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As a popular psychostimulant, methamphetamine (METH) use leads to long-lasting,

strong euphoric effects. While METH abuse is common in the general population,

between 10 and 15% of human immunodeficiency virus-1 (HIV-1) patients report

having abused METH. METH exacerbates the severity and onset of HIV-1-associated

neurocognitive disorders (HAND) through direct and indirect mechanisms. Repetitive

METH use impedes adherence to antiretroviral drug regimens, increasing the likelihood of

HIV-1 disease progression toward AIDS. METH exposure also directly affects both innate

and adaptive immunity, altering lymphocyte numbers and activity, cytokine signaling,

phagocytic function and infiltration through the blood brain barrier. Further, METH

triggers the dopamine reward pathway and leads to impaired neuronal activity and

direct toxicity. Concurrently, METH and HIV-1 alter the neuroimmune balance and induce

neuroinflammation, which modulates a wide range of brain functions including neuronal

signaling and activity, glial activation, viral infection, oxidative stress, and excitotoxicity.

Pathologically, reactive gliosis is a hallmark of both HIV-1- and METH-associated

neuroinflammation. Significant commonality exists in the neurotoxic mechanisms for

both METH and HAND; however, the pathways dysregulated in astroglia during METH

exposure are less clear. Thus, this review highlights alterations in astrocyte intracellular

signaling pathways, gene expression and function during METH and HIV-1 comorbidity,

with special emphasis on HAND-associated neuroinflammation. Importantly, this review

carefully evaluates interventions targeting astrocytes in HAND and METH as potential

novel therapeutic approaches. This comprehensive overview indicates, without a doubt,

that during HIV-1 infection and METH abuse, a complex dialog between all neural cells

is orchestrated through astrocyte regulated neuroinflammation.
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INTRODUCTION

Burden of HIV-1 and HAND
Worldwide an estimated 33 million people are infected with human immunodeficiency
virus (HIV) and without effective treatment, HIV results in a progressive failure of the
immune system. Approximately 1.1 million Americans are currently living with HIV or
acquired immune deficiency syndrome (AIDS), with an estimated 50,000 new infections
occurring in the U.S each year1. While the age at which neurocognitive issues develop is

1http://www.unaids.org/en/resources/campaigns/2014/2014gapreport/factsheet;
http://www.cdc.gov/hiv/library/reports/surveillance/
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increasing with antiretroviral therapy (ART), ∼69% of HIV+
patients continue to develop HIV-1-associated neurocognitive
disorders (HAND; Matinella et al., 2015). Although the
prevalence of HIV-1-associated dementia (HAD) has decreased
from ∼20% to less than 5% with wide-spread use of ART, other
neuropsychiatric complications of HIV, including delirium,
neurobehavioral impairments (depression), asymptomatic
neurocognitive impairment (ANI) and minor neurocognitive
disorder (MND) remain prevalent (McArthur et al., 2005;
Robertson et al., 2007; Matinella et al., 2015). Significant glial
activation can be found in brain tissues even in the absence
of HIV encephalitis (HIVE) or even active viral replication,
implicating inflammation as a causative mechanism of HAND
(Tavazzi et al., 2014).

Burden of METH Abuse
Abuse of the potent psychomotor stimulant methamphetamine
(METH) remains a significant public health concern as it results
in neurotoxic outcomes including deficits in memory, executive
function, anxiety, depression, psychosis and other neurologic
manifestations (Cadet and Krasnova, 2009; Nagai and Yamada,
2010; Rusyniak, 2013). Despite declining use since 1999, 1.2
million people reported METH use in 2012, 133,000 of which
were new users aged 12 and older2. An urban men’s health
study of over 2000 men who have sex with men (MSM)
indicates that use of METH and other stimulants by MSM
is 10 times greater than the general population and METH
abusers are 20% more likely to contract sexually transmitted
diseases, including HIV-1 (Stall et al., 2001; Rosenthal, 2006)3.
METH administration occurs by various routes including oral,
snorting, smoking and intravenous injection. The associated
euphoria due to neurotransmitter release disappears before
drug concentrations in the blood fall significantly, leading to
“binging and crash” patterns of abuse, tolerance and increased
METH intake2. Chronic METH exposure leads to a variety
of adverse physiological consequences including skin lesions,
tooth decay, weight loss, altered immunity, and cognitive
impairment. It has been estimated that 40% of METH users
exhibit global neuropsychological impairment (Rippeth et al.,
2004).

METH and HIV-1 Comorbidity
Eight percent of newly diagnosed HIV-1 infections are attributed
to intravenous drug use and the National Institute on Drug
Abuse reports that 25% of diagnosed HIV-1-infected individuals
report treatment for the use of drugs and alcohol4. While
accurate statistics documenting METH abuse in HIV-1-
infected individuals are not available, studies show that
METH use exacerbates HIV-1 infection, accelerating the
severity and onset of HAND, along with immune dysfunction
and resistance to ART therapy (reviewed in Passaro et al.,

2http://www.drugabuse.gov/publications/research-reports/methamphetamine/
what-scope-methamphetamine-abuse-in-united-states
3http://stacks.cdc.gov/view/cdc/11778/
4http://www.drugabuse.gov/related-topics/trends-statistics/infographics/drug-
alcohol-use-significant-risk-factor-hiv; http://www.drugabuse.gov/publications/
drugfacts/hivaids-drug-abuse-intertwined-epidemics

2015) Studies report that 53–58% of HIV+ METH users
exhibit neurocognitive impairment compared to 40% in
either HIV+ or METH+ alone; however, their interaction is
poorly understood (Rippeth et al., 2004; Gupta et al., 2011).
In part, the neurological complications in both METH abuse
and HAND are associated with increased permeability of the
blood brain barrier (BBB) and neuroinflammation. These
are mediated through cellular and molecular mechanisms
such as gliosis, viral replication, oxidative stress and
excitotoxicity (Rippeth et al., 2004; Ramirez et al., 2009;
Potula et al., 2010; Sharma et al., 2011; Cisneros and Ghorpade,
2012).

The study of inflammation generally focuses on the
contributions of professional immune cells. However, the
unique nature of the brain as an immune privileged site
implicates neural cells in the regulation of immune responses.
Glia, specifically astroglia and microglia, account for 50–80%
of the cells in the brain, outnumbering neurons in certain
regions by as much as 10:1 (Dobbing and Sands, 1973; Kandel
et al., 2000; Azevedo et al., 2009). As the resident immune cells
of the brain, microglia are accountable for brain surveillance
and immunity, while astrocytes have a significant repertoire of
immune functions that complement their “neural” functions.
Astrocytes, through regulation of neuroinflammation, are
implicated in neurodegenerative diseases such as Alzheimer’s
disease (AD; Roth et al., 2005; Weinstein et al., 2013), hepatic
encephalopathy (Coltart et al., 2013), multiple sclerosis
(MS; Brosnan and Raine, 2013; Kostic et al., 2013), epilepsy
(Devinsky et al., 2013), amyotrophic lateral sclerosis (Evans
et al., 2013), Parkinson’s disease (PD; Tufekci et al., 2012),
aging and depression (Paradise et al., 2012) and HAND
(Borjabad et al., 2010; Cisneros and Ghorpade, 2012). Reactive
glia participate in neuroinflammation by synthesizing and
releasing various powerful pro-inflammatory and neuroactive
substances, like cytokines, chemokines, nitric oxide (NO),
glutamate, reactive oxygen species (ROS), neurotrophins and
transforming growth factors (TGF; da Cunha and Vitkovic,
1992; Chiueh and Rauhala, 1999; Wang et al., 2004; Hult
et al., 2008; Fitting et al., 2012; Ramesh et al., 2013; Salamanca
et al., 2014). Although astroglia play a central role in HIV-
1-associated neuropathogenesis, serving as reservoirs for
latent HIV infection, chronic inflammation and as sources of
neurotoxicity during HAND. There is a paucity of information
regarding the mechanisms at play during HIV-1 and METH
comorbidity. Due to the addictive nature of METH abuse,
METH interactions with neurons leading to dopamine release
and subsequent toxicity have been a focus of much investigation.
However, despite apparent glial activation, the mechanisms
through which METH interacts with glia to alter astrocyte
and microglial function are much less apparent (Chiu and
Schenk, 2012; Cisneros and Ghorpade, 2012; Friend and
Keefe, 2013). A better understanding of astrocyte regulation
of HIV-1 and METH-mediated neurodegeneration would
help identify mechanistic targets coordinating glial activation.
By therapeutically reducing acute and chronic inflammation,
neurological impairments such as HAND could be ameliorated
or even prevented.
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ASTROCYTES IN HAND

As a predominant cell in the brain, astrocytes regulate the central
nervous system (CNS) physiological environment at both the
BBB and in the parenchyma. As integral members of the BBB,
astroglia respond to immunomodulatory signals including, but
not limited to, cytokines and prostaglandins. During HIV-1 CNS
infection, the BBB integrity is compromised thus permitting
the peripheral immune system to trigger neuroinflammation
and oxidative stress. Astrocytes secrete a variety of neuroactive
molecules in response to HIV-1- and METH-associated stimuli.
In this manner, astrocytes regulate the physiological functions
of neural cells in their immediate vicinity and cells within
the reach of their many foot processes. As neuroinflammation
persists, the ability of astrocytes to regulate BBB integrity, and
neurotransmission in tripartite synapses is impaired. Under
chronic disease, astrocyte expression of critical transporters
and enzymes that clear neurotransmitters, neutralize ROS and
balance ECM remodeling dwindles to levels where homeostasis is
no longer sustainable. Eventually, neuronal function and survival
are impaired due to insufficient support and direct toxicity.
Taken together, astrocyte dysfunction during METH abuse, in
the setting of HIV-1 infection, contributes both to chronic BBB
damage and propagation of a CNS environment dominated
by inflammation, oxidative stress, and excitotoxic insults, that
culminate in neurodegeneration.

Blood Brain Barrier
In the absence of trauma, infection or disease, and despite
fenestration of the BBB in specific areas, the majority of the
brain is sealed to peripheral immune surveillance Astrocyte foot
processes cover tight junctions between brain microvascular
endothelial cells (BMVECs). Astrocyte foot processes also
traverse the basal lamina to physically interact with BMVEC,
assist with BMVEC differentiation and provide biochemical
support (Hamm et al., 2004; Ivey et al., 2009). In fact, in a
coculture study, simply removing astrocytes was sufficient to
cause tight junction opening and increased BBB permeability
(Hamm et al., 2004). Multiple membrane proteins seal tight
junctions, including claudin, occluding, and junctional adhesion
molecules, while accessory proteins such as zonula occludens
(ZO)-1/2 link these tight junction proteins to the BMVEC
actin cytoskeleton. The expression and function of several key
tight junction proteins are altered during HIV-1 infection and
METH exposure leading to increased BBB permeability and viral
neuroinvasion (Atluri et al., 2015; Northrop and Yamamoto,
2015).

The Trojan horse model of HIV-1 infection postulates, that
early during infection circulating monocytes cross the BBB and
carry virus into the CNS. Recent longitudinal studies indicate
that the BBB then reseals or compartmentalizes the CNS HIV-1
infection. In ART naïve subjects HIV-1 replication and evolution
proceeded independent from the periphery during the first 2
years of infection (Sturdevant et al., 2015). Further, cerebrospinal
fluid (CSF) samples showed that compartmentalized HIV-1
replication correlated with a marked inflammatory response in
the CSF indicative of ongoing or recurrent neuroinflammation

(Sturdevant et al., 2015). In both the periphery and the
CNS, HIV-1-infected cells express viral proteins, including
glycoprotein (gp)120, transactivator of transcription (Tat) and
negative regulator factor (Nef), along with elevated levels
of a host of inflammatory mediators such as cytokines and
chemokines. These act alone, or in concert, to damage the
integrity of the BBB. METH exposure has been shown to
increase BBB permeability to small molecules by regulating
both tight junction protein expression and intracellular vesicular
transport (Dietrich, 2009; Salamanca et al., 2014). METH is
capable of traversing the BBB without assistance and thus can act
upon the BBB in the periphery and CNS concurrently. METH
activates lymphocytes and promotes transendothelial migration
(Martins et al., 2013). METH also increases HIV-1 replication
in lymphocytes and increases HIV-1 receptor expression on
dendritic cells (Liang et al., 2008; Nair et al., 2009; Cen et al., 2013;
Atluri et al., 2015). Further, METH exposure suppresses anti-
HIV-1 activity in macrophages (MP) by downregulating toll-like
receptor-9 expression. Decreased interferon (IFN)-α expression
by METH-exposed MP impairs innate host immunity against
HIV-1 (Cen et al., 2013). Together, METH and HIV increase
BBB compromise and immune cell infiltration to increase
neuroinflammation.

Since interactions between circulating immune cells and
BMVECs are mediated through cytokines, chemokines and
adhesion molecules; alterations in viral proteins and chemokines
play an important role in regulating leukocyte extravasation
through the BBB during HIV-1 CNS infection. Cells on either
side of the BBB participate in the dialog, including circulating
leukocytes, BMVEC, perivascular MP, microglia and astrocytes
(Langford and Masliah, 2001; Strazza et al., 2011; Louboutin
and Strayer, 2012; Woollard et al., 2014). BMVEC expression
of cell adhesion molecules is increased by leukocyte binding or
by cytokines, such as interleukin (IL)-17, tumor necrosis factor
(TNF)-α, IFN-γ, IL-22, and IL-1β, from activated leukocytes,
microglia and astrocytes. Activated leukocytes penetrate the
BBB by interacting with cell adhesion molecules on BMVEC
(Cayrol et al., 2008; Alvarez et al., 2011; Elahy et al., 2015).
HIV-1 proteins Tat and gp120 are directly toxic to BMVECs,
affecting expression of tight junction proteins, ZO-1, claudin-5
and occludin, and matrix metalloproteinases (MMP; Langford
and Masliah, 2001; Strazza et al., 2011; Louboutin and Strayer,
2012; Woollard et al., 2014). Similarly, METH enhances BBB
permeability by modulating tight junction protein expression
in BMVECs. METH exposure alone significantly decreases the
percentage of BMVEC expressing ZO-1, while increasing the
percent expressing JAM-2. Combined treatment with gp120
decreased expression of tight junction proteins compared to
control (Mahajan et al., 2008). In an in vitro BBB model, METH
exposure significantly increased transmigration of peripheral
blood mononuclear cells (PBMCs) in response to a CCL5
chemotactic gradient compared to unexposed controls. The
transmigration of HIV-1-infected PBMCs increased significantly
compared to control PBMCs and doubled uponMETH exposure,
as compared to HIV-1 alone (Mahajan et al., 2008).

The entry of HIV-1-infected cells into the brain is the
foundation of HIV-1-associated neurodegeneration; however, the
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outcome of HIV-1 CNS infection varies dramatically between
individuals. Even before ART, disease progression to AIDS
with and without neurocognitive impairment could take years.
However, METH abuse exacerbates HIV-1-associated disease
pathology, inducing changes that may last for decades even
after METH is no longer abused (Cadet and Krasnova, 2007;
Iudicello et al., 2014; Northrop and Yamamoto, 2015). HIVE,
the most severe form of HAND, is pathologically characterized
by inflammatory changes and accumulation of perivascular MP,
formation of microglial nodules and multinucleated giant cells,
astrogliosis, neuronal atrophy and death (Gendelman, 2005).
With the effective use of ART helping to suppress disease
progression, clinicians and researchers alike postulate that ANI
and MND are stages of a similar disease process (Strazza
et al., 2011). However, since HAND is often a comorbidity
rather than the cause of death, HIV-1-associated neuropathology
is often “non-specific,” leading many to search for other
more subtle mechanisms of neurodegeneration (Gelman, 2015).
Neuroinflammation remains a focus of intense study as
inhibiting viral replication alone has slowed, but not halted,
HAND progression.

Neuroinflammation
The pro-inflammatory cascade leading to the disruption of
the BBB and entry of HIV-1-infected leukocytes into CNS
continues in the brain microenvironment. Resident microglia
and perivascular MP perpetuate neuroinflammation, activating
and or transmitting the infection to non-infected cells, including
astroglia. As the resident immune cells, microglia are the primary
HIV-infected cells in the brain mediating neuroinflammatory
responses, by increasing cytokines, MMPs and cytotoxic factors
(Ramesh et al., 2013). However, microglial activation and
infection inevitably also lead to astrocyte activation and infection
of a very small percentage of astrocytes with HIV. HIV infection
in astrocytes is restricted to the extent that are capable of
expressing viral proteins, including gp120, Tat and Nef, but not
infectious virions (Messam and Major, 2000; Eugenin et al.,
2011; Fitting et al., 2012; Li et al., 2015; Luo and He, 2015).
Coculture experiments mimicking the interconnections between
BMVEC and astroglia demonstrate that a small percentage (4.7%)
of HIV-1-infected astrocytes can lead to endothelial apoptosis,
dysregulation of lipoxygenase/cyclooxygenase (COX), calcium
(Ca2+) channels and ATP receptor activation within astrocytes,
significantly contributing to BBB disruption (Eugenin et al.,
2011). Further, astrocytes exposed to HIV-1 proteins, along
with those expressing them, have been shown to modulate
to neuroinflammation through multiple regulatory pathways,
summarized in Tables 1, 2.

Pro-inflammatory molecules also propagate inflammation
by the spread of reactive gliosis and affect neuronal function
and survival by direct and indirect mechanisms. In the healthy
nervous system, cytokines and chemokines are neuromodulators,
regulating neurodevelopment, neuroinflammation, and synaptic
transmission. They are fundamental to the brain’s proper
immune function, serving to maintain immune surveillance,
facilitate leukocyte traffic, and recruit other inflammatory
factors (Chui and Dorovini-Zis, 2010). However, during

neuroinflammation associated with both HIV-1 infection
and METH exposure, activated glia mediate neuronal injury
and death through neurotoxic signaling, generation of ROS,
altered cellular metabolism, neurotransmission and cerebral
blood flow, among others (Lau et al., 2000; Abdul Muneer
et al., 2011; Hoefer et al., 2015). In such, reactive glia,
infected or not, participate in the disruption of the BBB
leading to infiltration of HIV-1-infected cells into the CNS
and continuation of neuroinflammation in the brain. The
specific contributions and regulation of these cytokines,
chemokines and bioactive molecules in reactive astrocytes
and other cells during HIV-1 and METH comorbidity are
summarized in Tables 1, 2 and will be discussed in more detail
below.

Oxidative Stress
ROS participate in signaling and metabolic pathways during
physiological conditions (Ray et al., 2012). During homeostasis,
anti-oxidant enzymes, including super oxide dismutase (SOD),
glutathione peroxidase (GP), glutathione (GSH) and catalase
(CAT), tightly regulate and neutralize reactive molecules such
as superoxide, hydrogen peroxide and hydrogen radicals.
Excessive ROS induced by a variety of mechanisms, including
inflammatory cytokines, mitochondrial respiration, ischemia
and infection, are implicated in aging, cardiovascular disease,
diabetes, stroke and neurodegeneration (Cobb and Cole, 2015;
Raz et al., 2015; Salisbury and Bronas, 2015). Reactive nitrogen
species (RNS) also contribute the oxidative environment (Torre
et al., 2002). Inducible NO synthase (iNOS) generates NO, which
can interact with ROS to form peroxynitrite, a highly RNS
(Pacher et al., 2007). Low levels of oxidative stress activate anti-
oxidant machinery, initiate anti-microbial responses in immune
cells and activate endothelial cells (Ma et al., 2014; Molteni
et al., 2014; Salisbury and Bronas, 2015). Unchecked oxidative
and nitrosative modifications to cellular components, such as
the mitochondria, often augment oxidative stress and induce
apoptosis (Cossarizza et al., 2002; Jou, 2008; Indo et al., 2015).
Oxidative stress in the HIV-infected brain, through both the early
effects of viral proteins and the later effects on mitochondrial
integrity, are well established (Valcour and Shiramizu, 2004;
Ozdener, 2005; Banerjee et al., 2010; Uzasci et al., 2013). Low
ROS levels can promote viral replication and can be induced by
viral virulence factors (Molteni et al., 2014). HIV-1 gp120, Tat
and viral protein R (Vpr) induce ROS in neural cells, including
astrocytes (Ferrucci et al., 2013; Shah et al., 2013). In addition to
the direct generation of oxidative stress by HIV-1, antiretroviral
therapies, particularly dideoxynucleotide reverse transcriptase
inhibitors (NTRI), alter mitochondrial function and exacerbate
oxidative damage in peripheral and central nervous systems
(Lewis, 2003; Akay et al., 2014). During HIV disease progression,
increased oxidative stress is accompanied by deficiencies in
anti-oxidant enzymes, such as GP, GSH and SOD (Gil et al.,
2003; Sundaram et al., 2008; Pang et al., 2013; Gill et al., 2014;
Samikkannu et al., 2014). Astrocytes treated with indinavir or
nelfinavir export GSH into the culture supernatant, indicating
brain GSH homeostasis may also be dysregulated by HIV-1
protease inhibitors in astrocytes (Brandmann et al., 2012).
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TABLE 1 | Astroglial factors influencing neuronal survival and function.

Abbr. Full length name Receptor(s) Additional

function(s)/

effect(s)

HIV/METH-associated references Other CNS-associated references

INFLAMMATORY

AA Arachidonic acid Neurotoxic Waschbisch et al., 2006; Samikkannu

et al., 2011

PGE2 Prostaglandin E2 PGE2R Cerebral blood

flow

Mollace et al., 1994; Falsig et al.,

2004; Blanco et al., 2008;

Samikkannu et al., 2011

Newman, 2015

C2, C3, C5 Complement

components

Speth et al., 2001, 2002 Choi et al., 2014

CCL2,

MCP-1

Monocyte

chemoattractant

protein-1

CCR2 Chemotaxis Kutsch et al., 2000; Asensio et al.,

2001; Roberts et al., 2010b; Mamik

et al., 2011; Vartak-Sharma et al.,

2014

Ransohoff et al., 1993; Smits et al., 2002;

Strack et al., 2002; Croitoru-Lamoury

et al., 2003; Ambrosini et al., 2005; Choi

et al., 2014; Mayo et al., 2014

CCL3,

MIP-1α

Macrophage

inflammatory

protein-1α

CCR1, 2, and 5 Chemotaxis Smits et al., 2002; Ambrosini et al., 2005;

Burkert et al., 2012

CCL4,

MIP-1β

Macrophage

inflammatory protein-1β

CCR3, CCR5 Chemotaxis Choi et al., 2014 Smits et al., 2002; Ambrosini et al., 2005

CCL5,

RANTES

Regulated on

activation, normal T cell

expressed and

secreted

CCR1, 2, and 3 Chemotaxis Choi et al., 2014; Liu et al., 2014a Smits et al., 2002; Croitoru-Lamoury

et al., 2003; Kim et al., 2004; Ambrosini

et al., 2005; El-Hage et al., 2011

CCL7,

MCP-3

Monocyte

chemoattractant

protein-3

CCR1 and 2 Chemotaxis Renner et al., 2011

CXCL1,

Gro-α/β

Growth regulated

oncogene-α/β

CXCR1 and 2 Chemotaxis Coughlan et al., 2000; Wu et al., 2000; Lu

et al., 2005; Choi et al., 2014

CXCL3, Gro-γ Growth regulated

oncogene-γ

CXCR2 Chemotaxis Lu et al., 2005

CXCL5,

ENA-78

Epithelial-derived

neutrophil-activating

peptide 78

CXCR2 Chemotaxis Pang et al., 2001

CXCL6,

GCP-2

Granulocyte

chemotactic protein-2

CXCR2 Chemotaxis Flynn et al., 2003; Lu et al., 2005

CXCL7,

NAP-2

Neutrophil-activating

protein-2

CXCR2 Chemotaxis Lu et al., 2005

CXCL8, IL-8 Interleukin-8 CXCR1 and 2 Chemotaxis,

Neuroprotection

Kutsch et al., 2000; Mamik et al.,

2011

Xia et al., 1997; Puma et al., 2001;

Croitoru-Lamoury et al., 2003; Flynn

et al., 2003; Lu et al., 2005; Ashutosh

et al., 2011; Choi et al., 2014

CXCL9, Mig Monokine induced by

interferon-γ

CXCR3 Chemotaxis,

Dual-function

Asensio et al., 2001 Salmaggi et al., 2002; Croitoru-Lamoury

et al., 2003; Flynn et al., 2003

CXCL10,

IP-10

Gamma interferon

inducible protein 1

CXCR3 Chemotaxis,

Neurotoxic

Kutsch et al., 2000; Asensio et al.,

2001; Mehla et al., 2012; Qin and

Benveniste, 2012; Choi et al., 2014;

Youn et al., 2014

Ransohoff et al., 1993; Salmaggi et al.,

2002; Strack et al., 2002;

Croitoru-Lamoury et al., 2003

CXCL11,

I-TAC

Interferon-inducible

T-cell α

chemoattractant

CXCR3 Chemotaxis,

Dual-function

Salmaggi et al., 2002; Croitoru-Lamoury

et al., 2003; Hashioka et al., 2012

CXCL12,

SDF-1α/β

Stromal cell-derived

factor 1

CXCR4 Chemotaxis,

Neurotoxic, HIV

competitive

inhibitor

Bleul et al., 1996; Oberlin et al., 1996;

Bajetto et al., 1999; Kaul and Lipton,

1999; Vergote et al., 2006

Ambrosini et al., 2005; Shin et al., 2014

CXCL16 CXCR6 Chemotaxis Ludwig et al., 2005

CCL20,

MIP-3a

Macrophage

inflammatory

protein-3α

CCR6 Chemotaxis,

Dual-function

Ambrosini et al., 2003, 2005; Zhou et al.,

2011

(Continued)
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TABLE 1 | Continued

Abbr. Full length name Receptor(s) Additional

function(s)/

effect(s)

HIV/METH-associated references Other CNS-associated references

CCL22, MDC Macrophage-derived

chemokine

CCR4 Chemotaxis,

Dual-function

Youn et al., 2014

CX3CL1 Fractalkine CX3CR1 Chemotaxis Yoshida et al., 2001

G-CSF Granulocyte colony-

stimulating factor

G-CSFR Smits et al., 2002; Choi et al., 2014

GM-CSF,

CSF 3

Granulocyte-

macrophage

colony-stimulating

factor

Burkert et al., 2012; Choi et al., 2014;

Mayo et al., 2014

IL-1α Interleukin-1α IL-1R Smits et al., 2002

IL-1β Interleukin-1β IL-1R Choi et al., 2014 Smits et al., 2002; Ambrosini et al., 2005;

Burkert et al., 2012

IL-6 Interleukin-6 IL-6Rα chain

(CD126) and

gp130 (CD130)

Lee et al., 1993; Van der Meide and

Schellekens, 1996; Falsig et al., 2004;

Roberts et al., 2010b; El-Hage et al.,

2011; Qin and Benveniste, 2012

Fiebich et al., 2001; Smits et al., 2002;

Choi et al., 2014; Elain et al., 2014

IL-12 Interleukin-12 IL-12R-β1 and

IL-12R-β2

complex

Constantinescu et al., 2005

IL-15 Interleukin-15 IL-2/15R

(CD122)/CD132

Granado et al., 2011; Urrutia et al.,

2014

Saikali et al., 2010

IL-16 Interleukin-16 CD4 Chemotaxis,

anti-HIV

Maciaszek et al., 1997 Zhang et al., 2008

IL-18 Interleukin-18 IL-18R Liu et al., 2014c

IL-19 Interleukin-19 IL-10R complex Cooley et al., 2014; Nikfarjam et al., 2014

IL-23 Interleukin-23 IL-12R-β1 and

IL-23 complex

Constantinescu et al., 1996, 2005;

Parham et al., 2002

M-CSF Macrophage colony

stimulating factor

CSFR1 Smits et al., 2002

MIF Macrophage migration

inhibitory factor

CD74 Choi et al., 2014

MMP-2 Matrix

metalloproteinase-2

Dhar et al., 2006; Kou et al., 2009;

Sbai et al., 2010; Peng et al., 2012

MMP-3 Matrix

metalloproteinase-3

Skuljec et al., 2011

MMP-9 Matrix

metalloproteinase-9

Sbai et al., 2010; Yang et al., 2015 Kamat et al., 2014; Patel et al., 2015

MMP-12 Matrix

metalloproteinase-12

Skuljec et al., 2011

TNF-α Tumor necrosis factor-α TNFR1/2 Lee et al., 1993; Van der Meide and

Schellekens, 1996; El-Hage et al.,

2011; Granado et al., 2011; Choi

et al., 2014; Coelho-Santos et al.,

2015

Smits et al., 2002; Ambrosini et al., 2005;

Burkert et al., 2012

NEUROTOXIC

H2O2 Hydrogen peroxide Padovani-Claudio et al., 2006

NO Nitric oxide Mollace et al., 1994; Falsig et al.,

2004; El-Hage et al., 2011; Castelli

et al., 2014

Hu et al., 1998; Colombo et al., 2014;

Mohsenzadegan et al., 2015

NOO− Peroxynitrite Muscoli et al., 2002; Castelli et al.,

2014

SDF 5-67 Stromal cell-derived

factor 5-67

CXCR3 Vergote et al., 2006

(Continued)

Frontiers in Microbiology | www.frontiersin.org 6 October 2015 | Volume 6 | Article 1143

http://www.frontiersin.org/Microbiology
http://www.frontiersin.org
http://www.frontiersin.org/Microbiology/archive


Borgmann and Ghorpade HIV-1, methamphetamine and astrocytes at neuroinflammatory Crossroads

TABLE 1 | Continued

Abbr. Full length name Receptor(s) Additional

function(s)/

effect(s)

HIV/METH-associated references Other CNS-associated references

HOMEOSTATIC

CCL19,

MIP-3β

Macrophage

inflammatory protein 3

β

CCR7 Pang et al., 2001; Columba-Cabezas

et al., 2003

ANTI-INFLAMMATORY

HO-1 Heme oxygenase-1 Anti-oxidant Youn et al., 2014

IL-10 Interleukin-10 IL-10R1 and 2

complex

Speth et al., 2000 Mohsenzadegan et al., 2015

IL-13 Interleukin-13 IL-4R and α

IL-13-specific

binding chain

Wynn, 2003; Burkert et al., 2012

IFN-α Interferon-α IFN-α/βR Anti-viral Zaritsky et al., 2012

IFN-β Interferon-β IFN-α/βR Anti-viral Zaritsky et al., 2012

TGF-β Transforming growth

factor-β

TGF-βR Hori et al., 1999 Dhar et al., 2006; Endo et al., 2015;

Weissberg et al., 2015

TIMP-1 Tissue inhibitor of

metalloproteinases-1

β-1 integrin and

CD63 complex

Neuroprotective Sbai et al., 2010; Fields et al., 2011;

Moore et al., 2011; Welser-Alves

et al., 2011; Ashutosh et al., 2012

TIMP-2 Tissue inhibitor of

metalloproteinases-2

Pro-

inflammatory

Sbai et al., 2010; Welser-Alves et al.,

2011

Lee and Kim, 2014

NEUROTROPHIC

BDNF Brain-derived

neurotrophic factor

Tropomyosin

receptor kinase

B (TrkB) and

low affinity

nerve growth

factor receptor

(LNGFR)

Saha et al., 2006 Patapoutian and Reichardt, 2001; Chen

et al., 2005

GNDF Glial derived

neurotrophic factor

GDNF family

receptor α 1

and 2

Astrotrophic Chen et al., 2005; Yu et al., 2007; Penas

et al., 2011

NGF Nerve growth factor TrkA Chen et al., 2005

NT-3 Neurotrophin-3 TrkA, TrkB and

LNGFR

Chen et al., 2005; Igelhorst et al., 2015

Relative oxidative stress also differs between HIV clades
and may contribute to the neuropathogenesis of clade B as
compared to clade C (Samikkannu et al., 2014). Clade B virus
induced production of ROS, coupled with reduced expression
of GSH synthase, GP, SOD and CAT, in monocyte derived
dendritic cells and neuroblastoma cells compared to clade C
virus (Samikkannu et al., 2014). The expression of detoxifying
enzymes heme oxygenase (HO)-1 and NAD(P)H dehydrogenase
increased in HIV-1 gp120-treated astrocytes (Reddy et al., 2012).
However, HO-1 levels are decreased in the brain of HIV-
1-infected individuals and correlate with increased cognitive
dysfunction (Gill et al., 2014). An inability for astroglia and other
neural cells to maintain anti-oxidant responses may implicate
anti-oxidant exhaustion in the chronic neurodegenerative disease
process.

Contributions of oxidative stress to METH-mediated
neurotoxicity are also well accepted. Overexpression of various
SODs or knockout (KO) of neuronal NOS, abrogate striatal
depletion of dopamine and serotonin (Cadet et al., 1994; Hirata

et al., 1995; Itzhak et al., 2000; Maragos et al., 2000). Regional
differences in the anti-oxidant capacity of brain regions of
HIV-1 transgenic rats exposed to METH show independent
and combined effects on induction of oxidative stress (Pang
et al., 2013). Coexposure to both HIV and METH increases
oxidative stress and apoptosis in the brain, which is associated
with neurological impairment (Banerjee et al., 2010; Ferrucci
et al., 2013; Shah et al., 2013). Administration of N-acetylcysteine
amide (NACA), a thiol anti-oxidant, protected the BBB from
oxidative stress-mediated damage in HIV-1 gp120-, Tat- and
METH-treated mice (Banerjee et al., 2010). Together these
data support the importance of oxidative stress in HIV- and
METH-mediated neurodegeneration.

Excitotoxicity
Excitotoxicity is a direct result of abnormal regulation of
glutamate concentrations in the synapse. As a common
neurotoxic mechanism, excitotoxicity is implicated in many
neurodegenerative conditions including HAND and METH
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TABLE 2 | Astrocyte responses to HIV-1-relevant and METH stimuli.

Outcomes HIV-1-relevant stimuli

and METH

Regulation or mechanism References

BBB PERMEABILITY

Increased CXCL10 expression, PBMC

chemotactic activity

Virus, TNF-α TNFR 1/2 van Marle et al., 2004

Virus, IL-1β, TNF-α CXCR3/CXCR4, MAPK, PKC Mehla et al., 2012

Tat1−72 treatment p38 MAPK Kutsch et al., 2000

Increased CCL2, CXCL8, CXCL10,

ICAM-1 and vascular (V)CAM-1 expression

Tat treatment MAPK, JNK, AP-1, NF-κB Youn et al., 2014

Increased ICAM-1 expression leading to

enhanced interactions with MP

gp120 treatment PKC, TK, JAK2/STAT1α Shrikant et al., 1996

Increased TNF-α expression leading to

BBB impairment

METH NF-κB pathway Coelho-Santos et al., 2015

Dysregulation of TIMP-1: MMP Balance Virus, IL-1β CAATT-enhancer binding protein (C/EBP)-β, ERK

1/2, p38 MAPK

Suryadevara et al., 2003; Fields et al.,

2011, 2013

IL-1β NF-κB, AP-1, PI3K, MAPK Yang et al., 2015

PRO-INFLAMMATORY

Viral replication

Increased pro-viral replication (FIV) METH Viral entry or integration Gavrilin et al., 2002

Increased pro-viral replication (HIV) IFN-γ STAT3 and Dickkopf-related protein 1, β-catenin Li et al., 2011

Cytokines and chemokine expression

Increased CCL2 production leading to

regulation of IFN-α/β and TRAIL

expression in MP

Virus (SIV) Zaritsky et al., 2012

Increased C3 expression Virus, Nef, gp41

treatment

Activation of adenylate cyclase, increased cAMP,

IL-6/IL-1β responsive promoter elements and

C/EBP-δ

Speth et al., 2002; Bruder et al., 2004

Increased C5, IL-1β, IL-1ra, TNF-α,

CXCL10, CCL3, CCL5

IL-1β, TNF-α NF-κB Choi et al., 2014

Increased CCL20 expression IL-1β, TNF-α Ambrosini et al., 2003

Increased CCL5 expression Nef treatment Akt, p38 MAPK, NF-κB, C/EBP and AP-1 Liu et al., 2014a

IL-1β, IFN-γ/β IκBα, MAPKs, C/EBP-β, STAT1/2, interferon

regulatory factor-1 (IRF-1)

Kim et al., 2004

Increased CCL2 expression TNF-α AEG-1 expression Vartak-Sharma et al., 2014

Increased CCL7 expression TNF-α Renner et al., 2011

Increased CX3CL1 expression TNF-α Yoshida et al., 2001

Increased CCL2, CXCL8 and CD38

expression

HIV-1YU−2 expression MAPK, ERK 1/2, NF-κB Kou et al., 2009; Mamik et al., 2011

Increased CCL2, CXCL8 and CXCL10

expression

Tat treatment MAPK, JNK, AP-1, NF-κB Youn et al., 2014

Increased CCL2 and CXCL8 expression Tat1−72 treatment Mitogen-activated protein kinase kinase (MEK) ½ Kutsch et al., 2000

Increased CCL2, CXCL8 and IL-6

expression

VPR treatment Ferrucci et al., 2013

Increased CXCL8 and CXCL10 expression Virus, VPR treatment Vivithanaporn et al., 2010

Increased CXCL8 and IL-6 expression Tat expression PI3K/Akt, p38 MAPK and NF-κB, p38δ, AP-1 Nookala and Kumar, 2014

METH mGluR5, Akt/PI3K, NF-κB Shah et al., 2012b

Increased IL-6 and TNF-α expression gp120 treatment Van der Meide and Schellekens, 1996

Increased IL-6 expression gp120 treatment IκB kinase (IKK)β and NF-κB Shah et al., 2011

Eicosanoid expression and regulation

Increased TNF-α, IL-1β, leukotriene B4,

leukotriene D4, lipoxin A4 and

platelet-activating factor (PAF) expression

Virus (HIV-infected MP)

coculture

Astrocyte cellular contact, AA-dependent Genis et al., 1992

Increased prostaglandin EP3R expression IL-1β PKC, NF-κB Waschbisch et al., 2006

Increased COX-2 expression IL-1β C/EBP-β Fields and Ghorpade, 2012

Increased PGE2 expression gp120 treatment NO Mollace et al., 1994

(Continued)
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TABLE 2 | Continued

Outcomes HIV-1-relevant stimuli

and METH

Regulation or mechanism References

Increased COX-2, PGE2 and

thromboxane A2 receptor expression

gp120 treatment (Clade

B)

Samikkannu et al., 2011

Increased COX-2 and PGE2 expression Tat treatment NFAT, AP-1 Blanco et al., 2008

Increased IL-6, COX-2, PGE2 expression IL-1β, TNF-α p38 MAPK Falsig et al., 2004

OXIDATIVE STRESS

Increased ROS and NRF-2 anti-oxidant

gene expression

gp120BAL treatment Reddy et al., 2012

Increased intracellular pH gp120 treatment, IL-1β,

TNF-α, IFN-γ

Na+/H+ exchange Benos et al., 1994

Decreased DRD2 and DAT expression gp120 treatment (Clade

B), METH

CREB, CAMKII, CAMKIV Samikkannu et al., 2015

Decreased ATP and GSH leading to

increased ROS

VPR treatment Ferrucci et al., 2013

Increased mitochondria depolarization METH ROS Lau et al., 2000

Increased iNOS expression and NO levels IL-1β, TNF-α, IFN-γ p38 MAPK Falsig et al., 2004

Increased iNOS expression IFN-γ, IFN-β, LPS Mohsenzadegan et al., 2015

EXCITOTOXICITY AND NEURAL CELL TOXICITY

Decreased EAAT-2 expression and

function

HIV-1JR−FL, IL-1β,

METH

TAAR1, cAMP Cisneros and Ghorpade, 2012, 2014

IL-1β AEG-1 Vartak-Sharma et al., 2014

Decreased NMDA receptor expression

and glutamine levels

gp120 treatment (Clade

B)

Samikkannu et al., 2011

Increased CXCL10 expression leading to

neuronal toxicity

Virus, NefYU−2

expression, TNF-α

TNFR1/2 van Marle et al., 2004

Virus, IL-1β, TNF-α CXCR3/CXCR4, MAPK, PKC Mehla et al., 2012

IL-1β, α-synuclein Tousi et al., 2012

Increased astrocyte apoptosis gp120 treatment Van der Meide and Schellekens, 1996

IL-1β, TNF-α, IFN-γ CD95, caspase 8, FADD Falsig et al., 2004; Gardner et al.,

2006

ASTROGLIAL PHYSIOLOGICAL FUNCTIONS

Neurotrophic

Increased BDNF expression TNF-α NF-αB, C/EBP-β with ERK MAPK Saha et al., 2006

Glutamate PLC, IP3, internal stores of Ca2+ Jean et al., 2008

Anti-inflammatory

Reduced eicosanoids, platelet-activating

factor (PAF) and TNF-α

Virus (HIV-infected MP)

coculture

Astrocyte cellular contact Nottet et al., 1995

Decreased viral replication in MP Virus (M tropic) Latent TGF-β expression in astrocytes da Cunha et al., 1995; Hori et al.,

1999

Increased TGF-β1 Tat treatment and

expression

Wahl et al., 1991; Cupp et al., 1993;

Rasty et al., 1996; Thatikunta et al.,

1997

Decreased IL-1β-induced TIMP-1 and

MMP-2 expression, increased ECM levels

IL-1β TGF-β 1/2 Wyss-Coray et al., 1995; Dhar et al.,

2006

Increased IL-10 expression gp41 treatment adenylate cyclase, cAMP Speth et al., 2000

IFN-γ/β, LPS Mohsenzadegan et al., 2015

abuse (Erdmann et al., 2006; Jaiswal et al., 2009; Vázquez-
Santiago et al., 2014). During physiologic glutamatergic signaling,
glutamate interacts with its receptors, N-methyl-D-aspartate
receptor (NMDA) and α-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid receptor (AMPA), to induce a Ca2+

influx and potentiation of the excitatory signal. Excitatory amino
acid transporters (EAAT)-2 on adjacent astrocyte processes

quickly clear glutamate from the synapse to end post-synaptic
neuron excitation (Camacho and Massieu, 2006). Pathologically
elevated levels of glutamate trigger high levels of intracellular
Ca2+ ([Ca2+]i) and activate a variety of enzymes, including
phospholipases, endonucleases and proteases. Opening of
mitochondrial permeability transition pores, upon uptake of
excessive Ca2+, releases ROS and pro-apoptotic compounds
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(Manev et al., 1989; Ankarcrona et al., 1995; Stavrovskaya and
Kristal, 2005).

Plasma and CSF glutamate levels are elevated in HAD
patients (Ferrarese et al., 2001; Espey et al., 2002). HIV-
1 infected macrophages and microglia convert glutamine to
glutamate through the release of glutaminase from compromised
mitochondria (Erdmann et al., 2009). In such MP and
microglia increase extracellular glutamate levels by secreting
both glutamate and glutaminase (Huang et al., 2011). HIV-
1 Tat also prolongs glutamate triggered Ca2+ influx by
inducing the phosphorylation of NMDA receptors, leading to
enhanced cell death (Haughey et al., 2001). In human brain
tissues, EAAT-2 expression was decreased in HIV+ individuals,
with and without HIVE. EAAT-2 expression correlated with
areas of diffuse microglial reactivity, indicating that microglial
activation contributes to astrocyte dysfunction (Xing et al., 2009).
Astrocytes are responsible for clearing ∼90% of extracellular
glutamate from the synapse. HIV-1 decreases EAAT-2 expression
in cultured human astrocytes (Wang et al., 2003) and glutamate
clearance is impaired by inflammation (Cisneros and Ghorpade,
2012, 2014).

METH alters the expression, composition and function of
NMDA and AMPA receptors in the brain. Receptor levels
increased with both acute and chronic models of METH
administration and isoforms of Ca2+-impermeable receptors
increased, suggesting amechanism to counteractMETH-induced
excitotoxicity (Simões et al., 2008). The frequency of spontaneous
and miniature excitatory postsynaptic currents increases at low
METH doses and begin decreasing at higher doses (Zhang et al.,
2014). Extracellular glutamate concentrations remain elevated,
even after dopamine levels return to physiological levels (Mark
et al., 2007). METH downregulates astrocyte EAAT-2 expression
through trace amine associated receptor (TAAR)1, which is
also associated with regulation of dopamine transporters in
neurons (Cisneros and Ghorpade, 2014). EAAT-2 dysregulation
in reactive astrocytes likely contributes to HIV- and METH-
mediated excitotoxicity.

GLIOSIS

Although infiltration of peripheral immune cells often leads to
significant neural damage, leukocyte infiltration is not always
associated with neurotoxicity (Boztug et al., 2002; Trifilo and
Lane, 2003; Clark et al., 2011). In such, the resident glial cells,
microglia and astroglia, are implicated as central players in the
inflammatory responses associated with neurodegeneration. The
term gliosis refers to a non-specific reactive change in glial cells
in response to damage, disease or infection in the CNS. Reactive
glia are often identified in brain tissue by morphological changes,
including increased size, elongation of processes and increased
reactivity with cellular markers. Morphological changes are
indicative of altered glial function. The primary goal of gliosis
is to restore brain homoeostasis by providing trophic support,
tissue repair and containment of the affected region. As discussed
above, reactive glia secrete many neuroactive substances capable
of injuring neural cells, dependent upon the type, severity and
duration of insult. Ultimately, the balance between the beneficial

and detrimental effects of gliosis determines the outcome in the
CNS.

Microglia
Microglia make up between 10 and 15% of neural glia and
are accountable for the innate immune response in the brain
(Lawson et al., 1992; Verkhratskǐi and Butt, 2013; Elmore
et al., 2014). The homeostatic functions of microglia tend to
go unnoticed in the brain, even though they play an active
role in embryonic brain development and clear neuronal or
glial debris, while surveying their environment for threat and
injury (Beyer et al., 2000; Casano and Peri, 2015). When
injury or infection is detected, microglia undergo dramatic
morphologic alterations, shifting from resting ramified cell into
an activated amoeboid phenotype, and transforming into a more
classically functioning immune cell (Burdo et al., 2013; Tavazzi
et al., 2014). Activated microglia upregulate surface receptors,
including major histocompatibility complex molecules, leading
to secretion of factors that influence neuronal survival and a
chronic neuroinflammatory state (Streit, 2000; Block and Hong,
2005). Reactive microgliosis is associated with the pathogenesis
of many common types of neurodegeneration, including HAND
(da Fonseca et al., 2014; Pasqualetti et al., 2015).

Astroglia
Despite the abundance of astrocytes in the brain, their pro-
inflammatory functions have been less prominent than their
microglial counterparts and continues to evolve (Ghorpade et al.,
2003; Block and Hong, 2005; Ladeby et al., 2005; Ashutosh
et al., 2011; Fields and Ghorpade, 2012; Van der Meide and
Schellekens, 1996; Vartak-Sharma et al., 2014; Abudara et al.,
2015). However, astrocytes play critical physiological roles in
the brain, providing glia-neuron contact, ionic homeostasis,
neurotransmitter buffering, secretion of neurotrophic factors and
serve as integral members of the BBB (Van der Meide and
Schellekens, 1996). Therefore, alterations in astroglial activities
during reactive astrogliosis directly affect neuronal function
and survival during CNS insult and infection (Abudara et al.,
2015). Further, astrocyte dysfunction during neuroinflammation,
injury and disease is amplified by the sheer number of cellular
interactions in which each cell participates, stretching from
BMVECs at the BBB to individual neurons and synapses
(Giaume et al., 1997; Butt, 2011; Li et al., 2014; Muñoz et al.,
2015). Astrocytes express glutamatergic, GABAergic, adrenergic,
purinergic, serotonergic, muscarinic, and peptidergic receptors
(reviewed in Porter and McCarthy, 1997). Thus, activated
astrocytes respond to various neurotransmitters and release a
variety of neuroactive molecules including glutamate, ATP, NO,
and prostaglandins to influence neuronal function (Haydon,
2001; Table 1). Astrocytes are highly susceptible to cytokine and
HIV-1 signaling as they express receptors (R) for both (IL-
1R, TNFR1/2 and CXCR4, among others; Table 2). Activated
astrocytes secrete various cytokines and chemokines regulating
leukocyte traffic into the brain (Peng et al., 2006; Ramesh et al.,
2013; Nookala and Kumar, 2014). However, as most astrocyte
responses are complex, astrocytes also mitigate inflammation
with the secretion of anti-inflammatory and neurotrophic
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molecules (Table 1; Hauwel et al., 2005; Ashutosh et al., 2011,
2012; Cekanaviciute et al., 2014). In addition, astrocytes are
the primary cells mediating glial scar formation during brain
injury such as stroke and parasitic infections associated with
AIDS (Kielian, 2004; Voskuhl et al., 2009). During glial scarring
astrocytes migrate and replicate to encapsulate injury, which in
turn impairs repair and neurite regrowth (Cregg et al., 2014;
Hermann et al., 2014; Raposo and Schwartz, 2014).

As a pathological hallmark of HIVE, reactive astrogliosis is
apparent in mouse and human HIV+ brain tissues. Astrogliosis
is often visualized histologically by increased glial fibrillary acidic
protein (GFAP) staining, near areas of active HIV-1 replication
in multinucleated giant cells and microglial nodules (Reviewed
in Sabri et al., 2003; Tavazzi et al., 2014). Astrocyte activation
is also prevalent at perivascular locations, even in the absence
of HIV+ perivascular MP, implicating astrocyte dysregulation of
the BBB as a mechanism of neuroinflammation (Tavazzi et al.,
2014). Several cytokines and other soluble MP activation factors
implicated in HIVE pathogenesis, including TNF-α, IL-1β, NO
and glutamate are reported to upregulate GFAP expression in
astrocytes (Zhang et al., 2000; John et al., 2003; Brahmachari et al.,
2006). HIV-1-Tat-induced increases in GFAP expression are
regulated by the sequential activation of early growth response
protein 1 (Egr-1) and p300 through a signal transducer and
activator of transcription 3 (STAT3)-dependent mechanism (Zou
et al., 2010; Fan et al., 2015). A similar mechanism is seen in
METH-induced astrogliosis, which activates the Janus kinase 2
(JAK2)/signal transducer and STAT3 signaling cascade (Hebert
and O’Callaghan, 2000; Robson et al., 2014). However, induction
of astrogliosis in METH abuse studies is inconsistently increased
across brain regions, METH dosing strategies and time points
(Ernst et al., 2000; Kita et al., 2003, 2009; Moszczynska et al.,
2004; Cadet and Krasnova, 2009; Krasnova and Cadet, 2009).
In post-mortem brains of chronic METH abuse or overdose,
the contribution of astrocytes to the neurodegenerative disease
process is often reduced to alterations in GFAP expression or
reactivity (Granado et al., 2011; Shah et al., 2013; Silva et al.,
2014; Tong et al., 2014). While changes in GFAP expression
are representative of astrocyte activation, they are not indicative
measures of changes in the multitude of astrocyte functions
capable of influencing neuron function and survival, which
have primarily been investigated in vitro. Concurrently, some
investigators examine astrocyte functions through behavioral
testing and neuronal functional assays along side gene expression
studies to evaluate changes in proteins implicated in astrocyte-
mediated neurodegeneration (Roberts et al., 2010a; Liu et al.,
2014b; Hoefer et al., 2015).

METH ABUSE: IMPLICATIONS FOR
ASTROCYTES AS VIRAL RESERVOIRS

HIV-1 can invade the CNS early during infection, primarily
infecting infiltrating monocytes and resident microglia, along
with a small proportion of astroglia. HIV-1 then integrates with
the host cell genome as a provirus, leading to both active and
latent infection. During active HIV-1 infection in permissive

cells, budding of infectious virions ensues. However, in non-
permissive cells such as astrocytes, active HIV-1 infection is
restricted to expression of viral proteins, which are incapable
of maturing into infectious particles (Messam and Major, 2000;
Eugenin et al., 2011; Fitting et al., 2012; Li et al., 2015; Luo andHe,
2015). Viral replication is limited in astrocytes at various steps of
the virus life cycle including virus entry, reverse transcription,
transport and translation of viral RNA, and maturation of
progeny virions (reviewed in Messam and Major, 2000; Gorry
et al., 2003). Other studies suggest that if restrictions on viral
entry into astrocytes are bypassed, the intracellular environment
may be conducive to productive viral infection (Canki et al., 2001;
Chauhan, 2014).

Astrocytes lack the CD4 coreceptor that interacts with gp120
coat protein, restricting the proportion of astrocytes ultimately
infected with HIV-1 (Harouse et al., 1989). In early studies,
human embryonic astrocytes were found to express CCR5 and
CXCR4 transcripts; however, neither R5 nor X4 tropic viruses
could directly infect pure astrocyte cultures (Boutet et al., 2001).
Recently, viral entry of fluorescently labeled viral RNA in HIV-1
NL4-3 virions was visualized in human astrocytes (Xu et al., 2015)
and by mannose receptor-mediated endocytosis (Liu et al., 2004).
In addition, astrocytes are susceptible to direct viral transfer
of either R5 or X4 tropic viruses by cell-to-cell contact with
infected T lymphocytes (Li et al., 2015; Luo and He, 2015). Viral
transfer though the formation of virological synapses between
astrocyte and lymphocyte filopodia can be blocked by CXCR4
antibodies and antagonists (Li et al., 2015). Further, astrocytes
need not secrete mature virions to directly infect neighboring
cells (Luo and He, 2015) and can “trans-infect” T lymphocytes
by protecting exogenous HIV-1 particles in CD81-lined vesicles
(Gray et al., 2014). Thus, if infected astrocytes are capable of
directly propagating CNS HIV-1 infection, the elimination of
latent astrocyte infection needs to be aggressively studied as HIV-
1 replication may be reactivated by inflammation and drug abuse
(Gavrilin et al., 2002; Carroll-Anzinger et al., 2007; Li et al., 2011;
Chauhan, 2015).

In the brains of HIV-1-infected individuals with METH
dependence, epigenetic changes were associated with
increased global DNA methylation as compared to the
brains of HIV-1+ individuals without METH use. METH
exposure led to differential methylation in genes connected
to neurodegeneration, oxidative phosphorylation, dopamine
metabolism and transport (Desplats et al., 2014). Differential
regulation of gene expression in microglia and astrocytes during
METH and HIV comorbidity may induce viral replication
and expression of pro-inflammatory mediators to contribute
to neurodegeneration. METH enhances viral replication in
macrophages and may upregulate or downregulate infection
in T cells (Liang et al., 2008; Wang et al., 2012; Mantri et al.,
2014). METH activates transcription of proviral DNA in latently
HIV-1-infected human microglial cells, leading to activation
of the NF-κB signaling pathway (Wires et al., 2012). Feline
immunodeficiency virus (FIV), a lentivirus related to HIV-1,
leads to astrogliosis and microgliosis. METH has been shown to
increase cell-associated FIV replication in feline astrocytes and
cell lines (Phillips et al., 2000; Gavrilin et al., 2002). Reactivation
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of viral expression in latently infected astrocytes could contribute
to either increased neuroinflammation and toxicity or the
elimination of viral reservoirs by viral cytopathic effects and lysis
by effector cells. During METH, adherence to ART is decreased
and the immune system is depressed (Reback et al., 2003; In
et al., 2005), tipping the balance toward increased HIV-1- and
METH-associated neurodegeneration. A quick, wide-spread
activation of latently infected cells, coupled with effective ART
delivery to counter the spread of infection, may lead to the
clearance of HIV-1-infected neural cells (Díaz et al., 2015).
However, the implications of widespread elimination of infected
astrocytes and other latently infected cells on neural function
are unknown; the results of which may favor strategies for
maintaining a latent CNS infection, rather than radical activation
and elimination. (reviewed by Brew et al., 2013; Churchill and
Nath, 2013).

ASTROCYTE INTERACTIONS WITH HIV-1
VIRIONS, PROTEINS, AND METH

In astrocytes, expression of and exposure to virus, HIV-1
proteins, such as gp120, Tat, Nef, or Vpr, and HIV-1-
relevant cytokines induce a host of factors that influence
neuronal survival and function (Table 2). Both HIV-1 and
METH alter astrocyte expression of inflammatory mediators,
neurotransmitter receptors and transporters, which in turn
alter the brain microenvironment, leading directly and
indirectly to neuronal dysfunction or death. HIV-1-relevant
cytokines also regulate astrocyte cytotoxicity, function and
glia-neuron crosstalk during HIV-1 infection and METH
abuse.

Astrocytes harboring HIV secrete various viral proteins,
including gp120, Tat, Vpr and p24, the capsid protein. In
some models of latent astrocyte infection, viral expression
has been reactivated by pro-inflammatory cytokines such as
TNF-α and IFN-γ or PKC agonists (Carroll-Anzinger et al.,
2007; Li et al., 2011; Chauhan, 2015). Expression of viral
proteins activates both the infected cell and those in the vicinity
by altering astrocyte physiological functions and secretion
of factors that recruit immune cells and influence neuronal
survival and function (Table 2). Direct interaction between
astrocytes and HIV-infected MP reduces MP activation, but
ultimately increases arachidonic acid (AA)-mediated eicosanoid,
IL-1β and TNF-α levels (Genis et al., 1992; Nottet et al.,
1995). SIV/HIV-treated and HIV-genome expressing astrocytes
upregulate complement and chemokine expression, leading to
increased PBMC infiltration (Speth et al., 2002; Bruder et al.,
2004; Vivithanaporn et al., 2010; Zaritsky et al., 2012). HIV-1
also downregulates astrocyte EAAT-2 expression and function,
contributing to excitotoxicity (Cisneros and Ghorpade, 2012,
2014).

HIV-1 gp120
As a viral coat protein, HIV-1 gp120 interacts with CCR5
and CXCR4 coreceptors on target cells leading to intracellular
signaling and virion fusion with the cell. CXCR4 renders
astrocytes susceptible to activation by HIV-1 via gp120-coated

virus and secreted gp120. Astrocytes exposed to gp120 undergo
apoptosis, while also inducing neuronal apoptosis. In astrocytes
HIV-1 gp120 upregulates pro-inflammatory cytokines, adhesion
proteins, and chemokines that mediate lymphocyte recruitment
and extravasation (Table 2; Shrikant et al., 1996; Van der Meide
and Schellekens, 1996; Kaul and Lipton, 1999).

Differences in astrocyte responses to clade B vs. clade
C gp120 may contribute to increased neurodegeneration
associated with clade B viruses. Clade B gp120 differentially
increases COX-2-mediated AA responses in astrocytes,
leading to downregulation of NMDA receptor expression
and increasing PGE2 (Samikkannu et al., 2011). Bioactive
molecules, such as METH, NO and PGE2, regulate the pro-
inflammatory environment, cerebral blood flow and glucose
uptake in the brain, contributing to HIV- and METH-associated
neurodegeneration (Mollace et al., 1994; Falsig et al., 2004;
Blanco et al., 2008; Abdul Muneer et al., 2011; Samikkannu et al.,
2011). Further, during cotreatment with METH, clade B gp120
significantly decreased astrocyte expression of both dopamine
receptor D2 and dopamine active transporter (DAT) as compared
to METH alone or clade C gp120 (Samikkannu et al., 2015).
Downregulation of dopamine receptors and transporters could
impair astrocyte responses to increased synaptic dopamine levels,
leading to reduced dopamine clearance and dopamine-mediated
neurotoxicity through the generation of reactive dopamine
quinones and oxygen/nitrogen species (Mollace et al., 1994;
LaVoie and Hastings, 1999; Lau et al., 2000; Falsig et al., 2004;
Guillot et al., 2008; Miyazaki et al., 2011; Castelli et al., 2014).

Behavioral testing in transgenic mice expressing HIV-1
gp120, under the control of the GFAP promoter, with and
without METH administration, showed impaired learning and
memory and increased disinhibition even after months of METH
abstinence (Hoefer et al., 2015). Both METH and gp120 alone
lead to loss of dendrites and presynaptic terminals, along
with reduced long-term potentiation, which is associated with
learning and memory. Further, post-tetanic potentiation, a
measure of synaptic plasticity, was also decreased in METH-
treated, gp120-transgenic mice (Hoefer et al., 2015).

HIV-1 Tat
As its name suggests, HIV-1 Tat activates transcription
of HIV-1 genes during viral infection. However, Tat also
regulates expression of cellular genes as a transcription
factor and by altering signaling within the cell. Similar
to gp120-treated astrocytes, Tat-exposed/expressing astrocytes
have increased expression of various cytokines, chemokines,
prostaglandins, adhesion protein expression, neurotransmitter
receptors and transporters, and ROS (Table 2). HIV-1 Tat-
mediated neurotoxicity is exacerbated by METH cotreatment,
leading to increased autophagy, mitochondrial damage and
oxidative stress in neuronal cell lines and mouse astrocytes (Lau
et al., 2000; Langford et al., 2004; Cai and Cadet, 2008; Qi
et al., 2011). Further, rodents cotreated with HIV-1 Tat and
METH showed increased astroglial activation and synergistic
cytokine expression (including TNF-α and IL-1β), oxidative
stress, coupled with striatal neurotoxicity and degeneration of
neuronal dopamine terminals (Flora et al., 2003; Theodore et al.,
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2006b; Liu et al., 2014b). METH and Tat synergistically reduce
dopamine levels and DAT expression, contributing to sustained
behavioral impairment (Cass et al., 2003; Liu et al., 2014b). In
double TNFR1/2 KO mice, dopamine levels were significantly
higher than WT treated with Tat and METH, indicating the
involvement of TNF-α and inflammation in neurodegenerative
mechanisms (Theodore et al., 2006b).

HIV-1 Nef
As a virulence factor HIV-1 Nef is expressed early during
the viral life cycle and ensures a persistent state of infection,
while promoting T-cell activation. Whereas, HIV-1 gp120 and
Tat exhibit direct astroglial and neuronal toxicity, HIV-1 Nef
has been shown to induce indirect neurotoxicity through
upregulation of astroglial CXCL10. Astrocytes expressing HIV-
1YU−2 Nef protein showed increased CXCL10 expression.
CXCL10 mediated neurotoxicity through interaction with
neuronal CXCR3 (van Marle et al., 2004). CXCL10 levels are also
increased in HAD brains where it localizes primarily to astrocytes
and is a prognostic marker for hepatitis C virus (HCV) and
HIV/HCV coinfection (van Marle et al., 2004; Falconer et al.,
2010; Vivithanaporn et al., 2010). CXCL10 is also known as IFN-
γ induced protein (IP)-10. As a chemokine, CXCL10 recruits
MP and T cells and promotes cell adhesion to BMVEC (Dufour
et al., 2002). Astrocyte exposure to Tat also increases CXCL10 and
expression of adhesion proteins such as ICAM-1 and VCAM-1,
which together lead to increased trafficking of T cells into the
brain (Kutsch et al., 2000; Dufour et al., 2002; Youn et al., 2014).
Further, astrocyte CXCL10, from gp41-treated astrocytes, leads to
increased CCR5 expression by MP, increasing their susceptibility
to HIV-1 infection (Speth et al., 2000).

Transgenic mice, expressing HIV-1 Nef in microglia
and macrophages, showed increased CCL2 expression,
decreased anti-viral IFN-α expression and disruption of
striatal dopaminergic transmission. Monoamine oxidase activity
and DAT expression in the striatum were significantly lower than
non-transgenic mice. Astroglial activation was not evaluated.
The Nef-expressing mice demonstrated hyperactive behaviors,
which are observed in mania and other psychiatric comorbidities
among HIV-infected individuals (Sherbourne et al., 2000;
Acharjee et al., 2014). This suggests that HIV-1 Nef could also
regulate the dopaminergic system during HIV CNS infection
and METH abuse.

HIV-1-relevant Cytokines
In addition to direct astrocyte activation by binding of HIV-1
gp120 to CXCR4 or viral endocytosis (Liu et al., 2004; Fitting
et al., 2012; Chauhan et al., 2014), astrocytes may also become
indirectly stimulated by HIV-infected and activated microglia
and MP (Tavazzi et al., 2014). Infiltrating monocytes and T
helper cells secrete classical inflammatory cytokines into the
brain microenvironment during HIV-1 CNS infection, leading to
astrocyte activation and increased neuroinflammatory responses.
With prolonged exposure to HIV-relevant neuroinflammation,
astrocytic neuroprotective and homeostatic functions become
exhausted, leading to insufficient support of neuronal function
and survival (Gardner and Ghorpade, 2003; Suryadevara et al.,

2003; Cisneros and Ghorpade, 2012). Alternatively, chronic
neurodegeneration can also prime astrocytes for exaggerated
pro-inflammatory responses (Hennessy et al., 2015). Concurrent
and long-term exposure of astrocytes to HIV, pro-inflammatory
cytokines and METH can exacerbate astrocyte activation and
exhaustion to accelerate the neurodegenerative process (Cisneros
and Ghorpade, 2012, 2014; Shah et al., 2012a).

As prototypical mediators of neuroinflammation, IL-1β and
TNF-α are primarily expressed in the CNS by activated and
HIV-1-infected microglia and infiltrating MP (Mrak and Griffin,
1997; Witwer et al., 2009). Astrocytes are highly sensitive
to IL-1β-activation, as they possess an IL-1β autocrine loop,
which perpetuates astrogliosis in a self-renewing manner during
chronic neuroinflammation, neurodegeneration and HAND
(Mrak and Griffin, 1997; Moynagh, 2005). TNF-α, in conjunction
with HIV, is a key regulator of astroglia-microglia crosstalk
during neurodegeneration and can directly target neurons
through TNFR1/2 and increased oxidative stress leading to
apoptosis (Shi et al., 1998; Viviani et al., 1998; Ryan et al., 2004;
Batlle et al., 2015). TNF-α regulates astrogliosis and impairs
astrocyte function during HIV-1 and METH exposure (Nomura
et al., 2006; Gonçalves et al., 2008; Vartak-Sharma et al., 2014;
Coelho-Santos et al., 2015). Upon activation, astrocytes convert
from flat, polygonal cells to small, contracted, highly branched
cells, with intense GFAP and vimentin reactivity (Liu et al.,
1994). IL-6, CCL2 and CXCL8 are upregulated in astroglia in
response to HIV-relevant stimuli, including IL-1β activation and
expression of viral proteins, and are increased in the plasma and
brain during HIV-1 infection (Linder and Gagel, 1968; Cota et al.,
2000; Witwer et al., 2009; Jing et al., 2010; Mamik et al., 2011;
Shah et al., 2011; Mamik and Ghorpade, 2012; Zaritsky et al.,
2012; Nookala and Kumar, 2014; French et al., 2015). These,
and other cytokines, signal to peripheral and tissue immune
cells, recruiting them to the site of neuroinflammation, inducing
maturation and activating their effector functions.

Cytokines and chemokines can have alternate, indirect
functions on non-immune cells in the brain, leading to both
neuroprotective and neurotoxic outcomes. For example, CXCL8
has neuroinflammatory and neuroprotective effects in the CNS,
as CXCL8 enhances viral replication in monocytes andmicroglia,
while protecting neurons from apoptosis (Ashutosh et al.,
2011; Mamik and Ghorpade, 2014). Further, METH exposure
induces CXCL8 expression in SVG astrocytes. Regulation of
CXCL8 expression through metabotropic glutamate receptor
5 (mGlutR5) implicates glutamate dysregulation in METH-
induced neuroinflammation (Shah et al., 2012a,b). A more
complex example involves the upregulation of CXCL12, MMP-
2 and stromal cell derived factor (SDF) 5-67 during HIV-1 CNS
infection (Vergote et al., 2006). Infected or gp120-treated MP
regulate astrogliosis by secreting CXCL12 and IL-1β. In response,
activated astrocytes secrete both CXCL12 and MMP-2 (Bajetto
et al., 2001; Rostasy et al., 2003; Okamoto et al., 2005; Peng
et al., 2006). These factors share a unique interaction where
in MMP-2, an enzyme normally involved in the degradation
of the extracellular matrix, cleaves CXCL12 to generate SDF
5-67. As a cytotoxic fragment SDF 5-67 induces neurotoxicity
and upregulates IL-1β, TNF-α, indoleamine 2′,3′ dioxygenase
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(IDO) and IL-10 in activated astrocytes (Vergote et al., 2006).
Alternately, CXCL12 impairs HIV-1 infection by CXCR4 tropic
virus by competitively binding CXCR4 and blocking interactions
with gp120 (Bleul et al., 1996; Oberlin et al., 1996; Amara et al.,
1997; Kaul and Lipton, 1999).

Downregulation of astrocyte EAAT-2 expression and
function by pro-inflammatory cytokines contributes to HIV-1-
and METH-associated excitotoxicity. During chronic HIV-1
infection, MP/microglia glutamate secretion increases and HIV-
1 Tat sensitizes neurons to glutamate-mediated excitotoxicity
(Haughey et al., 2001; Erdmann et al., 2009; Huang et al., 2011).
EAAT-2 is the primary transporter for glutamate uptake in
astrocytes. Astrocyte activation by IL-1β or TNF-α decreases
both the expression and function of EAAT-2; effects that are
exacerbated by HIV-1 or METH cotreatment (Fine et al.,
1996; Cisneros and Ghorpade, 2012). Gene expression, post-
translational modifications and protein targeting or trafficking
regulate EAAT-2 activity (reviewed in Takahashi et al., 2015).
The EAAT-2 promoter contains multiple NF-κB elements and
a CREB binding element (Su et al., 2003; Allritz et al., 2010).
Both signaling cascades are activated in astrocytes during HIV-1,
METH and neuroinflammation (Mamik et al., 2011; Samikkannu
et al., 2015). Astrocyte elevated gene-1, first identified as an
HIV-1 and TNF-α–inducible gene, contributes to IL-1β/TNF-
α/HIV-1-mediated downregulation of EAAT-2 through direct
interactions with NF-κB (Kang et al., 2005; Vartak-Sharma
et al., 2014). The multifaceted mechanisms regulating EAAT-2
expression and function remain to be elucidated. A better
understanding of astrocyte EAAT-2 regulation could lead to
novel therapeutic options targeting astroglial dysfunction during
neuroinflammatory diseases including HAND andMETH abuse.

Another consequence of astrocyte exhaustion during chronic
neuroinflammation is dysregulation of the tissue inhibitor
of metalloproteinase (TIMP):MMP balance. Four TIMPs
regulate MMP, enzymes that affect BBB integrity by altering
the extracellular matrix. TIMP-1 is the only inducible member
of the TIMP family of four inhibitors (Brew et al., 2000).
Interestingly, CSF and brain tissue samples from HAD patients
showed reduced TIMP-1 and increased MMP-2 levels compared
to seronegative controls (Suryadevara et al., 2003). However,
astrocytes upregulate TIMP-1 expression during acute IL-1β
activation, HIV-1 gene expression or exposure (Suryadevara
et al., 2003; Dhar et al., 2006; Fields et al., 2011). It is only during
chronic activation that the astrocyte TIMP-1 expression falls,
while expression of some MMPs is sustained, or augmented
by infiltrating PBMC (Suryadevara et al., 2003; Chao and
Ghorpade, 2009). TGF-β 1/2, an anti-inflammatory cytokine,
decreases acute TIMP-1 expression in IL-1β-activated astrocytes.
In contrast to TIMP-1, TGF-β 1/2 levels are increased in HAD
brains compared to controls, thus TGF-β may contribute to
TIMP-1 depletion during chronic neuroinflammation (Dhar
et al., 2006). Since TIMP-1 also protects human neurons from
HIV-1-induced apoptosis, decreased TIMP-1 expression also
contributes to increased neurotoxicity due to diminished
neurotrophic support (Ashutosh et al., 2012). TIMP-1 and
other pro-inflammatory cytokine levels remained significantly
elevated in rat striatum 24 h after HIV-1 Tat and METH

injections, compared to either alone or vehicle (Theodore
et al., 2006a). Repeated METH exposure increases MMP-2 and
MMP-1 expression, which in turn enhances dopamine release
and reward. The METH-mediated alterations in dopamine
signaling and receptor expression were significantly attenuated
inMMP-2 andMMP-9 KOmice, indicating that theMMP/TIMP
system also regulates METH-induced behavioral sensitization
(Mizoguchi et al., 2007a,b, 2008).

Common Signaling Pathways
A large majority of bioactive molecules discussed above facilitate
communication among various CNS cells.

Signals received by target receptors regulate astrocyte function
during HIV-1 and METH-associated neuroinflammation
through a variety of cross-linking pathways. As IL-1β is a
prototypical cytokine for astrocyte activation, the NF-κB
pathway contributes to the regulation of many astrocyte genes
and is involved in cellular responses to stimuli such as stress,
cytokines, free radicals, glutamate or viral antigens (reviewed
in Mémet, 2006). Downstream of the IL-1 receptor (IL-1R), the
IκB kinase complex phosphorylates and degrades the NF-κB
sequestering protein, IκBα, leading to NF-κB release. Persistent
NF-κB activation is implicated in the prolonged induction of
selective pro-inflammatory genes in human glial cells (Griffin
and Moynagh, 2006). The mitogen activated protein family
of kinases (MAPK), including extracellular signal-regulated
kinases (ERK), c-Jun N-terminal kinases (JNK) and p38, also
regulate many HIV-1- and METH-induced astrocyte responses,
which often culminate in NF-κB-mediated gene transcription
(Table 2). IL-1β signaling can also be negatively regulated by
expression of inhibitory type IL-1R, IL-1R antagonist, soluble
and decoy receptors. Dysregulation of the IL-1β system in the
brain has been implicated in AD, MS and epilepsy (Garlind
et al., 1999; Ravizza et al., 2006; Dujmovic et al., 2009) Cytokine
receptors for IFNs and a few ILs are coupled to the JAK/STAT
pathway. Here, JAK phosphorylation of various tyrosine kinases
facilitates STAT dimerization and gene transcription. METH-
and Tat-induced astrogliosis and GFAP expression are also
regulated through STAT3 (Robson et al., 2014; Fan et al., 2015)
Ligation of G-coupled receptors such as CXCR4 can differentially
initiate downstream elements including cAMP and [Ca2+]i to
mediate function. CXCL12 and gp120 induce ERK 1/2 activation
in human neurons, while only CXCL12 did so in astrocytes
(Griffin and Moynagh, 2006). Induction of differential signaling
pathways also influences HIV-1 gene transcription in astrocytes,
where TGF-β-linked transcription factors, Smad3 and 4, interact
with C/EBP-β to offset Tat-mediated LTR activity (Coyle-Rink
et al., 2002).

A consequence of extended activation of neuroinflammatory
signaling cascades is Ca2+ dysregulation in both glia and
neurons. Intracellular Ca2+, when released from the ER, acts as a
secondary messenger and regulates the activity of many enzymes,
ion channels and cytoskeletal components. In astrocytes, [Ca2+]i
signaling is induced by activity in adjacent neurons, glutamate,
ATP, METH and HIV (Banerjee et al., 2008; Reddy et al.,
2012). Dysregulation of [Ca2+]i is implicated in astrocyte Aβ-
associated neurotoxicity and ischemia, through Ca2+-mediated
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TABLE 3 | Therapies targeting astroglial activation and function.

Agent Mechanism Outcome References

7-nitroindazole Neuronal NOS inhibitor Neuroprotective, blocked METH-mediated dopamine

and DAT depletion

Itzhak and Ali, 1996; Schulz et al.,

1997

Bryostatin 1 Macrolide lactone from bryozoans,

anti-cancer, memory enhancing

Anti-inflammatory and neuroprotective, decreased HIV

and CXCL10-mediated neurotoxicity and PBMC

chemotaxis

Mehla et al., 2012

Buprenorphine Pain and opioid replacement therapy Anti-inflammatory, decreased MO chemotaxis,

decreased METH-mediated ROS in glia

Fitting et al., 2014; Carvallo et al.,

2015

Celastrol Quinone methide-triterpene from

Tripterygium wilfordii: anti-oxidant and

anti-inflammatory activities

Anti-inflammatory, decreased CCL2, CXCL8, CXCL10,

ICAM/VCAM-1

Anti-oxidant, increased HO-1 and NRF-2

Allison et al., 2001; Zhu et al., 2010;

Youn et al., 2014

Clomipramine or

Imipramine

Tricyclic anti-depressant, serotonin and

norepinephrine reuptake inhibitor

Anti-inflammatory, reduced glial NO, IL-1β and TNF-α

release

Hwang et al., 2008

Copaxone

(Copolymer1,

Glatiramer acetate)

Multiple sclerosis therapy, myelin immune

decoy

Anti-inflammatory, decreased TNF-α, IL-1β, iNOS and

increased BDNF

Gorantla et al., 2007, 2008

EPPTB N-(3-ethoxyphenyl)-4-pyrrolidin-1-yl-3-

trifluoromethylbenzamide, TAAR1

antagonist/reverse agonist

Anti-inflammatory and neuroprotective, decreased

cAMP signaling and EAAT2 reduction in astrocytes,

reduced lymphocyte activation

Miller, 2012; Cisneros and Ghorpade,

2014

Fingolimod Multiple sclerosis therapy, lymphocyte

sequestering

Anti-inflammatory, Decreased astrocyte activation,

sphingosine-1-phosphate, IL-17, IL-1, NO

Colombo et al., 2014

Flavonoids Naturally occurring in foods, inhibition of

phospholipase A2

Anti-inflammatory, anti-oxidant Nanda et al., 2007

IFN-γ Replacement therapy, plasma IFN-γ levels

depleted upon METH exposure

Neuroprotective, prevented METH-mediated reductions

in DAT

Hozumi et al., 2008

Indomethacin Anti-inflammatory (COX-2 inhibitor/NSAID) Anti-inflammatory, prevented METH-induced glial

activation

Gonçalves et al., 20105

N-acetyl cysteine

amide (NACA)

Thiol anti-oxidant Anti-inflammatory, protected from HIV-1

Tat/gp120/METH-mediated BBB pathology

Banerjee et al., 2010

NS-398 COX-2 inhibitor Anti-inflammatory, decreased Tat-induced CCL2, IL-1β,

IFN-γ, iNOS

Flora et al., 2006

Propentofylline

(PPF)

Xanthine derivative, glial modulator Anti-inflammatory and neuroprotective, reduced

METH-associated astrocyte activation, and METH

reward pathway, increased astrocyte glutamate uptake,

impaired reinstatement of drug seeking behavior

Narita et al., 2006; Tawfik et al., 2006;

Sweitzer and De Leo, 2011; Jacobs

and De Leo, 2013; Reissner et al.,

2014

Raltegravir HIV-1 integrase inhibitor Anti-inflammatory and neuroprotective, decreased

neurotoxicity, inhibited astrocyte growth in glia/HN

cocultures

Tatro et al., 2014

Sativex® Synthetic Cannabinoids Anti-inflammatory reduces astrogliosis and

accumulation of chondroitin sulfate proteoglycans in MS

Feliú et al., 2015

SN79 Sigma-1R antagonist Anti-inflammatory, reduced METH-mediated

astrogliosis, microgliosis, neurotoxicity, hyperthermia

Seminerio et al., 2012; Kaushal et al.,

2013, 2014; Robson et al., 2013b,

2014

Sodium Benzoate

(NaB)

Food preservative and metabolite of

benzoic acid found in food

Anti-inflammatory, decreased iNOS, TNF-α, IL-1β Brahmachari et al., 2009

WIN55,212-2 Synthetic Cannabinoid Anti-inflammatory, anti-oxidant and neuroprotective Sheng et al., 2005; Rock et al., 2007;

Hu et al., 2013; Aguirre-Rueda et al.,

2015

glutathione depletions and voltage-gated Ca2+ influx (Duffy and
MacVicar, 1996; Abramov et al., 2003). These various routes
of Ca2+ signaling converge on a common pathway involving
Ca2+ overload-induced mitochondrial dysfunction, including
oxidative stress, cytochrome c release and injury or apoptosis in
neurons and astrocytes alike (Stanika et al., 2009; Eugenin and
Berman, 2013).

5https://clinicaltrials.gov/ct2/show/NCT00172627

THERAPEUTICS TO TARGET ASTROGLIA

The various roles of astroglia in CNS pathology are only
beginning to be defined and reactive gliosis is now well
recognized as a ubiquitous feature of CNS pathologies.
Astrogliosis is not a simple on or off switch, but rather a
finely tuned continuum of molecular, cellular and functional
alterations. These changes in gene expression and function
can exert both beneficial and detrimental effects in the
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brain milieu, dependent upon the duration and context of
the specific molecular signaling cascades. Glial activation
and dysfunction are emerging as important targets during
neuroinflammation (Jha and Suk, 2014). Astroglia actively
participate in neurodegeneration through the loss of normal
functions and gain of abnormal activities. The ever-expanding
understanding of the mechanisms regulating these changes has
the potential to identify many molecules that may serve as
therapeutic targets for neuroinflammatory disorders including
METH abuse and HAND (Table 3).

US Food and Drug Administration (FDA)
Approved Medications
Medications already in use for non-HIV/METH/astrocyte related
therapies have shown changes in HIV-1- or METH-associated
neuroinflammation, glial activation and neurotoxicity. Tricyclic
antidepressants, such as clomipramine, are cited in the 2015
WHO model list of essential medicines needed in a basic health
system to treat anxiety and depressive disorders by inhibiting
serotonin and norepinephrine reuptake6. However, in a recent
study onmicroglia and astrocyte cultures both clomipramine and
imipramine reduced NO, iNOS, IL-1β and TNF-α expression
by inhibiting IκB degradation, NF-κB p65 translocation to the
nucleus and phosphorylation of p38 MAPK (Hwang et al.,
2008). When used in microglia-neuroblastoma cocultures, both
antidepressants significantly reduced glia-mediated-cell death
(Hwang et al., 2008).

Fingolimod, an immune modulating drug used to treat
MS, decreases astroglial activation and NO production in
response to sphingosine-1-phosphate (S1P), IL-1β and IL-17
(Colombo et al., 2014). Fingolimod modulates autoimmune
lymphocyte release from the lymph node by agonizing the S1P
receptor, and also prevents monocyte: endothelial interactions
(Bolick et al., 2005; Baumruker et al., 2007). However,
in astrocytes fingolimod also decreased IL-induced, NF-κB-
mediated signaling and reduced neurotoxicity following transfer
of conditioned supernatants from activated astrocytes. Further, in
an experimental autoimmune encephalomyelitis mouse model,
fingolimod hampered astrocyte activation and NO production
(Colombo et al., 2014). These results indicate that fingolimod
can traverse the BBB and/or decrease monocyte infiltration
into the CNS, supporting it as a candidate to decrease glial
activation during HAND. However, these positive effects on
glia would have to be balanced with impaired lymphocyte
maturation in the lymph node. Copolymer-1, another MS drug
that serves as a myelin decoy, showed anti-inflammatory benefits
in an HIVE mouse model, with decreased pro-inflammatory
cytokine and iNOS expression, coupled with increased BDNF
levels. Both microgliosis and astrogliosis were reduced with
treatment, which correlated with diminished neurodegeneration
(Gorantla et al., 2007, 2008). These and other glial modulating,
MS drugs may warrant future therapeutic consideration for
HAND.

6http://www.who.int/selection_medicines/committees/expert/20/EML_2015_
FINAL_amended_JUN2015.pdf?ua=1

Over-the-counter COX-2 inhibitors and other non-steroidal
anti-inflammatory drugs are widely used to treat pain and
inflammation by blocking prostaglandin activation. Regulation
of astrocyte gene expression during HIV-1- and METH-
associated neuroinflammation involves common signaling
intermediates including NF-κB and prostaglandins. In mouse
studies indomethacin, a potent COX-2 inhibitor prescribed
to treat inflammatory disorders such as rheumatoid arthritis,
prevented or diminished METH-induced glial activation. GFAP
and CD11b immunoreactivity and TNF-α/TNFR1 protein levels
were reduced. Indomethacin inhibited METH-induced glial
activation and hippocampal neuronal toxicity, preserving beta
III tubulin, calbindin and tau expression (Gonçalves et al., 2010).
NS-398, a COX-2 inhibitor in clinical trials for gastric cancer,
decreased Tat-induced iNOS, CCL2, IL-1β and IFN-γ expression
in brain glia. NS-398 was more effective than pyrrolidine
dithiocarbamate, a potent anti-oxidant and NF-κB inhibitor
(Huang, 2005; Flora et al., 2006). Current FDA-approved
drugs capable of inhibiting these pathways in astroglia, may
effectively reduce gain of function pro-inflammatory responses
and reduce brain inflammation, if expeditiously approved for
off-label uses to treat HIV-1 CNS infection and possibly METH
abuse.

Naturally Occurring Glia Modulators
Food additives alter glial neuroinflammatory responses by
regulating NF-κB activation. Sodium benzoate (NaB), a food
preservative and a metabolite of benzoic acid, occurs naturally
in cinnamon, cranberries, prunes, plums and apples. NaB is
designated as “generally recognized as safe” by the FDA7,
and is used pharmaceutically to treat urea cycle disorders
and schizophrenia (Häberle et al., 2012; Lane et al., 2013).
In vitro, microglial pro-inflammatory responses to LPS, HIV-
1 Tat or Aβ, as measured by iNOS, TNF-α, IL-1β and
surface markers, were significantly reduced by NaB treatment.
IL-1β-activated mouse astroglia showed reduced GFAP and
iNOS expression with NaB treatment (Brahmachari et al.,
2009).

Celastrol is a triterpenoid quinone methide derived from
perennial plants belonging to the Celastraceae family. Celastrol
has exhibited anti-oxidant and anti-inflammatory effects in
microglia and astrocytes (Jung et al., 2007; Nakamichi et al., 2010;
Boridy et al., 2012; Youn et al., 2014). In astrocytes, celastrol
inhibited HIV-1 Tat-induced expression of ICAM-1/VCAM-1
and pro-inflammatory chemokines CXCL8, CXCL10, and CCL2
in a JNK MAPK, AP-1, and NF-κB dependent manner. Further,
celastrol downregulated these pro-inflammatory mediators by
inducing HO-1 expression and Nrf-2 activation, both anti-
oxidant responsive genes (Youn et al., 2014). Celastrol stands
out as a prime therapeutic candidate for targeting glial activation
as it inhibits glial-mediated inflammation while upregulating
anti-oxidant machinery (Nakamichi et al., 2010; Youn et al.,
2014).

Another class of plant metabolites, known as flavonoids, are
found in tea, red wine, dark chocolate, Ginkgo biloba and berries

7http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?
CFRPart=184
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(Haytowitz8). Research into their potential broad health benefits
against oxidative stress, inflammation, cancer and cardiovascular
disease is currently ongoing; yet, no health claims have been
approved by the FDA or European Food Safety Authority for
use as pharmaceutical drugs (Agostoni et al., 2010). However,
flavonoids such as silibinin have been shown to possess anti-
HIV-1 and HCV effects in T-cells by blocking viral replication,
cell activation and proliferation (McClure et al., 2012). Orally
administered anti-oxidants, such as flavonoids, have the capacity
to inhibit microglial migration, ROS and IL-1β production, AA-
and COX-2-mediated inflammation and toxicity (Nanda et al.,
2007; Chuang et al., 2014; Singh and Pai, 2015). Assessment
of ROS/RNS-mediated post-translational modifications of brain
proteins in the CSF and brain tissues may reveal biomarkers
associated with HIV-1-neurodegeneration (Uzasci et al., 2013).
Biomolecules available in food by targeted dietary changes or
supplementation that exert both generalized anti-oxidant and
anti-inflammatory effects could penetrate the brain and reduce
glial activation.

Therapeutic cannabis has been proposed in management of
common comorbidities of HIV-1 infection (Woolridge et al.,
2005; Whiting et al., 2015). Dronabinol (Marinol R©) is an FDA
approved synthetic 19-tetrahydrocannabinol (THC) that has
been used to treat ART-associated nausea, appetite reductions
and wasting syndrome (de Jong et al., 2005; Badowski and Pandit,
2014). Studies in Canada and England indicate that 27–38.5%
of HIV-1-infected individuals used cannabis on a regular basis
and self-reported benefits include relief of anxiety or depression,
improved appetite, pleasure and pain relief (Woolridge et al.,
2005; Harris et al., 2014). The physiological endocannabinoid
(eCB) system consisting of cannabinoid receptors (CBR) and
their endogenous ligands, eCB, are expressed by neurons,
microglia and astrocytes (reviewed in Woolridge et al., 2005;
Navarrete and Araque, 2008; Oliveira da Cruz et al., 2015).
Hippocampal tripartite synapse signaling between astrocytes
and neurons involves CB1R, a G-coupled protein receptor.
CB1R stimulation by neuronal eCB leads to increased Ca2+

levels, glutamate release and activation of NMDA receptors of
pyramidal neurons (Navarrete and Araque, 2008, 2010; Rasooli-
Nejad et al., 2014). Studies of memory impairments induced by
exogenous CB exposure were unchanged in neuronal CB1R KO
and abolished in astrocyte CB1R KO mice. Further, inhibition of
NMDA receptors also blocked CB-induced memory impairment,
implicating astrocyte glutamatergic signaling as a key player
in memory and learning (Han et al., 2012). Activation of
astrocyte connexin-43 hemichannels by eCB releases ATP, which
upregulates microglial pro-inflammatory responses during CNS
injury (Vazquez et al., 2015).

In chronic neuroinflammatory disease models of HAND, AD,
MS and stroke, eCB exert anti-inflammatory and neuroprotective
effects in the CNS (Schiavon et al., 2014; Aguirre-Rueda
et al., 2015; Feliú et al., 2015; Hind et al., 2015). A CBR

8Haytowitz, D.B., Bhagwat, S., Harnly, J., Holden, J.M., Gebhardt, S.E. Sources
of Flavonoids in the U.S. Diet Using USDA’s Updated Database on the
Flavonoid Content of Selected Foods. [Online]. Available: http://www.ars.
usda.gov/SP2UserFiles/Place/80400525/Articles/AICR06_flav.pdf [Accessed 7/15
2015].

synthetic agonist, WIN55,212-2 (WIN), protects neurons from
gp120-mediated damage (Hu et al., 2013). In IL-1β-activated
astrocytes, WIN decreases pro-inflammatory expression of TNF-
α, CCL2, CCL5, and CXCL10 (Sheng et al., 2005). In microglia,
WIN inhibits HIV-1 replication and decreases gp120-induced
superoxide production (Rock et al., 2007; Hu et al., 2013). METH
administration also increases eCB and CBR expression in the
brain, suggesting that they may participate in METH-mediated
neurotoxicity and behavioral changes. CBR antagonists reduce
METH-seeking behavior following METH cessation and protect
dopamine terminals from damage in mice (Anggadiredja et al.,
2004; Loewinger et al., 2012). However, 19-THC administration
with METH reinstatement reduced subsequent METH-seeking
behaviors (Anggadiredja et al., 2004). Pretreatment with 19-
THC blocks METH-induced neurotoxicity and astrogliosis by
decreasing neuronal NOS and TNF-α levels, and by preserving
tyrosine hydroxylase expression (Castelli et al., 2014; Nader et al.,
2014). Together these studies suggest that synthetic cannabinoids
may reduce glial activation during chronic HIV-1- and METH-
associated neuroinflammation and protect neurons.

Propentofylline
Propentofylline (PPF), a phosphodiesterase and adenosine
reuptake inhibitor has been studied as a therapeutic treatment
for various dementias and glioblastoma (Frampton et al.,
2003; Jacobs et al., 2012). Interestingly, PPF treatment blocks
METH-induced astrocyte activation and attenuates the METH
reward pathway in mice. Further, intracranial injection of
METH-treated conditioned media from astrocytes, but not
from microglia, enhanced METH rewarding effects; suggesting
astrocyte-specific regulation of METH reward pathways (Narita
et al., 2006). PPF has also been shown to impair reinstatement
of cocaine seeking behavior, which was dependent upon GLT-
1/EAAT-2 expression and function (Reissner et al., 2014).
PPF therapy increases EAAT-2 expression in astrocytes and
dampens pro-inflammatory cytokine levels (Tawfik et al.,
2006; Sweitzer and De Leo, 2011; Jacobs and De Leo, 2013).
Since dysregulation of astrocyte EAAT-2 expression and
function is implicated in both HAND and METH abuse, PPF
could potentially target astrogliosis-mediated excitotoxicity
and propagation of the neuroinflammatory environment
by glia.

Receptor Antagonists
Astrocyte activation during METH abuse leads to persistent
increase in GFAP immunoreactivity and reactive phenotypes
even months after cessation of METH abuse. Therapeutic
targeting of METH signaling receptors in astrocytes may reduce
astroglial activation and impaired astrocyte function. In-depth
studies on neuronal METH receptors have led to significant
insight into the addictive and euphoric effects of METH abuse. In
astrocytes; however, there is a paucity of these investigations with
few recent reports that document METH receptors on astrocytes
(Cisneros and Ghorpade, 2014; Robson et al., 2014; Zhang et al.,
2015).

During METH exposure, trace amine associated receptor 1
(TAAR1)modulates dopamine levels in the synapse by regulating
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DAT activity in neurons. Activation of TAAR1 by METH
stimulates protein kinase (PK)A and PKC to phosphorylate DAT.
It has been proposed through studies in TAAR1 KO mice that
phospho-DAT either acts in reverse, effluxing dopamine into the
synapse, or is internalized, preventing dopamine reuptake from
the synapse (Miller, 2011). TAAR1 is also expressed in primary
human astrocytes, lymphocytes, B-cells and is upregulated during
activation with METH and pro-inflammatory mediators (Panas
et al., 2012; Babusyte et al., 2013; Cisneros and Ghorpade,
2014). In astrocytes, TAAR1 is upregulated during METH/HIV-
1 cotreatment. Further, astrocyte TAAR1 activation by METH
increases cAMP levels and downregulates EAAT-2 expression
and function, which may lead to excitotoxicity and neuronal
dysfunction or death due to impaired glutamate clearance
from the synapse by astrocytes (Cisneros and Ghorpade, 2014).
METH-induced alterations in EAAT-2 expression and function
were blocked by TAAR1 knockdown, implicating TAAR1
as a therapeutic target for astrocyte-mediated neurotoxicity
during METH and HIV-1 neurodegeneration (Miller, 2012;
Cisneros and Ghorpade, 2014). In lymphocytes, METH-induced
phosphorylation of PKA and PKC could be significantly reduced
by EPPTB, a selective TAAR1 antagonist/reverse antagonist
(Miller, 2012; Panas et al., 2012). However, TAAR1 KO
mice show increased sensitivity to METH as measured by
striatal dopamine release and augmentation of METH-induced
behaviors (Wolinsky et al., 2007; Lindemann et al., 2008; Achat-
Mendes et al., 2012). TAAR1 overexpression in the neurons
of transgenic mice decreased sensitivity to amphetamine, even
with increased extracellular dopamine levels in the accumbens
nucleus and serotonin in the medial prefrontal cortex (Revel
et al., 2012). Interestingly, attenuation of TAAR1 activation
with a selective partial antagonist, RO5073012, restored METH-
mediated changes in locomotor activity. Therefore, constitutive
or tonic activation of TAAR1 by natural agonists may regulate
physiological monoamine activity in neurons (Revel et al.,
2012). TAAR1 agonists also suppress hyperactivity and improve
cognition in glutamate receptor deficiency models (Revel et al.,
2011, 2013) and TAAR1 modulates cortical glutamate NMDA
receptor function in TAAR1 KO mice (Espinoza et al., 2015).
Thus, a balance between agonism of neuronal TAAR1 and
antagonism of astrocyte TAAR1 will need to be further
investigated to balance the neuroprotective benefits of TAAR1
targeting drugs.

Sigma receptors have also garnered much attention in the
neurodegenerative disease field as they have been implicated in
pathology of neurodegenerative conditions including AD, PD,
stroke and METH neurotoxicity (reviewed in Nguyen et al.,
2014). Sigma receptor 1 (σ-1R) antagonists have been shown
to attenuate METH-induced neurotoxicity, hyperthermia and
behavior changes (Matsumoto et al., 2008; Kitanaka et al., 2009,
2012; Smith et al., 2010; Kaushal and Matsumoto, 2011; Kaushal
et al., 2011; Robson et al., 2013a). Only recently have σ-R been
studied in METH-mediated brain gliosis, where METH-induced
GFAP expression was abrogated in σ-1R KO mice compared to
controls (Robson et al., 2014). Further, METH-exposure leads to
a positive feedback regulation in astrocyte σ-1R expression that
could be inhibited with σ-1R antagonist BD1047 (Zhang et al.,

2015). SN79, a σ-1R antagonist, has also been shown to block
microglial and astrocyte activation, reducing expression of pro-
inflammatory cytokine expression following METH treatment
(Robson et al., 2013b, 2014), further implicating glial σ-1R
as a therapeutic target for neurodegeneration. While σ-1R
do not have intrinsic signaling machinery, they appear to
modulate the activity of Ca2+ channels and signaling molecules
by translocation and protein-protein interactions to regulate
diverse cellular functions, including intracellular Ca2+ signaling,
oxidative stress response, mitochondrial function, transcriptional
regulation and cell survival. In such, drugs targeting sigma
receptors in neurons and glia have vast implications in
neurodegenerative disease and drug abuse (reviewed in Nguyen
et al., 2014).

CONCLUDING REMARKS: HIV-1, METH,
AND ASTROCYTES AT
NEUROINFLAMMATORY CROSSROADS

In this review, we have provided an in-depth summary of
the existing literature about METH effects on astrocytes in
the setting of HIV. This comprehensive overview indicates,
without a doubt, that astrocyte regulation of neuroinflammation
during HIV-1 infection and METH abuse involves a complex
dialog between all neural cells. Figure 1 provides a graphic
summary of ongoing events and a proposed temporal order for
these activities. (1) As HIV-1 and METH gain access to the
brain across the BBB, they interact with astrocytes and induce
production of reactive oxygen and nitrogen species. (2.1) These
along with cytokines and chemokines from either side of the
BBB, act to increase BBB permeability. Chemokine gradients
recruit leukocytes, which bring HIV-1 and inflammation as
they extravagate into CNS. Brain microglia and perivascular
macrophages, when activated and infected, secrete cytokines,
virus, viral proteins and ROS, which in turn activate astrocytes
to perpetuate (2.2) neuroinflammation and (2.3) oxidative stress.
In response to activation, astrocyte EAAT-2 levels decrease
and extra cellular glutamate levels rise. (2.4) Pathological
glutamate levels overexcite neurons impairing function through
excitotoxicity. (3) Concurrently, METH and neuroinflammation
activate astrocytes and microglia in the vicinity, instigating
reactive gliosis. (4)METH and other pro-inflammatory cytokines
can activate proviral gene expression in astrocytes and microglia.
(5) Infected glia secrete viral proteins and pro-inflammatory
mediators, which alter astrocytes homeostatic functions and
perpetuate neuroinflammation. Cytotoxic molecules, including
cytokines, viral proteins and ROS, coupled with depletion of
astrocytic neurotrophic support, induce neuronal dysfunction
and death. (6) Intervening with therapeutics targeting astroglia
may disrupt the neuroinflammatory dialogue and protect
neurons during HAND and METH abuse.

Taken together, this comprehensive review further
emphasizes that additional studies regarding glial-based
mechanisms/interactions, implicated in the combined setting of
METH and HIV, are timely and highly warranted. Moreover,
this review presents a platform to persuade future investigators
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FIGURE 1 | An interactive neuroinflammatory roadmap crosslinking astrocytes with HIV-1 and METH. The crystal structures of cytokines created using the

data from Protein Data Bank (:PBD) for CCL2:1dok, CXCL8: 1IL8, CXCL10: 1o7z, CXCL12:1a15, IL-1β: 31BI, IL-6: 1ALU, TIMP-1: 1d2b TNF-α: 1TNF were rendered

using PyMOL Molecular Graphics System (Schrödinger, LLC); BDNF: 1bnd, METH, ROS, NO were rendered using Accelrys Software (BIOVIA, San Diego, CA USA).

to examine several critical questions that remain unanswered
and are likely to influence therapeutic outcomes. Perhaps, most
importantly, it is yet unknown how these interactions differ
in the setting of long-term ART. Are there any disparities
related to the outcomes of the combined interplay outlined
in Figure 1 in the setting of race and/or gender? Epigenetic
factors may play a significant role in these phenomena and we
have only begun to scratch the surface of the role of genetic
background and/or predisposition. Over the next several years,
HIV-associated comorbidities including neurological and
metabolic complications and related astroglial contributions,
will continue to hold high research priorities. While we have

highlighted several salient features of astroglial contributions to
neuroinflammation, the role of METH and other drugs of abuse
in this setting will continue to unravel. Continued elucidation
of the regulatory mechanisms governing astroglial responses to
METH and HIV-1 will provide the foundation for the generation
of novel therapeutic interventions for neuroinflammatory
disorders by targeting a key player, astrocytes.
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