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Functional metagenomics is a powerful experimental approach for studying gene

function, starting from the extracted DNA of mixed microbial populations. A functional

approach relies on the construction and screening of metagenomic libraries—physical

libraries that contain DNA cloned from environmental metagenomes. The information

obtained from functional metagenomics can help in future annotations of gene function

and serve as a complement to sequence-based metagenomics. In this Perspective, we

begin by summarizing the technical challenges of constructing metagenomic libraries

and emphasize their value as resources. We then discuss libraries constructed using the

popular cloning vector, pCC1FOS, and highlight the strengths and shortcomings of this

system, alongside possible strategies to maximize existing pCC1FOS-based libraries by

screening in diverse hosts. Finally, we discuss the known bias of libraries constructed

from human gut and marine water samples, present results that suggest bias may also

occur for soil libraries, and consider factors that bias metagenomic libraries in general.

We anticipate that discussion of current resources and limitations will advance tools and

technologies for functional metagenomics research.

Keywords: functional metagenomics, metagenomic library, cosmid library, fosmid library, pCC1FOS, cloning bias,

library bias, RK2

THE CHALLENGES OF CONSTRUCTING LARGE-INSERT
METAGENOMIC LIBRARIES

Functional metagenomics involves isolating DNA from microbial communities to study the
functions of encoded proteins. It involves cloning DNA fragments, expressing genes in a surrogate
host, and screening for enzymatic activities. Using this function-based approach allows for
discovery of novel enzymes whose functions would not be predicted based on DNA sequence
alone. Information from function-based analyses can then be used to annotate genomes and
metagenomes derived solely from sequence-based analyses. Thus, functional metagenomics
complements sequence-based metagenomics, analogous to how molecular genetics of model
organisms has provided knowledge of gene function that is widely applicable in genomics.

Functional metagenomics begins with the construction of a metagenomic library (Figure 1A).
Cosmid- or fosmid-based libraries are often preferred due to their large and consistent insert size
and high cloning efficiency. DNA is first extracted from the environmental sample of interest, then
size-selected, end-repaired, and ligated to a cos-based vector, allowing packaging by lambda phage
for subsequent transduction of Escherichia coli (Figure 1A). The resulting library contains relatively
large insert DNA, typically 25–40 kb for cos-based vectors.With the steps involved, the construction
of a metagenomic library can be laborious and time-consuming, requiring a high level of skill at the
laboratory bench.
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FIGURE 1 | Metagenomic libraries exhibit cloning bias when compared to the original environmental sample. (A) Steps involved in the construction of a

metagenomic library, from original environmental sample to the final library in the E. coli host (adapted from Lam and Charles, 2015). (B) Relative abundance of

bacterial phyla from two previously constructed metagenomic libraries, a human fecal library (Lam and Charles, 2015), and a corn field soil library (Cheng et al., 2014),

compared to their original sample DNA extracts. (C) Number of OTUs identified from corn field soil DNA extract and library, and whether the OTUs were present in the

library sample only, the extract sample only, or present in both. (D) Examination of cloning bias by comparing the relative abundance of OTUs that were present in

both the DNA extract and the cosmid library, shown on a log scale; horizontal line at 1 denotes equal relative abundance in both samples.

There are several technically challenging steps in library
construction. First, the extracted DNA must be of sufficient
length for efficient packaging into lambda phage heads (Parks
and Graham, 1997). Extraction usually employs gentle lysis to
avoid shearing DNA (Zhou et al., 1996) but even so it may be
difficult to achieve large fragment sizes (Kakirde et al., 2010). We
find that starting with crude DNA extracts containing at least
∼75 kb fragments leads to high-quality libraries and it is crucial
to check the fragment size range by pulsed-field electrophoresis

before proceeding. A particularly useful and affordable molecular
ladder for pulsed-field gels is self-ligated lambda DNA, which
can be easily prepared and results in bands at approximately 50,
100, and 150 kb. A freeze-grinding step prior to extraction (Lee
and Hallam, 2009) can substantially improve cell lysis. Although
this step may fragment DNA (Brady, 2007), we find it does
not hinder library construction, consistent with previous work
showing that freeze-grinding results in minimal shearing (Zhou
et al., 1996).
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Extracts are often contaminated with compounds that co-
purify with DNA, requiring additional purification steps that may
lead to sample loss. Common contaminants in soil-derived DNA
extracts are humic acids, which may interfere with enzymatic
reactions (Tebbe and Vahjen, 1993). Non-linear electrophoresis
is effective for contaminant removal (Pel et al., 2009) and
generates purified and concentrated DNA suitable for PCR or
metagenomic analysis (Engel et al., 2012), yet requires specialized
equipment. We have found that for library construction, humic
acids can simply be allowed to run off the gel during pulsed-field
electrophoresis of crude extract for size-selection because they
migrate much faster than large DNA fragments. Alternatively, to
avoid contaminating the circulating buffer, electrophoresis can
be paused after humic acids have formed a front, the part of
the gel containing the humic acids excised, and then this region
replaced with fresh gel (Cheng et al., 2014). Others have reported
that contaminating nucleases are effectively inhibited by treating
extracted DNA in an agarose plug with sodium chloride and
formamide (Liles et al., 2008).

After the DNA has been size-selected and purified, it must
be end-repaired and ligated to a desphosphorylated, blunt-ended
vector. To ensure proper size range before ligation, the DNA can
be checked for co-migration with the largest band of a lambda-
HindIII ladder on an agarose gel (Brady, 2007) or the sample can
be run on a pulsed-field gel for a more accurate size assessment.
The end-repair is a challenging step because there is no simple
way to confirm that ends are indeed blunt following the reaction.
We use a small amount of the ligation to transform E. coli prior
to the costly packaging step; resulting transformants indicate
the presence of circular DNA molecules arising from ligation
of successfully blunt-ended fragments. Though the ligation
conditions may not favor formation of circular molecules, this
is our best proxy for successful end-repair.

Other challenges include the sensitivity of packaging extracts
and preparation of purified digested and dephosphorylated
vector DNA for ligation. Although excellent commercial
products are available for both, in-house vector preparation
may still be required when specific expression hosts are to be
used in functional screening outside the host range of available
commercial vectors (Wexler et al., 2005; Craig et al., 2010;
Troeschel et al., 2010; Cheng et al., 2014). The culminating step
of library construction is the transduction of E. coli, and although
it is possible to generate many thousands of clones with the first
attempt, troubleshooting may be required to increase library size.
When transduction results in a disappointingly small number of
transductants (zero in the worst case!), it is not easy to determine
the cause.

Indeed, metagenomic library construction is in many ways an
art that takes time and practice to master. Given the substantial
challenges and costs associated with library construction, as well
as possible difficulties in obtaining rare environmental samples, a
clear corollary is that we ought to find ways to maximize these
valuable resources for shared benefit. In particular, collections
of metagenomic libraries that can be used in a variety of hosts
would be extremely valuable if able to be accessed by the scientific
community. We have previously made our libraries publicly
available (Neufeld et al., 2011) and we continue to advocate for

increased sharing (Charles and Neufeld, 2015). Though there
are obvious administrative obstacles, services such as Addgene
(Herscovitch et al., 2012) may facilitate these efforts.

MAKING THE MOST OF WHAT WE HAVE:
LEVERAGING EXISTING LIBRARIES

Due to the difficulties of library construction, commercial
products that aid in generation of libraries are popular. Indeed,
one widely used cloning-ready commercial vector is pCC1FOS
(Genbank accession EU140751; Epicentre Biotechnologies). In
recent years, as functional metagenomics has gained traction,
metagenomic libraries from remarkably diverse environments
have been constructed using pCC1FOS (Table 1). The pCC1FOS
vector has several advantages. It carries a chloramphenicol
resistance (cat) marker that is superior to the common ampicillin
resistance (bla) marker, obviating the occurrence of satellite
colonies associated with beta-lactamase secretion that can be
problematic for the dense platings often required for library
construction. In addition to an F plasmid oriV for single-
copy maintenance, pCC1FOS also carries an oriV from the
RK2 plasmid. The RK2 oriV is broad-host-range, conferring
replication ability in diverse members of the Proteobacteria
(Ayres et al., 1993), but requires the trfA gene product for
replication and results in an estimated 15 copies per cell (Durland
and Helinski, 1990). Though trfA is not carried by the fosmid,
it can be provided in trans; notably, the commercial E. coli
strain EPI300 (Epicentre Biotechnologies) carries trfA under the
control of an inducible promoter that is advertised to increase
copy number from 1 copy per cell to 10–200 copies. The strain
likely possesses a trfA copy-up mutant allele under control of
araC-PBAD, which is induced by L-arabinose (Wild et al., 2002).
In the past, we preferred HB101 as a library host due to its
receptiveness to transduction, but EPI300 appears to transduce
at least as well as, if not better than, HB101. It also has the
advantages of being an endA1 mutant and supporting copy-
number inducibility, allowing for less-degraded and higher-yield
plasmid preparations.

Despite its popularity, pCC1FOS has some disadvantages that
make resulting libraries less versatile than they could be. First,
pCC1FOS does not possess an oriT that would allow the fosmid
to be efficiently transferred by conjugation, mediated by a helper
plasmid, to other species or strains that may be more suitable
for heterologous expression. To achieve conjugation capabilities,
we have added the RK2 oriT to pCC1FOS (Lam and Charles,
unpublished), as have others (Aakvik et al., 2009; Buck, 2012;
Terrón-González et al., 2013). To enable conjugation after library
construction has already taken place, others have retrofitted
individual pCC1FOS-based clones with an oriT (Li et al., 2011;
Buck, 2012). These modifications illustrate the need for fosmid
and cosmid vector design to include the oriT so that duplication
of work can be avoided. It is possible that transformation can be
used to transfer libraries to other hosts, but only for recipients
that are amenable to those techniques and that will not reject
DNA that has been synthesized in E. coli due to the presence
of host restriction-modification systems. In some cases, it will be
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TABLE 1 | Examples of metagenomic libraries constructed from diverse environmental samples using cloning vector pCC1FOS/pCC2FOS or derivatives.

Environment Library vector; screening host, if relevant References

HOST-ASSOCIATED ENVIRONMENTS

Bovine rumen pCC1FOS; E. coli Wang et al., 2013

Elephant feces pCC1FOS; E. coli Rabausch et al., 2013

Human distal ileum pCC1FOS; E. coli Cecchini et al., 2013

Human feces pCC1FOS; E. coli Jones et al., 2008

Human feces (pescatarian) pCC1FOS; E. coli Tasse et al., 2010

Marine sponge pCC1FOS Yung et al., 2009

Termite gut pCC1FOS, pCC2FOS; E. coli Warnecke et al., 2007; Liu et al., 2011

EXTREME ENVIRONMENTS

Alaskan soil pCC1FOS; E. coli Allen et al., 2009

Alaskan floodplain soil pCC1FOS; E. coli Williamson et al., 2005

Antarctic Pennisula meltwater pCC1FOS; E. coli Ferrés et al., 2015

Glacial ice pCC1FOS; E. coli Simon et al., 2009

Hot spring sediment and biofilm pCT3FK; E. coli, Thermus thermophilus Leis et al., 2015

Hydrothermal fluids pCC1FOS; E. coli Böhnke and Perner, 2015

MARINE OR FRESHWATER ENVIRONMENTS

Bog pCC1FOS; E. coli Sommer et al., 2010

Marine sediment pRS44; Pseudomonas fluorescens, Xanthomonas campestris Aakvik et al., 2009

Ocean tidal flat sediment pCC1FOS; E. coli Lee et al., 2006, 2015

Ocean water column pCC1FOS DeLong et al., 2006

River sediment pCC1FOS; E. coli Rabausch et al., 2013

POLLUTED ENVIRONMENTS

Crude oil-contaminated shore pMPO579; E. coli* Terrón-González et al., 2013

Polluted river pCC1FOS; E. coli Vercammen et al., 2013

AGRICULTURAL, ENGINEERED, OR OTHER ENVIRONMENTS

Activated sludge pCC1FOS, pCC2FOS; E. coli Suenaga et al., 2007; Zhang and Han, 2009

Compost, leaf branch pCC1FOS; E. coli Sulaiman et al., 2012

Compost, lumber waste pCT3FK; E. coli, Thermus thermophilus Leis et al., 2015

Compost, wood/plant debris/manure pCC1FOS; E. coli Ohlhoff et al., 2015

Decomposing leaf litter pCC1FOS; E. coli Nyyssönen et al., 2013

Orchard soil pCC1FOS; E. coli Donato et al., 2010

Sugarcane bagasse pCC1FOS Mhuantong et al., 2015

Libraries that are based on the commercial pCC1FOS or pCC2FOS vector can be screened in any RK2-compatible host that expresses the trfA gene product required for the broad-

host-range RK2 oriV origin of replication.

*modified strains derived from E. coli EPI300 to increase transcription.

desirable to modify these host strains by deleting the restriction-
modification genes.

Given that the broad-host-range oriV is used to achieve a
higher copy number in EPI300 expressing the trfA gene, another
disadvantage of pCC1FOS is that trfA is not included on the
vector. The consequence is that species that would otherwise
be able to use the oriV cannot replicate pCC1FOS. It is not
surprising then that for the vast majority of studies highlighted
here (Table 1), E. coli was used as the screening host. This is a
disadvantage for functional metagenomics as different clones can
be isolated from the same metagenomic library when different
screening hosts are used (Martinez et al., 2004; Craig et al.,
2010). We found that using the legume-symbiont Sinorhizobium
meliloti as a host results in a much greater diversity of clones than
E. coliwhen screening our corn field soil metagenomic library for
beta-galactosidase activity, though this greater diversity does not

appear to be related to phylogenetic distance of the origin of the
cloned DNA to the surrogate host (Cheng et al., in preparation).
The importance of devising systems that allow for functional
screening in diverse expression hosts has been reviewed by
others (Uchiyama and Miyazaki, 2009; Taupp et al., 2011; Ekkers
et al., 2012; Liebl et al., 2014), but what of the large number
of libraries that have already been constructed? Can we make
use of them for screening in non-E. coli hosts? The libraries
listed in Table 1, as well as potentially many other metagenomic
libraries constructed using pCC1FOS or derivatives, would be
accessible to any RK2-compatible host if a copy of the trfA
gene were also made available. This solution has already been
applied: one group inserted the trfA gene into the chromosome of
the Gammaproteobacteria species Pseudomonas fluorescens and
Xanthomonas campestris for screening of libraries constructed
using a pCC1FOS derivative (Aakvik et al., 2009). Another group

Frontiers in Microbiology | www.frontiersin.org 4 October 2015 | Volume 6 | Article 1196

http://www.frontiersin.org/Microbiology
http://www.frontiersin.org
http://www.frontiersin.org/Microbiology/archive


Lam et al. Resources for functional metagenomics

inserted araC-PBAD-trfA into the E. coli EL350 chromosome to
give copy number inducibility to the lambda Red recombineering
strain (Westenberg et al., 2010). The introduction of trfA into
RK2-compatible species is a straightforward way to expand the
range of expression hosts for existing pCC1FOS-based libraries.

An alternative to inserting the trfA gene into desired
expression hosts is to modify the vector for integration into the
host genome, bypassing the requirement for trfA. This strategy
has been employed to integrate clones into a target locus in the
genome of the thermophile Thermus thermophilus for functional
screening, by modifying pCC1FOS to include a selectable marker
as well as regions for homologous recombination (Angelov et al.,
2009). In our lab, pCC1FOS was modified to carry 8C31 att
sites (Heil and Charles, unpublished) for integrase-mediated site-
specific recombination of cloned insert DNA into the genomes
of landing pad strains, including S. meliloti and Agrobacterium
tumefaciens (Heil et al., 2012). As a general strategy, however,
chromosomal integration is potentially less useful than clone
maintenance due to the difficulty in retrieving the integrated
DNA for manipulation, including DNA sequence analysis, when
non-arrayed (i.e., pooled) libraries have been screened.

KNOWING THE EXTENT OF WHAT WE
HAVE: EXAMINING CLONING BIAS

Beyond the practical questions of how to optimize vectors for
library construction and how to maximize valuable existing
libraries, there is a technical question that we find particularly
interesting: how much of the sequence diversity present in
original DNA extracts is captured in constructed libraries, and
what affects this? Though not so much a concern for functional
screens, it is interesting to consider the factors that influence
library representativeness; elucidating these factors may lead to
development of better strategies for accessing the full potential
of environmental metagenomes. We previously used shotgun
sequencing to examine bias in a human fecal library (Lam and
Charles, 2015) and here we also present the results of 16S rRNA
gene sequencing to examine bias in a corn field soil library
(Cheng et al., 2014); see Supplementary Material for details. Both
libraries were constructed using the RK2-based cosmid pJC8
(Genbank accession KC149513).

The bias discussed here is from comparing DNA extracted
from the sample to the final cloned library DNA isolated from
E. coli (Figure 1A). Analysis at the phylum-level showed that
although the fecal library differed substantially in the relative
abundance of phyla compared to its corresponding extract, the
relative abundance of phyla in the corn field soil library seemed
similar to its extract (Figure 1B). We present these results for
the soil library but exercise caution in their interpretation as the
majority of 16S rRNA gene sequences from the metagenomic
library sample was E. coli contamination, despite treating the
library cosmid DNA preparation with Plasmid-Safe DNase to
remove host genomic DNA prior to PCR. After subtracting E.
coli host sequences, approximately 30,000 sequences remained to
represent the metagenomic library (see Supplementary Material
for details). The high level of host contamination could be due

to preferential amplification of template during PCR based on
differences in DNA conformation: though present in very small
quantities, linear DNA may be more efficiently amplified over
supercoiled or closed circular plasmid DNA (Chen et al., 2007).
This issue of E. coli host contamination in 16S rRNA gene
analysis needs to be addressed for future examination of bias in
metagenomic libraries.

When we examined the soil samples more closely, we
found that the similarity of the library and extract at the
phylum level does not extend to the “species” level: examination
of the individual OTUs in each sample revealed that only
a small fraction of OTUs were shared between the library
and original sample (Figure 1C). Interestingly, our analysis
indicated that there were a number of OTUs in the library
that were not identified in the extract sample (Figure 1C) and
although this number is halved when the library data are
compared to extract data that have not been rarefied (data
not shown), they nevertheless remain, indicating that these
OTUs are either extremely rare in the original sample and
their DNA is preferentially cloned or that the identification
of these OTUs is due to sequencing errors. A further analysis
of the OTU fraction that is shared between extract and
library samples shows a large range in the bias in relative
abundance of each OTU, with some OTUs exhibiting∼1000-fold
overrepresentation and others ∼1000-fold underrepresentation
in the library (Figure 1D). While there may be concern that
16S rRNA gene profiles of libraries compared to extracts may
not provide an accurate comparison of cloned DNA content
in general, we have previously shown from analysis of shotgun
sequence data that for large-insert RK2 oriV-based cosmid
libraries, 16 S rRNA gene content tracks well with genomic
content (Lam and Charles, 2015). The analysis of the corn
field DNA extract and corresponding metagenomic library
suggests that though the overall relative abundance of phyla
may remain similar, bias is occurring on the level of individual
OTUs.

The fact that certain taxa are under- or overrepresented might
not pose a barrier to screening, but it may be useful to know
what sequences are not likely to be captured in libraries. Several
studies that have compared shotgun sequencing of original
samples to corresponding metagenomic libraries from marine
water (Temperton et al., 2009; Ghai et al., 2010; Danhorn
et al., 2012), as well as our own comparative work on feces
(Lam and Charles, 2015), have shown that AT-rich sequences
are underrepresented in libraries. Our analysis—in which we
compared promoter consensus sequences between extract and
library samples—lends support to the hypothesis that the bias
is related to spurious transcription of metagenomic DNA from
AT-rich sequences recognized as σ

70 promoters in the E. coli
library host (Lam and Charles, 2015) although other factors may
be contributing, such as gene product toxicity (Sorek et al., 2007).
Notably, we have shown that DNA fragmentation is not a cause
of bias (Lam and Charles, 2015). The specific factors affecting
the “clonability” of DNA, and the mechanisms that lead to DNA
exclusion, still need to be experimentally determined.

The stability of foreign DNA in E. coli is influenced by the
vector copy number and, as a result, single-copy fosmids may

Frontiers in Microbiology | www.frontiersin.org 5 October 2015 | Volume 6 | Article 1196

http://www.frontiersin.org/Microbiology
http://www.frontiersin.org
http://www.frontiersin.org/Microbiology/archive


Lam et al. Resources for functional metagenomics

be ideal as the library backbone (Kim et al., 1992), although
the success of some functional screens may be dependent on
a higher gene dose. Plasmid vectors that are not cos-based
provide an alternative where cloning is substantially less difficult
as large-fragment DNA need not be isolated and packaging
and transduction are not required; the disadvantages, however,
are that a smaller insert size means that larger operons will
not be intact, and if the plasmid has a high copy number—
true of conventional cloning vectors—this may lead to greater
insert instability and exclusion (Lam and Charles, 2015). Other
alternatives to fosmid vectors include BACs (Kakirde et al.,
2011), which have the ability to capture even larger insert
sizes at approximately 100 kb on average (Kakirde et al., 2010),
and linear vectors, which may provide exceptional stability
(Godiska et al., 2010). However, cos-based vectors are likely
to remain popular for their advantages: the availability of
high-quality commercial packaging extracts, greater efficiency
of transduction over transformation, and decreased probability
of insert concatemers due to the phage head upper size
limit. Though there exists variety in library cloning vectors,
further work is required to understand how and to what
extent cloning vector choice and strategy impacts library
sequence bias.

CONCLUDING REMARKS

Depending on the target activity, functional screens can exhibit

a low hit rate (Uchiyama and Miyazaki, 2009) the reasons for
which might include barriers at the level of both transcription
and translation. Improving E. coli as a screening host to address
these problems will likely improve future hit rates. Examples
include introducing heterologous sigma factors to guide RNA
polymerase to otherwise untranscribed regions (Gaida et al.,
2015), employing T7 RNA polymerase to help drive transcription
(Terrón-González et al., 2013), as well as forming hybrid
ribosomes (Kitahara et al., 2012) that may influence expression.
Nevertheless, it will be important to move beyond E. coli into
different screening hosts, particularly for the complementation
of mutant phenotypes not possible in E. coli. The identification of
obstacles to cloning and screening will aid in the development of
new tools and technologies for functional metagenomics (Engel
et al., 2013), providing us with greater reach in terms of what

we are able to gather from functional screens. The refinement
of methods will be crucial in bioprospecting for novel enzymes
and compounds as well as for the determination of gene function
that will guide the development of reliable models of microbial
ecosystem functioning.
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