entails
growth and cellular differentiation of the rumen, and results in
a major shift in the pattern of nutrients being delivered to the
intestines and liver, and thus the peripheral tissues of the animal
(Baldwin et al., 2004). The development of the rumen involves
three distinct processes: (i) anatomical development (growth in
rumen mass and growth of rumen papillae; Reynolds et al.,
2004), (ii) functional achievement (fermentation capacity and
enzyme activity; Rey et al., 2012; Faubladier et al., 2013), and
(iii) microbial colonization (bacteria, fungi, methanogens, and
protozoa; Fonty et al., 1987; Fouts et al., 2012). This section
addresses the first process, while microbial colonization will
be discussed in Section “Factors that Influence the Microbiota
Establishing in the Rumen and Long Term Effects.”

An inadequate development of the rumen will affect nutrient
digestion and absorption (Baldwin et al., 2004). On the
other hand, a complete development of the rumen facilitates
digestion of feed components, which provides nutrients for
the physiological requirements of the animal. The anatomical
development of the rumen is a process that occurs following
three phases: non-rumination (0–3 weeks); transitional phase
(3–8 weeks), and rumination (from 8 weeks on; Wardrop and
Coombe, 1960; Lane et al., 2002).

During the transition from a pre-ruminant to a ruminant
animal, growth and development of the ruminal absorptive
surface area (papillae) is essential to enable absorption and
utilization of digestion end products, specifically rumen volatile
fatty acids (Warner et al., 1956). The presence and absorption
of volatile fatty acids stimulates rumen epithelial metabolism
and may be key in initiating rumen epithelial development
(Baldwin and McLeod, 2000). Different studies (Nocek et al.,
1984; Greenwood et al., 1997) have shown that ingestion of
dry feeds and the resultant microbial end products stimulate
the development of the rumen epithelium. However, different
volatile fatty acids stimulate such development differently, as
butyrate is most stimulatory, followed by propionate. With
decreasing rumen pH and increasing butyrate concentrations,
butyrate metabolism by the epithelium increases concomitantly
(Baldwin and McLeod, 2000). A continuous exposure to
volatile fatty acids maintains rumen papillae growth, size, and
function (Warner et al., 1956). Thus, it is expected that diets
consisting of milk, concentrates, or forages affect the rumen
epithelial growth to different extents (Table 1). Moreover,
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TABLE 1 | Effect of different dietary interventions in early life on rumen development parameters.

Dietary treatment Rumen weight, kg Wall thickness, cm Papillae, n/cm2 pH Study

Corn processing ND Affected (1.06–1.21) ND Affected (5.41–5.66) Lesmeister and Heinrichs, 2004

Supplemental yeast ND No effect ND ND Lesmeister et al., 2004

Supplemental molasses ND No effect ND ND Lesmeister and Heinrichs, 2005

Carbohydrate composition Increased (0.73–1.73) Increased (0.86–1.32) Affected (4.9–5.3) Suárez et al., 2006

Milk allowance Increased (1.37–1.89) Increased (1.15–1.47) Increased (71–86) Decreased (6.22–5.66) Khan et al., 2007

Milk allowance Affected (0.58–1.35) ND ND Affected (5.56–6.29) Kristensen et al., 2007

Forage to concentrate ratio Affected (0.95–1.45) Affected (0.82–1.20) ND Affected (5.09–5.23) Suárez et al., 2007

Starch sources Affected (1.21–1.53) Affected (1.55–1.95) Affected (70–91) Affected (5.46–5.79) Khan et al., 2008

Provision of hay Increased (1.59–1.89) No effect No effect Increased (5.06–5.49) Khan et al., 2011

Whole milk vs. milk replacer No effect ND ND No effect Górka et al., 2011

Whole milk vs. milk replacer Decreased (0.73–0.66) ND ND Increased (6.12–6.57) Abecia et al., 2014b

Milk replacer feeding strategy No effect ND ND Affected (6.2–6.9) Silper et al., 2014

ND, not determined.

the establishment and activity of the rumen epithelial tissue-
associated microbes (defined as epimural community) may be
another factor that influences the extent of development of the
rumen epithelium (Malmuthuge et al., 2012, see “Factors that
Influence the Microbiota Establishing in the Rumen and Long
Term Effects”).

The chemical composition of the liquid (milk) feed and the
effect of the oesophageal groove limit the process of physical
and functional development of the rumen (Warner et al., 1956).
In young ruminants fed only milk or milk replacer, the rumen
development has been shown to be limited even up to 12 weeks
of age (Tamate et al., 1962). Indeed, it has been reported a
regression of rumen development when calves were changed
from a solid diet and milk replacer to a solely milk/milk replacer
diet (Harrison et al., 1960). Also, young ruminants receiving
only milk/milk replacer had limited metabolic activity in the
rumen epithelium and minimal absorption of volatile fatty
acids (Heinrichs, 2005). Therefore, although milk based diet
promote rapid and efficient growth of the young animal, it
does not contribute to prepare the pre-ruminant to utilize solid
diets.

Unlike liquid feeds, solid feeds are mainly directed to the
reticulo-rumen for digestion (Church, 1988). Solid feed intake
stimulates rumen microbial proliferation and production of
volatile fatty acids, which have been shown to initiate rumen
epithelial development, although, different solid feeds may differ
in their ability to stimulate the development of the rumen.
Both the chemical composition of feeds and the resultant
microbial digestion end products have the greatest influence
on the development of the rumen epithelium (Nocek et al.,
1984).

Providing natural milk or milk replacer to newborn ruminants
differs not only in their intrinsic differences in nutrient
composition but also in the presence or absence of the dam. In
ruminant farming two main systems for managing the young
animals can be identified. In commercial dairy systems, calves
are typically separated from the dam at a young age and fed
either milk replacer or whole milk; on the contrary, in fattening
systems, the newborns remain with the mother until weaning.

It has been recently reported that kid goats reared with the
dam had greater rumen development than their twins that were
fed on milk replacer and isolated from adult animals, despite
both groups having access to the same forage and concentrate
offered ad libitum (Abecia et al., 2014b). This is accordance
with De Paula Vieira et al. (2012), which showed that calves
reared in the presence of older companions exhibited more
frequent and longer visits to the feeder, which they hypothesized
to be a consequence of social learning (Galef and Giraldeau,
2001). However, the advantage of the direct microbial inoculation
through physical contact with the dam deserves further attention,
as discussed in the following section.

In intensive farming, the supplementation with concentrates
is the most common method of providing nutrients to the animal
with emphasis on offering young ruminants concentrate solid
starter at a relative early age (Jiao et al., 2015). Therefore, in
the last years, research on rumen development has been mainly
directed on this type of feeding system and the main factors
that affect rumen development in ruminants fed a range of
different diets (Owens et al., 1993), with the primary attention
on diet composition (Table 1, Coverdale et al., 2004; Suárez
et al., 2007; Khan et al., 2011). Feeding concentrate feeds in
early life stimulates the development of the epithelium, while
forages with large particle size or high fiber sources appear to be
the primary stimulators of rumen muscularization and volume
(Zitnan et al., 1998). Several recent studies have shown that
another effective method to foster solid feed intake in calves,
contrary to what it has been traditionally adviced, is to provide
ad libitum access to poor quality (nutritionally) chopped straw or
hay (Jiao et al., 2015). Castells et al. (2013) conducted a meta-
analysis and concluded that there were no differences in gut
fill between calves consuming no forage and calves consuming
forage up to 5% of total solid feed consumption. Thus, it can be
concluded that when forage consumption is less than 5% of the
total solid feed intake, gut fill is negligible and thus advantages
reported in performance and efficiency when feeding chopped
forages to calves are not an artifact due to gut fill. Depriving
calves from forage during the pre-weaning phase may offer yet
another physiological and dietary adaptation challenge to young
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calves during the transition when presented with forage for the
first time. Phillips (2004) reported that calves fed fresh grass
during the milk-feeding period spent more time eating on a
pasture compared with those that received no forage before
weaning. Recent data also shows that 22% of the variation in
milk yield in first lactation is associated to the average daily gain
during the first weeks of life (Soberon et al., 2012). However,
the long-term effects of early life nutritional management in
relation to rumen development are still largely unknown and
there are factors that still need to be carefully considered such
as composition of the starter, type of forage and timing of its
introduction.

When addressing the development of the rumen, the following
question arises: does the development of the organ determine
which microbes colonize the rumen or do the microbes
themselves shape the rumen development through their activity
and specific signaling? In the adult animal, the diet is the main
driver of the microbial community structure (McCann et al.,
2014), but in the pre-ruminant both microbial colonization and
rumen development may interact in a way that one influences
the other. Also, it is still unknown to what extent the animal is
genetically pre-determined to develop a certain type of rumen
(i.e., epithelium, muscularization, contractions). Goopy et al.
(2012) reported that low methane yield sheep were associated
with a shorter mean retention time of particulate and liquid
digesta, lesser amounts of rumen particulate content and a
smaller rumen volume. Low methane yield sheep harbor a
distinctive bacterial community structure (Kittelmann et al.,
2014). Thus, it could be hypothesized that promoting a large
rumen by feeding more forage in early life may determine the
type of microbiota harbored in the rumen and consequently the
digestion efficiency of the animal.

FACTORS THAT INFLUENCE THE
MICROBIOTA ESTABLISHING IN THE
RUMEN AND LONG TERM EFFECTS

Sequential Microbial Colonization of the
Rumen
The gastrointestinal tract of most animals is supposed to
be sterile and germ free right after birth; then, microbes
from other adult animals and the surrounding environment
subsequently colonize the rumen until a very complex and
diverse microbial population develops (Ziolecki and Briggs,
1961). Several studies have shown that in young ruminants
and during rumen development, ingested microbes colonize and
establish in a defined and progressive sequence (Stewart et al.,
1988). Ample evidence (Fonty et al., 1987; Morvan et al., 1994)
now exists that a significant proportion of the strict anaerobes
that become predominant in the mature rumen are already
present in the rumen 1 or 2 days after birth. The use of molecular
techniques has shown the complex microbial community that
soon establishes in the non-mature rumen. All major types of
rumen bacteria, including proteolytic and cellulolytic species,
as well as some niche specialists, are present in the rumen

microbial community of 14 days old calves (Li et al., 2012),
whilst Jami et al. (2013) stated that “some rumen bacteria
essential for mature rumen function could be detected as early as
1 day after birth”. Rey et al. (2013) monitored the establishment
of ruminal bacterial community in dairy calves from birth to
weaning. They showed that the establishment is rapid after
birth and sequential: Proteobacteria is gradually replaced by
Bacteroidetes as the main Phyla. Between days 3 and 12, the
bacterial community was composed of many bacteria present in
the developed rumen, showing that the bacteria responsible for
the degradation of feeds are present before the ingestion of solid
substrate begins. Between days 9 and 15, diet influence seemed
strongest and was associated with a change in the bacterial
community structure. From 15 days on, the community no
longer exhibited clear time related changes at phyla level although
variations on the relative abundance of some genera did occur
(Table 2).

Becker and Hsiung (1929) first demonstrated that the rumen
ciliate protozoa are passed from animal to animal by direct
transfer of saliva containing the active organisms as there is
no resistant phase or cysts in their life cycle (Strelkov et al.,
1933). Ciliate protozoa can normally be seen in the rumen of
young ruminants within 2 weeks of birth with small entodinia
established before large endomorphs and holotrich protozoa
(Eadie, 1962). However, if animals are isolated from other
ruminants shortly after birth no protozoa establish (Bryant and
Small, 1960; Eadie, 1962), a property that has been widely used
and continues to be used to study the role of protozoa in the
rumen (Belanche et al., 2014).

Methanogenic archaea have been found in the undeveloped
rumen of lambs well before the arrival of solid substrate to
the rumen (2–4 days) and reach concentrations equivalent to
those in adult animals around 10–14 days after birth (Fonty
et al., 1987; Morvan et al., 1994). The development of molecular
techniques allowed the detection of methanogenic archaea at
earlier stages as probably they could not be detected by classical
microbial counting (Gagen et al., 2012). Guzman et al. (2015) has

TABLE 2 | Age classification of bacterial groups colonizing the rumen from
birth to weaning. Values expressed as range of mean percentagesa .

Age (days)

3 7 14 28 42

Phyla

Proteobacteria 46.6−70.4 16.9−18.7 6.45−16.9 1.8−27.6 12−27.6

Bacteroidetes 13.9−42.6 56.3−56.9 46−61.3 49.9−56.3 56.3−74

Firmicutes 5.05−13.9 13.9−17.5 13.9−34 13.9−42.1 10−13.9

Actinobacteria 0.05−4.9 0.55−4.9 0.95−4.9 0.25−4.9 4.9

Fusobacteria 4.7−5.55 4.7−5.30 0.2−0.55 0.2−0.3 0.2−0.4

Spirochaetes 0−0.4 0.1−0.4 0.4−2.60 0.4−0.85 0.4

Fibrobacteres 0−0.3 0−0.3 0.2−0.3 0.3−1.45 0.3−1.6

Tenericutes 0 0.80 0.20 0.90 0.95

Elusimicrobia 0 0 0.20 1.45 2.1

Lentisphaerae 0 0 0.15 0.20 0.31

aData collected from Li et al. (2012), Jami et al. (2013) and Rey et al. (2013).
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recently reported that at day 0 of life M. mobile, M. votae, and
Methanobrevibacter sp. were detected in the rumen of neonatal
dairy calves.

As reviewed by Stewart et al. (1988), anaerobic fungi
established in the rumen of flock-reared lambs by 8–10 days after
birth (Fonty et al., 1987). They were found in all lambs by 3 weeks
of age and interestingly then were no longer detectable in 9 of the
11 lambs studied when a diet based on concentrate was provided.
The fungal population was mainly composed of Neocallimastix
frontalis; Sphaeromonas communis was found only sporadically.
The early appearance of these fungi is another characteristic of
the rumen. These microorganisms which had only previously
been found in mature ruminants or when forage-rich diets are
fed (Orpin and Joblin, 1988) are apparently able to develop in the
rumen before solid substrate enters the rumen.

In addition to the colonization pattern of the different
microbial groups in the rumen, special attention should be
paid to the microbial community associated to the rumen
wall. Stewart et al. (1988) stated that the epimural bacterial
community is established shortly after birth and soon reaches
concentration equivalent to those in the adult while the diversity
of this community seem to change with age (Mueller et al.,
1984a; Rieu et al., 1990). Mueller et al. (1984a) described
24 morphological types of bacteria associated to the rumen
wall in 1- to 10-week old lambs by using scanning electron
microscopy, although only seven types, found in both the lamb
and the adult, could be considered indigenous members of the
epimural community. This community follows a characteristic
succession, with significant changes occurring in the generic
composition through the first 10 weeks of life. According
to Mueller et al. (1984b), the epimural community does not
appear to be markedly different taxonomically from the bacterial
community of rumen contents, since most isolated strains could
be placed into common rumen genera. However, recent studies
conducted using molecular tools disagree with that statement.
Sadet et al. (2007) using PCR-DGGE found that the epithelial
community differed from that of rumen contents. As expected,
the nature of the feed influenced the bacterial communities
from the solid and liquid rumen phases but no diet effect
was observed in the rumen epithelial profiles, suggesting a
strong host effect on this bacterial population. More recently,
Malmuthuge et al. (2014) reported large differences between
digesta and epimural bacterial communities in the rumen of
pre-weaned calves, highlighting greater abundances of Prevotella
and lower abundances of Bacteroidetes in digesta compared
with epimural bacterial communities. Moreover, the apparent
association between the development of the mucosal bacteria
community with the expression of some key immune related
genes in mucosal tissue (Malmuthuge et al., 2012), suggests that
future work on rumen colonization should include the study of
the epimural community.

Factors that Influence Early Life
Colonization
Given that the different trophic niches in the rumen ecosystem
are first occupied during early life and that a key turning point

in microbial colonization is the introduction of solid feed in the
diet (Rey et al., 2013), an important issue to address is whether
management of the newborn alters the colonization pattern. As
described in Section “Sequential Microbial Colonization of the
Rumen,” there is now ample evidence of the early colonization
of the rumen by anaerobic microorganisms, however, very few
studies have actually compared the colonization pattern of the
undeveloped rumen in the context of the factors that facilitate (or
prevent) the colonization of somemicrobial groups (i.e., maternal
influence, offspring reared in isolation, liquid/solid feed, use of
additives, etc).

Protozoa are not essential for the normal rumen functioning
(Williams and Coleman, 1992); however, the presence/absence
of protozoa has been associated with the structure of different
bacterial and methanogens communities and different rumen
fermentation pattern (Yáñez-Ruiz et al., 2007; Belanche et al.,
2014). Adult ruminants harbor distinctive protozoal populations
with key species such as Polyplastron and Epidinium indicative of
types A and B populations, respectively (Williams and Coleman,
1992). The introduction of Polyplastron into the rumen of
animals harboring a type B protozoal population leads to the
elimination of type B protozoa, however, within most flocks sheep
exist with approximately the same number of animals harboring a
type A and type B populations, clearly some unknown host factor
influences the colonization of the rumen of individual sheep by
protozoa (Williams and Coleman, 1992). Skillman et al. (2004)
used twin lambs to identify methanogens colonizing the rumen
of young lambs. The similarities between the rumen methanogen
populations found in twins suggested that the dam was the main
source of methanogen inoculation. The maternal influence has
been further supported in recent studies in terms of microbial
development in pre-ruminants subjected to anti-methanogenic
treatments (bromochloromethane, BCM). Abecia et al. (2013,
2014a) reported that the archaeal community establishing in the
rumen of kids depended on whether the doe was treated or not
with BCM. This suggests that any intervention applied in the
early life of young animals raised by the dams should consider
applying the same treatment to the doe.

Both Abecia et al. (2014b) and Belanche et al. (2015) showed
a different colonization pattern for protozoa in artificially reared
animals as compared to those raised by the dams. Abecia et al.
(2014b) showed that natural milk feeding via the dam vs. artificial
feeding with milk replacer resulted in consistently lower pH
in the developing rumen of goat kids that stayed with the
mothers. They hypothesized that naturally raised kids would have
consumed more concentrate at an earlier stage as a result of social
feeding learning. An environment with a different pH during
the development would be more beneficial for some microbial
groups (Palmonari et al., 2010) and may set a different microbial
population in the adult animal.

Anderson et al. (1987) showed that introducing solid feed for
early weaning (3 weeks) in calves promoted greater microbial
abundance in the rumen as compared to calves weaned
conventionally (6 weeks), but no assessment of the composition
of the microbiota was performed. Early studies (Eadie et al., 1959;
Ziolecki and Briggs, 1961) reported that giving forage or forage
and concentrate around weaning determined the concentration
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of some anaerobic bacteria (lactobacilli and lactate-utilizing
cocci), although no information on the persistency of such
effect was provided. Yáñez-Ruiz et al. (2010) reported that
feeding forage vs. concentrate around weaning modified the
bacterial population colonizing the rumen of lambs and that
the effect persisted over 4 months, suggesting the possibility of
further exploring the feasibility of manipulating the microbial
populations present in the adult animal using diets or dietary
additives fed early in life.

In addition to the introduction of solid diet around
weaning, nutritional interventions in early life may include (i)
the direct inoculation of specific microorganisms or (ii) the
use of compounds (i.e., additives) that prevent or facilitate
the colonization of some microbial groups. Feeding live
microorganisms to ruminants is not a novel concept and
extensive work has been published on the use of ‘direct-fed
microbials’ (DFM; Martin and Nisbet, 1992; Jeyanathan et al.,
2014). Theodorou et al. (1990) reported that the addition of
the anaerobic rumen fungus Neocallimastix sp increased intake
and liveweight gain in calves at weaning, whilst Ziolecka et al.
(1984a,b) reported that a stabilized rumen extract enhanced
live weight gain and stimulated rumen development in calves
during weaning and Zhong et al. (2014) demonstrated that
inoculation of fresh rumen fluid into the rumen of lambs
for 7 days improved average daily gain and digestibility
in early weaned lambs. Nakanishi et al. (1993) found that
adding lactic acid bacteria to starter diets of Holstein calves
stimulated rumination and ruminal development, however, no
performance benefits were observed and possible microbial
changes during rumen development were not determined.
Lesmeister et al. (2004) evaluated the effect of supplementing
yeast (Saccharomyces cerevisiae) culture on rumen development
and growth performance in neonatal dairy calves. Although yeast
cultures are widely used in ruminant nutrition, the concept of
applying them in the diet of pre-ruminants deserves further
assessment. They conclude that the addition of yeast in dairy
calf starter at 2% enhanced dry matter intake and growth and
slightly improved rumen development. Unfortunately they did
not study either the effect on the rumen microbiota or the long-
term effects in the animals. Other microbes targeting the rumen
(i.e., Megasphaera elsdenii, propionibacteria) have been used as
rumen probiotics but to our knowledge only in adult animals
(Klieve et al., 2003).

A different experimental approach is to provide specific
microbes in gnotobotically reared neonates. Gnotobitic lambs
harboring either a simple or complex microbiota are an
important method for investigating the role of specific microbes
in the rumen. This approach has been used mainly to gain
insight in the manipulation of microbes directly involved in
H2 transfer within the rumen. Hydrogenotrophic acetogens
colonize first the rumen and then they are gradually replaced
by methanogenic archaea as the rumen develops (Gagen
et al., 2012). The early establishment of acetogenic and
sulfate-reducing bacteria underlines the competition that exists
between H2-utilizing species. Naturally reductive acetogenesis
is not a significant hydrogen sink in the rumen. However,
in the absence of methanogenesis, acetogens contribute to

H2 capture and can sustain functional rumen. Fonty et al.
(2007) demonstrated using gnotobiotic lambs, that in animals
lacking ruminal methanogens, the introduction of acetogens
made reductive acetogenesis the major hydrogenotrophic process
and that the effects of such intervention applied after birth
persisted 12 months later. They suggested that if reliable
methods for eliminating methanogens from early life and
maintained the inoculation with acetogens could be a feasible
option to decrease methane emissions from adult animals.
More recently, Gagen et al. (2012) used lambs that were born
naturally, left with their dams for 17 h and then placed into
a sterile isolator and reared aseptically. They were inoculated
with cellulolytic bacteria and later with Methanobrevibacter
sp.7 to investigate the effect of methanogen establishment on
the rumen acetogen population since they lacked cultivable
methanogens. Methanogens were present in lambs isolated 17 h
after birth, though were undetectable using traditional cultivation
techniques. Methanogen numbers were low in these lambs (<104
rrs copies per microgram of DNA) however, mcrA diversity was
not dissimilar to that found in 2-year-old conventional sheep.
This suggests that early colonizing methanogens may persist in
the rumen and supports the potential of early life microbial
programming.

With regards to the suppression of methanogens in early life,
the use of compounds that inhibit the establishment of certain
microbial groups or favor the development of others is now
starting to attract attention. Abecia et al. (2013, 2014a) showed
that application of BCM to young goat kids modified archaeal
colonization of the rumen, which was linked to a reduction in
methane emission of around 50%, with the effects persisting for
3 months after weaning and cessation of treatment in kids raised
by does that received the same treatment as the kids.

Timing for Interventions in Early Life and
Persistency of the Effects
Given that particular factors favor the establishment of certain
microorganisms, we still need to know what the most sensitive
window of time for interventions is in early life. Recent work
(Rey et al., 2013; Abecia et al., 2014b; Guzman et al., 2015)
showed that initial colonization occurs straight after birth and
that it takes 3–4 weeks for the bacterial community structure
to reach a certain degree of stabilization from birth, suggesting
that this period is critical. However, this assumes that once
the community is more or less constant, there is no room for
‘programming’ and this has not yet been fully confirmed. It
is clear that nutrient supply and hormonal signals at specific
times during development (both pre- and early post-natal) exert
permanent changes in the metabolism of humans (Fall, 2011),
as well as changes in performance, body composition, and
metabolic function of the offspring of livestock (Wu et al., 2006).
These changes occur through processes generically referred to as
fetal programming and metabolic imprinting. The information
available in ruminants suggests that microbial colonization
occurs earlier than functional achievement (i.e., a functioning
rumen), with anatomic development occurring last (Jiao et al.,
2015). However, the actual window of time in which such changes
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can be exerted in relation to microbial colonization and more
importantly the persistency of the imprint needs to be further
clarified. Therefore, there is urgent need to further address this
question with more fundamental research. Rey et al. (2013)
showed substantial colonization by the main bacterial groups in
the first days of life. Likewise, Guzman et al. (2015) reported
the presence of methanogenic archaea and fibrolytic rumen
bacteria at day 0 in neonatal dairy calves, which suggests that the
window for intervention starts straight after birth. Along these
lines, there are some reported cases of human twins that harbor
different gut microbiota (Clemente et al., 2012), which also offers
promise for the potential of early life programming interventions.
Studies in humans showed that early gut colonizers, such as
those acquired from parents, can exert physiological, metabolic,
and immunological effects for most of our lives (Faith et al.,
2013).

HOST IMMUNE RESPONSE TO
MICROBIOTA

The gastrointestinal tract has a diverse array of non-specific
and specific protective mechanisms to allow it to coexist
with resident microbiota (Hooper et al., 2012). The functions
of nutrients absorption, symbiotic microbial tolerance and
pathogenic microbial barrier, create a conflict in function
requiring a complex system of physical, biochemical, and cellular
mechanisms for protection of the intestinal mucosa against
invading pathogens (Kuhn and Stappenbeck, 2012).

The training or education process that the immune system
needs to go through to learn how to deal with microbial loads
has been widely highlighted (Wu and Wu, 2012) and this is
of particular importance during early life stages (Collado et al.,
2012); however, the mechanisms involved in the ‘tolerance’ to
the first colonizers of the rumen are largely unknown. The
physiological elements involved in the case of the rumen may
differ from other parts of the gastrointestinal tract due to
the nature of the fermentation and the constant exposure of
the rumen wall to microbial biomass. The forestomachs of
the ruminant species are expanded esophageal portions lined
by stratified squamous epithelium. As stated by Trevisi et al.
(2014), scant information is available about the organization
of the epithelial immune system in forestomachs as opposed
to the impressive amount of data about the intestinal tract
of both ruminant and non-ruminant species (Dommett et al.,
2005). In general, the immune response in the mucosal areas
of the gut is orchestrated by mucosal-associated lymphoid tissue
(MALT) and gut-associated lymphoid tissue (GALT) in the gut.
However, in the rumen no organized lymphoid tissue exists
in the epithelium (Sharpe et al., 1977). The rumen epithelium
includes up to a 15 cell layer, which can limit the permeability
of large molecules. Therefore, the microbial equilibrium in the
rumen is achieved by a combination of different mechanisms,
illustrated in Figure 1: (i) constant supply of Immunoglobulins
(IgA and IgG) via saliva (Williams et al., 2009), (ii) the activity
of Toll-like receptors (TLRs, Malmuthuge et al., 2012), (iii)
a group of genetically encoded pattern recognition receptors

(Seabury et al., 2010); (iv) peptidoglycan recognition proteins
(PGLYRP1, Malmuthuge et al., 2012), and (v) antimicrobial
peptides defensins (Malmuthuge et al., 2012; Meade et al., 2014).

Blood serum in animals contains circulating antibodies to a
wide range of Gram-negative bacteria, particularly enterobacteria
(Landy and Weidanz, 1964). The antibodies are considered to
be natural antibodies produced in the absence of overt infection
(Boyden, 1966). Sharpe et al. (1969) found antibodies against
specific strains of rumen bacteria in the blood of cows, sheep,
goats, and horses, but not in pigs, rabbits, and humans. They
showed the high specificity of the natural agglutinating antibodies
in ruminants in absorption tests, which was further confirmed
by the absence of agglutinins against a human Escherichia coli
strain although they were detected against a rumen E. coli
strain. A close relationship seems to exist between motility
of the rumen microorganisms and their ability to stimulate
natural antibodies, with antibodies being detected against motile
Butyrivibrio, Streptococci, and Lactobacilli (Sharpe et al., 1969).
Further work showed that antibodies against these organisms
were present in bovine colostrum at the same level as serum and
were transferred to the calf serum via colostrum (Sharpe et al.,
1977). While not excluding the possibility that non-viable rumen
bacteria leaving the abomasum could be a source of antigenic
stimulus in the small intestine, an early study (Latham et al.,
1971) investigated the caecum as an alternative site of antigenic
stimulus. Many of the bacteria in the caecum are similar to those
in the rumen, however, whereas the epithelium of the rumen
is non-glandular and keratinized that of the caecum contains
lymphatic tissue and plasma cells. The role of the caecum as active
immune organ needs to be further studied.

Sharpe et al. (1977) used four gnotobiotic lambs, reared on
milk, a starter ration and then grass cubes to understand the
relationship between rumen microbial colonization in early life
and antigen production. The lambs were inoculated with strains
of Veillonela, Prevotella ruminicola, Ruminicoccus, Selenomonas,
Megasphaera, Lactobacillus, Butyrivibrio and, in one case, E.
coli. Prevotella, Selenomonas, and Megasphaera gave a strong
immunological response, with antibodies to the former bacteria
appearing at 20–40 days after inoculation and to theMegasphaera
at 28–74 days. Agglutinins to Veillonella and Ruminococcus were
weak and appeared only at 100–136 days after inoculation. As
expected, no agglutinins were detected against non-inoculated
bacteria. The gnotobiotic lambs did not receive colostrum and
were born with only traces of immunoglobulins, but after
74–77 days had synthesized appreciable amounts of IgM and
relatively little IgG. Since the primary antigenic response of
an animal is to produce IgM, the preponderance of IgM is
not surprising. At 140 days, IgG levels had risen considerably
to similar levels as IgM. These results highlighted the strong
link between rumen microbial colonization and specific antigen
production. Unfortunately, no further work has been conducted
in animals reared under different conditions in early life.

As noted earlier, saliva seems to be the main vehicle of
introducing immunoglobulins in to the rumen. The levels of IgA
and IgG in cattle serum, saliva, and rumen fluid have been studied
recently in the context of exploring the possibility of vaccinating
ruminants against specific rumen microorganisms (Subharat
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FIGURE 1 | Illustration of different elements of the immune-regulation of the rumen microbiome. TLR, Toll-like receptor; PRR, pattern recognition receptors.

et al., 2015). These studies have confirmed that the major class
of immunoglobulin in bovine saliva is IgA and showed that
this class of immunoglobulin is also the dominant type in the
rumen. In contrast, in serum the major class is IgG. IgA is
apparently more resistant to degradation in the rumen compared
to IgG, possibly because the secretory component of IgA makes
the immunoglobulin more resistant to protease activity in the
rumen (Snoeck et al., 2006). Although the research conducted
in developing vaccines against specific rumen microorganisms
proves that an increase in the titres of Ig in saliva can be achieved,
the role of the constant supply of Ig into rumen through saliva

in shaping the commensal microbial community and how this
innate response functions during rumen development are as yet
unknown.

A change in the diet of the animal can result in a shift in the
proportion of microbial groups in the rumen (Petri et al., 2013)
but little is known as to how the immune system deals with such
a shift in ruminants. Some research has been conducted in this
area in animals subjected to rumen acidosis challenge. Chen et al.
(2012) reported a significant variation of TLR4 gene expression in
the rumen epithelium of the animals with different susceptibility
to acidosis. The observed correlations between copy number of
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total bacterial 16S rRNA genes of epimural bacteria, and
ruminal pH, total VFA concentration, and expression of the
TLR4 gene, suggested that the innate immune response in
the epithelium is associated with the activity of the epimural
bacteria. Currently, a total of 10 TLRs have been described in
ruminants (Seabury et al., 2010) and two main groups may
be distinguished: (i) TLRs1, 2, 4–6, 10, which are expressed
in the cell surface and identify bacterial surface associated
molecular patterns and (ii) TLRs3, 7–9 that recognize specific
nucleic acids from viruses and bacteria (Chang, 2010; Guan
et al., 2010; Malmuthuge et al., 2012). In spite of the knowledge
available on the innate epithelial-associated response in adult
ruminants, very few studies have addressed this in young
animals. Malmuthuge et al. (2012) studied the regional and
age-dependent expression patterns of TLRs, peptidoglycan
recognition protein 1 (PGLYRP1), and antimicrobial proteins
(β-defensin) in the rumen, jejunum, ileum, cecum, and
colon of 3 weeks and 6-month-old calves. The expression
of most TLRs was significantly down regulated throughout
the gastrointestinal tract with increasing age. The restricted
expression of both β-defensin and PGLYRP1 prior to weaning
in calves suggests that significant developmental changes
occur in the epithelial immune system of cattle at this time.
Malmuthuge et al. (2012) hypothesized that ‘newborns may
depend on TLRs as a primary innate immune mechanism
to monitor commensal microflora and pathogens prior to
weaning, but with increasing age it appears that other innate
immune effecter mechanisms such as antimicrobial peptides
may become more active in providing host defenses and
minimizing harmful inflammatory responses’. No studies,
however, have been conducted yet on to what extent the
expression level of TLR respond to different microbial
colonization patterns.

Recently, Liang et al. (2014) studied the potential regulatory
role of micro RNAs (miRNAs) in the development of
gastrointestinal tract (including the rumen), during the
early life of dairy calves. The first finding is that the
copy numbers of 16S rRNA gene of Bifidobacterium or
Lactobacillus species or both were positively correlated
with miR-15/16, miR-29, and miR-196 expression levels
(P < 0.05). The authors suggested miRNAs that were expressed
differently could be regulators of the differentiation and
proliferation of the cells of gastro-intestinal. Indeed Liang
et al. (2014) identified three miRNAs as promoters of the
gut-associated development at different levels: lymphoid
tissues development (miR-196), dendritic cells maturation
(miR-29), and of immune cells (miR-15/16). Their results
provide novel evidence of gut development mechanisms that
are regulated by host-microbiome interactions (Liang et al.,
2014).

As stated earlier, the information of the impact of different
colonization patterns on the immune system and the long-
term effects is scarce. It could be hypothesized that if the
colonization of a specific microbial group is prevented in
early life, it is likely that the immune system will not

recognize that group in later life if it colonizes the rumen
later on. As a consequence, the host may mount an immune
response against it. This might be a means to control specific
populations. However, this is not entirely supported by the
research conducted using protozoa-free raised lambs that were
inoculated with protozoa later in life (Belanche et al., 2015).
Nevertheless, more research is needed to understand the
immune response in animals subjected to different microbial
colonization patterns and how the animal responses later in
life when it is challenged with the inoculation of ‘unknown’
species.

CONCLUSION AND FUTURE PROSPECT

The development of the rumen needs to be understood at
different levels: anatomical, functional and microbial, as they
have different temporal sequences in the young animal and
the interplay of anatomical/functional rumen development and
microbial development is not yet clear.

Notwithstanding the knowledge gaps, from the work
described above, we conclude that early life events may be
related to the microbial community structure and/or the
rumen activity in the animals post-weaning. This would
create differences in adaptive capacity due to different
early life experiences and leading to the idea of microbial
programming. However, the most effective window of time
for intervention and the long-term implications are yet to
be addressed. Therefore there is a need to perform trials
that run long enough to truly assess the impact on the
productive life of the animal. In addition, the differences
in animal responses in later life need to be adequately
assessed. In some cases, there will be no differences
between animals reared differently in early life, which
nevertheless have different microbiome compositions, if
they are tested under ‘standard’ feeding conditions. The
potential different response might become evident when
the animals are nutritionally challenged or re-treated with
the same pro- or anti-microbial compound as in early
life.

Identifying the key immune elements at molecular level
involved in early life colonization (with special attention to the
rumen epimural population) may help to understand the host-
animal response and the extent of persistency of effects in adult
life.
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