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Clinical and environmental meta-omics studies are accumulating an ever-growing
amount of microbial abundance data over a wide range of ecosystems. With a
sufficiently large sample number, these microbial communities can be explored by
constructing and analyzing co-occurrence networks, which detect taxon associations
from abundance data and can give insights into community structure. Here, we
investigate how co-occurrence networks differ across biomes and which other factors
influence their properties. For this, we inferred microbial association networks from 20
different 16S rDNA sequencing data sets and observed that soil microbial networks
harbor proportionally fewer positive associations and are less densely interconnected
than host-associated networks. After excluding sample number, sequencing depth and
beta-diversity as possible drivers, we found a negative correlation between community
evenness and positive edge percentage. This correlation likely results from a skewed
distribution of negative interactions, which take place preferentially between less
prevalent taxa. Overall, our results suggest an under-appreciated role of evenness in
shaping microbial association networks.

Keywords: microbial communities, 16S rDNA sequencing, co-occurrence, network comparison, positive edge
percentage, evenness

INTRODUCTION

Microorganisms engage in a multitude of ecological interactions, ranging from mutualism to
parasitism and competition (Konopka, 2009). These interactions shape species distributions, and
should thus be detectable from co-occurrence patterns across different locations, replicates or time
points (Diamond, 1975; Horner-Devine et al., 2007; Hekstra and Leibler, 2012).

Network inference techniques are increasingly employed to decipher microbial relationships
from such patterns (reviewed in Faust and Raes, 2012). These techniques include simple pair-wise
Pearson or Spearman correlations (Arumugam et al., 2011; Barberán et al., 2012; in Zhou et al.,
2010, coupled with random matrix theory), local similarity analysis (LSA; Ruan et al., 2006; Xia
et al., 2011, 2013; Durno et al., 2013), compositionality-robust estimation of correlations (SparCC;
Friedman and Alm, 2012, REBACCA; Ban et al., 2015, CCLasso; Fang et al., 2015), Gaussian
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FIGURE 1 | Example networks constructed from QIIME 16S data. Four sub-networks, i.e. node and edge sub-sets from the inferred networks, are shown. The
tundra sub-network (A) is dominated by two mutually exclusive clusters consisting of Acidobacteria and Alphaproteobacteria, the first of which is anti-correlated and
the second correlated to pH. Notable exceptions to this trend are the Chloracidobacteria (a class within the Acidobacteria, here highlighted with an orange circle)
which are positively correlated to pH, and several Rhizobiales (Alphaproteobacteria) and Chromatiales (Gammaproteobacteria) members (gray circle), which are
negatively correlated to pH. The gut sub-network (B) reproduces the Prevotella enterotype, including negative correlations of the Prevotellaceae to an Akkermansia
and an Escherichia OTU as well as to several Bacteroides OTUs. The moist forest sub-network (C) displays the neighbors of higher-level Nitrospirae representatives,
among them the Geobacteraceae, with which Nitrospirales members might cross-feed. The skin sub-network (D) shows the neighbors of a Streptococcus OTU that
acts as a negative hub.

graphical models (Van den Bergh et al., 2012; Kurtz et al., 2015),
sparse regression (Faust et al., 2012), and assessment of co-
occurrence probability with the hypergeometric distribution for
presence/absence data (Chaffron et al., 2010; Freilich et al., 2010).
In food webs, Bayesian regression is also applied (Faisal et al.,
2010; Aderhold et al., 2012).

Previously, we developed a pipeline based on an ensemble
approach (Faust et al., 2012), which we used recently to predict
interactions in the oceanic plankton community (Lima-Mendez
et al., 2015). This pipeline combines a number of measures of
dependency, such as correlation (e.g. Spearman), similarity (e.g.
mutual information), and dissimilarity (e.g. Kullback–Leibler).
The rationale behind this ensemble approach is that different
measures make different errors, but tend to agree on the correct
associations. This “wisdom of crowds” metaheuristic approach

has been demonstrated to deliver robust and accurate results for
gene regulatory networks (Marbach et al., 2012).

To remove spurious correlations that stem from differences
in sequencing depth, samples need to be rarefied or normalized,
which constrains the total sample count and thus introduces
compositionality bias (Aitchison, 2003). To address this bias,
we include the Bray–Curtis and Kullback–Leibler dissimilarities,
which are not affected by it, and apply the ReBoot procedure
to correlation measures, which mitigates compositionality bias
(Faust et al., 2012).

We then studied whether and how microbial association
networks differ across biomes. Microbial community
composition and diversity (e.g. Lozupone and Knight, 2007;
Fierer and Lennon, 2011) as well as properties of co-occurrence
networks have been compared previously. Microbial network
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FIGURE 2 | Differences between host and soil networks. Soil networks fall into two groups, characterized by low (QIIME soils) and high sequencing depth
[Earth Microbiome Project (EMP) soils], whereas host networks constructed from QIIME and Human Microbiome Project (HMP) samples have comparable PEP.
When taking all networks together, PEP in soil is significantly lower (p-value: 0.0002 according to the Wilcoxon rank sum test) than in host (A). The average clustering
coefficient (B) and network density (C) are also significantly different (p-values: 0.004 and 0.002, Wilcoxon rank sum test). Network density is computed as
2E/N(N-1), where E is the edge number and N the number of taxa in the processed matrix.

properties considered in comparisons include among others the
number of edges as a measure of complexity (Dini-Andreote
et al., 2014), the network diameter, density, average path length,
and clustering coefficient (Peura et al., 2015) and the module
number (Williams et al., 2014). In some cases, interesting
ecological insights can be gained from a network comparison.
For instance, the extent of network fragmentation after node
deletion has been applied as a measure of robustness to random
or targeted species removal (Widder et al., 2014; Peura et al.,
2015) as well as a measure of stochasticity (Widder et al., 2014).
Widder and co-workers found a lower network fragmentation
for river regions with intermediate catchment areas as compared
to those with large or small catchment areas. They explain
this observation by a stronger hydrological variability and
higher dispersal limitation upstream and a larger number of

source communities down-stream as two different sources of
increased stochasticity in these river regions (Widder et al.,
2014). Furthermore, the consistency of individual taxon links
can be evaluated by cross-network comparison (Williams et al.,
2014; Xu et al., 2014). The effect of various network properties
on co-occurrence network inference accuracy has also been
intensively studied (Berry and Widder, 2014).

However, the potential impact of community properties such
as alpha and beta diversity on the properties of co-occurrence
networks has not yet been well explored, though it is crucial
for the interpretation of these network properties. In addition,
previous network studies mostly focus on a single biome. We
therefore built 20 biome-specific networks from 7 environmental
and 13 host-associated sample sets, which together span 11
biomes andwhich differ widely in their sample and taxon number
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FIGURE 3 | Impact of sequencing depth. Oral cavity and tundra networks were re-constructed from QIIME and EMP data rarefied to different depths (minimum
occurrence was set to 13 for tundra QIIME, to 22 for tundra EMP and to 137 for oral cavity). In all cases, positive edge percentage (PEP) is correlated with
sequencing depth (A; Spearman’s rho tundra QIIME: 0.7, p-value: 0.23, tundra EMP: 0.95, p-value: 2E-16, oral cavity: 0.75, p-value: 0.07). The trend line for oral
cavity and tundra EMP is a logarithmic function of sequencing depth, whereas a linear trend line was fitted to tundra QIIME. Although sequencing depth is not
significantly associated to PEP for all biomes (B; Spearman’s rho: 0.155, p-value: 0.51, logarithmic trend line), a significant correlation is detected when only soil
biomes are considered (C; Spearman’s rho: 1, p-value: 0.0004). For host biomes, the correlation between PEP and sequencing depth is not significant
(D; Spearman’s rho: 0.34, p-value: 0.26). Host data is colored in brown, soil data in green.

as well as their sequencing depth and community properties. We
then examined whether these factors affected network properties.

MATERIALS AND METHODS

Data Acquisition and Preprocessing
The QIIME database (now a part of Qiita; The Qiita
Development Team, 2015) provides sequence data uniformly
processed with the QIIME pipeline (Caporaso et al., 2010) as
well as sample metadata in a standardized format, supporting
MIMARKS (minimum information about a marker gene
sequence; Yilmaz et al., 2011). Operational taxonomic units
(OTUs) are clustered at 97% identity using UCLUST-ref (Edgar,
2010) against the Greengenes 16S rRNA gene database (DeSantis
et al., 2006). Samples are classified using the environment
ontology1 and anatomy ontology (UBERON; Mungall et al.,

1http://environmentontology.org/

2012), respectively, which allows stratifying QIIME data
according to biome and body area. We filtered the global
OTU count matrix obtained from the QIIME database in July
10th, 2011 to discard OTUs or metadata with less than 50
occurrences across all samples. Soil-biome specific OTUmatrices
were then obtained by filtering on the BIOME_ENVO terms.
The tundra biome is composed of all “Tundra communities
and barren Arctic deserts” samples, the moist forest biome
of all “Tropical and subtropical moist broadleaf forest biome”
samples, the coniferous forest biome of all “Tropical and
subtropical coniferous forest biome” samples and the grassland
biome of all “Temperate grasslands, savannas, and shrubland
biome” samples. The following UBERON terms were merged
for the intestine biome: “cecum,” “colon,” “stomach,” “small
intestine,” “large intestine,” “rectum,” and “feces.” In case of
the skin biome, the following UBERON terms were selected:
“skin,” “skin of arm,” “skin of digit of hand,” “skin of finger,”
“skin of forearm,” “skin of head,” “zone of skin of head,” “zone
of skin of hand,” “zone of skin of knee,” “zone of skin of
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FIGURE 4 | Impact of richness and evenness. When assessing richness
(using median Chao1) and evenness (using median Sheldon’s index) in 20
(processed and rarefied) soil and host biomes, richness is found to be weakly
anti-correlated (A) and evenness strongly anti-correlated to PEP (B). Host
data is colored in brown, soil data in green.

outer ear,” “zone of skin of abdomen,” “zone of skin of foot,”
“zone of skin of wrist,” “nose,” “fossa,” and “glans penis.” Oral
cavity terms included “mouth,” “mucosa of mouth,” “tongue,”
“buccal mucosa,” “gingiva,” “gingival epithelium,” “hard palate,”
“mucosa of tongue,” “oral cavity,” “oropharynx,” and “palatine
tonsil.”

Each biome-specific count matrix was then processed as
follows: All OTUs that occurred in less than 1/4th of its samples
and all samples with a sequencing depth (i.e. a total number
of reads) within the lower 25% of its sequencing depth range
were discarded in this order. Counts were then converted into
relative abundances by dividing each entry by the sum of its
corresponding sample. To explore potential associations at higher
taxonomic ranks, the taxa composing the OTU lineages were
added as additional entries to the matrices. Higher-level taxon
abundances were then obtained as the sum of member OTU
relative abundances. During all steps of network construction,
links between taxa with a parent–child relationship (e.g. between
Escherichia and Enterobacteriaceae) were forbidden. It is of
note that higher-level taxa with a single member only form the
same associations as their member taxon. Super-kingdom taxa
(Bacteria, Archaea) are not considered.

To compare networks constructed from relative abundances
and from rarefied counts, we rarefied count data to 600 counts
per sample, which resulted in the loss of 86 QIIME soil samples
(41 for coniferous forest, 17 for grasslands, 25 for moist forest,
and 3 for tundra).

Human Microbiome Project (HMP) 16S V35 data (Methé
et al., 2012) were downloaded from the QIIME database in
December 2012 in biom format, converted with the biom convert
tool (McDonald et al., 2012) and processed as described above.
In addition, samples flagged as mislabeled or contaminated in
the metadata were removed. In addition to intestine, oral cavity
and skin matrices, vagina (with terms: “labia minora,” “mucosa of
vagina,” “vaginal fornix,” “vagina”) and nasal cavity (“nasal cavity,”
“nostrils,” “nostril,” “nares”)matrices were extracted. The samples
of these body-area specific matrices were split by recruitment
center (“11BAY” and “92WAU”) to address a known batch effect
and the same filtering steps described above were carried out for
each of these sample sets. Thus, 10 networks were constructed:
two networks for each of the five body areas (intestine, oral cavity,
nasal cavity, skin, and vagina).

Earth Microbiome Project (EMP) data (Gilbert et al., 2010)
for the studies: Caporaso_Glen_Canyon_soils (ENVO term:
“anthropogenic terrestrial biome”), Gittel_CryoCARB_2_
permafrost (ENVO term: “tundra biome”) and Dubinsky_
Hawaii_Kohala (ENVO term: “tropical shrubland biome”) were
downloaded in January 2014 from the EMP database (now a part
of Qiita) in biom format and count matrices were preprocessed
in the same way as QIIME biome-specific count matrices. In
total, 463 soil and 6,357 host samples were analyzed.

Network Inference
For each of four similarity measures (Bray–Curtis and Kullback–
Leibler dissimilarity, Pearson and Spearman correlation), a
distribution of all pair-wise scores was computed. Given these
distributions, initial thresholds were selected such that each
measure contributed 1,000 positive and 1,000 negative edges
to the initial network. For each measure and each edge, 1,000
renormalized permutation and bootstrap scores were generated,
following the ReBoot routine, which alleviates compositionality
bias (Faust et al., 2012). The measure-specific p-value was then
computed as the probability of the null value (i.e. the mean
of the null distribution) under a Gauss curve generated from
the mean and standard deviation of the bootstrap distribution.
Since a one-sided test was carried out, p-values above 0.5 were
considered indicative of mutual exclusion and were converted
by subtraction from one. Next, measure-specific p-values were
merged using Brown’s (1975) method, which takes correlations
among measures into account (i.e. an edge supported by two
inversely correlated measures will receive a lower p-value than
one supported by two correlated measures). After multiple-
testing correction using Benjamini and Hochberg’s (1995)
procedure, edges with merged p-values below 0.05 were kept. Any
edge for which the four measures did not agree on the interaction
type (i.e. positive or negative) or whose initial interaction type
contradicted the interaction type determined by the p-value
was also discarded. This network construction protocol is the
same as the one applied in (Faust et al., 2012), but without
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FIGURE 5 | Simulations with an interaction-free null model. Evenness does not alter PEP in simulations, though the variance of PEP increases for low
evenness, when most taxa are absent across all samples (A). When introducing group structure, PEP varies non-linearly with group number (B). Count matrices
were simulated with 50 taxa and 10 samples (A) and 120 taxa and 60 samples (B) and networks were built using Spearman with cut-off at ±0.2. For the cyan box
plots, significance was assessed by computing p-values from permutation and bootstrap distributions and correcting for multiple testing with Benjamini and
Hochberg’s (1995) procedure. Matrix generation and network construction were repeated 100 times for each box plot (10 times when significance was assessed).
Permutations and bootstraps were carried out with 100 iterations each. The parameter “minocc” refers to a filter step that removes all taxa occurring in less than the
specified sample number.

the computationally intensive generalized boosted linear models,
which clustered with the correlation measures (Faust et al., 2012)
and with Brown’s method instead of Simes method, because
Brown’s method takes dependencies among similarity score
distributions into account. Network construction was carried out
with CoNet2, which implements the pipeline described above.
The Supplementary Material provides CoNet setting files as well
as a bash script to re-run network inference within Cytoscape
or on command line. The inferred networks are also available
as a supplementary Cytoscape file. Networks in this study were
constructed with CoNet alpha.

Matrix and Network Property Calculation
Biome-specific matrices were rarefied to the same total count per
sample (362) and higher-level taxa were not included for diversity
calculation. Beta-diversity was then calculated as the median
of all pair-wise Bray–Curtis scores computed sample-wise. The
biome-specific Bray–Curtis distributions were visualized in a box
plot (see Supplementary Figure S7). In addition, we computed
the over-dispersion parameter θ of the Dirichlet–Multinomial
distribution, which measures to which extent taxon abundances
across samples will deviate from their average abundance

2http://systemsbiology.vub.ac.be/conet

(Rosa et al., 2012). We obtained biome-specific θ values
by fitting a Dirichlet–Multinomial distribution to the count
matrices using the dirmult R package (Tvedebrink, 2010). Alpha-
diversity was calculated using the Shannon index, defined as
H = − ∑S

i=1 pi · ln pi , where pi is the proportion of species i
and S is the species number. Chao1 (Chao, 1987), implemented
in the R package vegan, was employed as richness estimator.
Evenness is usually computed with the Pielou index (Pielou,
1975). However, this index is known to be influenced by
species richness (Sheldon, 1969) and thus cannot be used
to assess the impact of evenness independently of richness.
Therefore, the corrected Sheldon index was chosen as evenness
index (corresponding to formula F1,0 in (Alatalo, 1981)). The
Pielou index is defined as J = H/ ln S and the (corrected)
Sheldon index as F = (N1 − 1)/(N0 − 1), where Ni = expH and
N0 = S.

To quantify the connectedness of the networks, we computed
the average clustering coefficient as the mean of all node-specific
clustering coefficients. The node-specific clustering coefficient is
defined as Ci = 2 · n/(ki · (ki − 1)) where ki is the number of
neighbors of node i and n is the number of edges between the
neighbors of node i, excluding node i. We also computed the
average path length (which is the average length of all possible
shortest paths in the network) and the network density (the ratio
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FIGURE 6 | Prevalence density plots. The prevalence (measured as the percentage of occurrence across samples) and PEP in soil networks (A) and host
networks (B) is divided in 20 bins and each node is placed in its bin combination. On the right and top of each density plot, the node-specific PEP and prevalence
histograms are shown. In soil networks, node PEP tends to be low at lower prevalence, whereas in host networks, low PEP at low prevalence is balanced by high
PEP at higher prevalence.

of realized to possible edge number). In addition, we quantified
scale-freeness as the goodness of fit (using R2) of a power-law to
the node degree distribution. Cluster coefficients were calculated
with tYNA (Yip et al., 2006).

Simulation Studies
Count matrices were generated from a Dirichlet–Multinomial
distribution using the rmultinom function from the R stats
package and the rdirichlet function from the MCMCpack
package (Martin et al., 2011). Throughout all simulations, unless
indicated otherwise, the over-dispersion parameter θ was set to
0.002, the total read number to 1,000 and each taxon probability
to 1/S. The value for θ was chosen to lie within the range
of θ values obtained for the biome-specific count matrices,
which had θ values from 0.0009 (grasslands) to 0.34 (vaginal
HMP). Networks were constructed from the count matrices by
retaining all taxon pairs with Spearman correlations above 0.2
or below –0.2. In case p-values were computed, they were either
obtained from a standard permutation test or by combining a
permutation and a bootstrap distribution as described above,
followed by Benjamini and Hochberg (1995) multiple-testing
correction.

Count matrix evenness was varied by obtaining taxon
probabilities from the geometric series for different values
of the resource fraction parameter (May, 1975). Group
structure was simulated by generating low background counts
from a Dirichlet–Multinomial distribution with equal taxon
probabilities while increasing the counts of selected taxa across
a sub-set of samples.

The R code used to generate count matrices and to carry out
network construction is provided as Supplementary Material.

RESULTS

Biome-specific Networks Reproduce
Known Associations and Predict Novel
Ones
Uniformly processed 16S data sets were gathered from the
QIIME database (Caporaso et al., 2010), the EMP database
(Gilbert et al., 2010), and the HMP (Huttenhower et al., 2012;
Methé et al., 2012). Biome-specific networks were constructed
using four measures (Spearman, Pearson, Bray–Curtis, and
Kullback–Leibler). Measure-specific as well as combined p-values
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FIGURE 7 | PEP for top 100 prevalent taxa. When networks are inferred from the top 100 prevalent taxa, the average PEP of soil networks increases, in contrast
to host networks (fifth and sixth box plot). For comparison, PEP distributions of soil and host networks (first and second box plot) as well as soil and host networks
excluding biomes with less than 100 OTUs (nasal cavity, skin, and vagina from the HMP dataset) and without higher-level taxa and metadata (third and fourth box
plot) are also displayed. The Wilcoxon rank sum test for the latter case (third and fourth box plot) gives a p-value of 0.0014, whereas the PEP distribution difference
for top-prevalent soil and host OTUs is no longer significant (p-value: 0.88).

were calculated for each edge that scored above an initial
threshold and the final network was obtained by discarding edges
with multiple-testing-corrected combined p-values above 0.05
(see Materials and Methods for details). Supplementary Tables
S1 and S2 summarize the properties of the biome-specific input
matrices and their resulting networks, respectively.

A closer inspection of the networks shows that several
associations reproduce known microbial relationships. For
example, the tundra network contains a node representing
pH. Its neighbors form two mutually exclusive clusters: one
positively correlated with pH, consisting mainly of members
of the Alphaproteobacteria, and the other negatively correlated
with pH, featuring mainly Acidobacteria (Figure 1A). However,
OTUs of the Acidobacteria family Chloracidobacteria correlate
positively with pH, whereas OTUs of the Rhizobiales order
within the Alphaproteobacteria are inversely correlated to
pH. The cluster structure thus allows a more fine-grained
interpretation of the previously detected phylum- and class-
level (anti-) correlations between pH and Acidobacteria and
Alphaproteobacteria (Chu et al., 2010). Another example is
the sub-network composed of the Prevotellaceae node and its
neighbors in the gut network (Figure 1B), which reproduces
the Prevotella enterotype reported in (Arumugam et al.,
2011). For instance, it captures the negative relationships of
Prevotellaceae to members of the Akkermansia and Escherichia
genera and several OTUs of Bacteroides (the main driver of
another enterotype), which are positively correlated among
themselves and with a number of Firmicutes (such as Blautia,
Faecalibacterium, and Roseburia). We have reported such inverse
correlations between enterotype drivers previously (Faust et al.,

2012). The Prevotella enterotype has been shown to be clinically
relevant in (Scher et al., 2013).

Beyond confirming known relationships, network
construction can suggest novel ones. For instance, the
tropical moist forest network contains a positive association of
Nitrospirales (nitrite oxidizers) with Geobacteraceae (organic
compound oxidizers; Figure 1C). The predicted Nitrospirales–
Geobacteraceae association might reflect a cross-feeding
relationship, where Geobacteraceae species use nitrate generated
by Nitrospirales members as electron acceptor. Although
Geobacteraceae are better known as metal reducers, several
Geobacteraceae species are able to grow on nitrate as the sole
electron acceptor (Kashefi et al., 2003; Kashima and Regan,
2015). Since Geobacteraceae species are anaerob and several
members of Nitrospirales aerob, their interaction may take place
indirectly via nitrate diffusing into deeper soil layers. The absence
of relationships between member OTUs of Geobacteraceae and
Nitrospirales may hint at functional redundancy: if all members
of the Nitrospirales and Geobacteraceae groups perform a certain
function (nitrite oxidation versus nitrate reduction), then any
member of the first group can cross-feed with any member of the
second group. In consequence, the group counts co-vary, even if
individual group members could be randomly distributed.

Another example can be found in the skin network, which
is dominated by several hubs (that is highly connected nodes;
an example is depicted in Figure 1D). The hub OTUs are all
members of the Streptococcus and Staphylococcus genera, which
are dominant members of the normal skin flora. Although
the negative hubs may reflect an invasion of the normal skin
microbiota by more aggressive (in some contexts pathogenic)
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species, an alternative interpretation is that they result from
different responses of skin genera to hygiene: Streptococcus and
Staphylococcus members are more abundant on recently washed
hands, whereas other genera increase in abundance with time
after hand washing (Fierer et al., 2008). Both interpretations
may be related: early-colonizing genera may take advantage of a
reduced skin microbiota, to be replaced by a more mature skin
community later on. Such a link between early colonizers and
pathogens has recently been suggested for gut species (Lozupone
et al., 2012).

The vaginal HMP networks contain a Lactobacillus cluster
and a mixed cluster composed of Anaerococcus, Prevotella,
Finegoldia, Peptoniphilus, and other genera. Lactobacillus iners
forms a negative hub in both networks. These associations
are in agreement with the vaginal community types reported
in (Ravel et al., 2011) and have been detected previously in
HMP data (Faust et al., 2012; Friedman and Alm, 2012). In
addition, the oral cavity HMP networks, which contain dental
plaque samples, reproduce known relationships between early
(Streptococcus), intermediate (Fusobacterium) and late colonizers
(e.g. Selenomonas, Tannerella, Treponema, Prevotella) of the
dental plaque (Kolenbrander et al., 2002). These associations have
also been inferred previously from HMP data (Faust et al., 2012;
Friedman and Alm, 2012).

Soil and Host Networks Differ in their
Network Properties
Comparing the properties of the calculated networks, we
observed that host-associated networks contain a significantly
higher percentage of positive edges (PEP, computed as the
percentage of positive edges out of all realized edges) than soil
networks according to Wilcoxon’s rank sum test (Figure 2A).
The difference in PEP was accompanied by a significantly
higher average clustering coefficient and network density in
host networks as compared to soil networks (Figures 2B,C).
We then constructed sub-networks consisting only of positive
and of negative edges, respectively. Sub-networks consisting
of only negative edges were found to have far lower average
clustering coefficients than both the positive sub-networks and
the full networks (Supplementary Figure S1A), suggesting that
neighbors of a node tend to be interconnected by positive
links. As expected, the positive and negative network densities
reflect the proportion of positive and negative edges in the full
networks (Supplementary Figure S1B). Given the dependency of
the average clustering coefficient and network density on PEP
(Spearman’s rho: 0.72 and 0.62, respectively), we focused on this
latter property.

The question is whether the observed difference in PEP is
due to a true biological process or caused by differences in
sample processing or network construction biases. Previous work
has shown that sequencing platform, DNA extraction protocol
and amplified 16S rRNA variable region can partly drive the
clustering of gut samples (Lozupone et al., 2013), whereas more
recent work has highlighted the strong impact of sequencing
depth (Weiss et al., 2015). The high PEP of host networks was
reproduced with data sets sequenced with different platforms and
16S regions, whereas the soil PEP was more heterogeneous; its

standard deviationwas larger than in host (24% in soil versus 16%
in host). EMP soils, which were sequenced with another platform
and 16S region than QIIME soils, had a higher average PEP than
QIIME soils, which was, however, still below the average PEP of
the host networks (Figure 2A).

The host and soil datasets differ considerably in their sample
number (averaging to 489 versus 66 samples per biome). To test
the impact of sample number, we constructed networks from
randomly selected sample subsets of the oral cavity QIIME and
tropical shrubland EMP data and plotted the PEP distribution for
each sample subset size (Supplementary Figure S2). The PEPs of
these networks averaged to a value close to that computed for the
full sample set, showing that sample number does not affect PEP.

Data sets also differ in their nature (time-series versus cross-
sectional studies). While some sites were sampled once (tundra)
or five times (NEON study) per year, many of the gut samples
come from time series studies, (e.g. Turnbaugh et al., 2008;
Caporaso et al., 2011) and the oral cavity samples all belong
to a single longitudinal study (Caporaso et al., 2011). Fecal
samples from the same person at different time points were found
to be less heterogeneous than samples from different persons
(Turnbaugh et al., 2008), pointing to a possible bias due to
different proportions of time series.

To address whether the higher percentage of time series
among host samples might contribute to the observed PEP
difference, we constructed networks from time-series free sample
sub-sets of skin (Fierer et al., 2008) and gut (Turnbaugh et al.,
2008). The PEP of these networks did not differ substantially from
their unfiltered counter-parts (78.5% versus 73.5% in skin and
54.6% versus 61.5% in gut).

Sequencing Depth Impacts Positive
Edge Percentage
Another important difference between the selected host and soil
datasets is sequencing depth, which averages to 723 reads per
sample in QIIME soils (34,184 together with EMP soils) and
to 22,428 reads per sample in QIIME host (11,386 together
with HMP samples). Varying sequencing depth introduces biases,
firstly because more taxa can be detected in more deeply
sequenced samples and secondly because taxa co-vary with
sequencing depth, resulting in spurious positive correlations.
Without multiple-testing correction, the edge number increases
with the taxon number (Supplementary Figure S3A). Assessment
of significance and multiple-testing correction in simulations
reduce this correlation, but do not entirely remove it. In
agreement with the simulations, the edge number of the
biome-specific networks is moderately correlated to taxon
number (Supplementary Figure S3B). To investigate the second
bias due to varying total counts, we simulated samples with
different sequencing depths. The simulation confirms that
varying sequencing depth increases PEP and that this bias is
removed by either converting absolute into relative abundances
(normalization) or by rarefying to the same sequencing depth
(Supplementary Figure S4). Since we constructed networks from
normalized matrices, we may not have sufficiently addressed
the first bias, i.e. that taxon number increases with sequencing
depth (though it is reduced by the removal of rare taxa). We
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therefore repeated network construction for rarefied data sets
and found that PEPs of normalized and rarefied biomes were
highly correlated (Spearman’s rho = 0.81, Supplementary Figure
S5). We further explored the impact of sequencing depth by
constructing networks from matrices rarefied to different depths
and observed that PEPs of depth-specific networks increase non-
linearly with rarefaction depth (Figure 3A). We then computed
the correlation of biome-specific mean sequencing depth with
PEP (Figure 3B), which was not significant in general, but
was highly significant if only soil biomes were considered
(Figures 3B–D). The taxon number as well as the mean of
the all-versus-all Spearman distribution tends to increase with
increasing sequencing depth (Supplementary Figure S6), which
may account for the effect of sequencing depth on PEP. The
increase of PEPwith taxon number is also seen in our simulations
(Supplementary Figure S9). However, although the EMP soils
were sequenced more deeply than any of the host biomes
considered in this study, their PEPs were below most of the
host biome PEPs. We therefore conclude that despite the impact
of sequencing depth on PEP, sequencing depth alone does not
explain the difference between soil and host PEP.

Evenness and Richness are Negatively
Correlated to Positive Edge Percentage
Next, we tested whether alpha or beta-diversity might drive the
observed PEP difference. We did not find a significant difference
for between-sample beta diversity of host and soil matrices (p-
value of Wilcoxon rank sum test on Bray–Curtis distribution
medians: 0.88) and therefore conclude that the differences
between soil and host networks are not driven by sample
heterogeneity. However, when assessing evenness (using Sheldon
index), richness (with Chao1 estimator and OTU number) and
alpha diversity (with Shannon index) on the biome matrices
rarefied to the same sequencing depth (362 reads, to include
as many samples as possible from the less deeply sequenced
QIIME soils), we found soil matrices to be more even, rich
and diverse than host matrices (Supplementary Figures S7 and
S8), in agreement with previous results (Fierer and Lennon,
2011). Since diversity takes into account both evenness and
richness, we computed the correlation of PEP to evenness as
well as to richness to separate the effects of both and found that
Chao1 richness as well as Sheldon evenness are both significantly
anti-correlated to PEP (Spearman’s rho = –0.75 and –0.85,
respectively, Figures 4A,B). It is known that diversity is sensitive
to rarefaction depth (Lundin et al., 2012). Although Chao1
and Sheldon values did indeed vary with rarefaction depth, the
ranking of biomes according to their evenness or richness was
mostly preserved (Supplementary Figure S8).

Impact of Taxon Number, Sample
Number and Evenness in Simulations
We then explored whether simulated communities could
reproduce the trends described above. In short, we generated
count matrices with defined properties using the Dirichlet
Multinomial distribution as in (Rosa et al., 2012; see Materials

and Methods). The Dirichlet Multinomial does not model
interactions between taxa and thus serves as a null model.

In count matrices simulated with the null model, PEP
increased either with increasing taxon or decreasing sample
number (with Spearman’s rho for median PEP of 1 and –1,
respectively, Supplementary Figure S9). This contrasts with the
observations in the biome-specific networks, where taxon and
sample number are only moderately correlated to PEP (R2: 0.04
and 0.05, Spearman’s rho: –0.51 and 0.4, respectively). It has been
noted recently that the Dirichlet Multinomial imposes negative
correlations (Mandal et al., 2015), which explains the decrease in
PEP with increasing sample size in the simulated matrices.

Keeping taxon and sample number constant, we simulated
count matrices of varying evenness. Within a large range of
evenness, the average PEP does not change (Figure 5A). The
variance of PEP increases for small evenness values, since
fewer non-zero taxa are available for which correlations can
be computed. Thus, the observed effect of evenness could not
be reproduced with a model that does not account for taxon
interactions.

We proceeded to investigate the effect of group structure. For
this, we simulated a group as a set of taxa whose counts are much
higher than the background across a sample sub-set and found a
non-linear relationship between the number of simulated groups
and PEP (Figure 5B). Thus, group structure could affect PEP.

Less Prevalent Taxa in Soil Tend to
Contribute More Negative Edges
Since beta-diversity did not differ significantly between host and
soil biomes, we looked at prevalence patterns instead. For this,
we plotted soil and host node density for prevalence and PEP
(Figure 6). Whereas the soil density plot has a single peak at low
prevalence and PEP, the host density plot features as second peak
at higher prevalence and PEP (Supplementary Figure S10 shows
density plots for abundances).

To further investigate the impact of prevalence, we
constructed networks from the top 100 most prevalent OTUs, i.e.
from the 100 OTUs occurring in most samples. Equalizing row
number across matrices also reduced their richness differences
while preserving the differences in evenness. Whereas this
selective removal of OTUs strongly increased the average PEP
in soil, the change in average host PEP was minor (Figure 7),
suggesting that less prevalent taxa in soil contribute to the
difference in PEP between host and soil.

DISCUSSION

Here we show that microbial network inference can be applied
in various contexts to study how environmental properties
drive taxon associations (e.g. pH in the tundra network), to
explore associations underlying community types (as for the
enterotypes), or to identify novel potential ecological interactions
(e.g. between Geobacteraceae and Nitrospirales). Furthermore,
the simulations carried out to explore the impact of various
matrix properties on PEP demonstrate the importance of data
filtering, normalization and assessment of significance during
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network construction. If data are not filtered, rarefied or
normalized or if significance is not assessed (e.g. when using
Spearman correlation with arbitrary cutoffs), results may be
biased by varying sequencing depth or may consist of a large
number of false positives.

The significantly lower PEP of soil networks, in combination
with the higher average clustering coefficient and network density
of host networks, means that host microbial networks tend to be
more interconnected and to contain more positive edges than soil
networks. One can speculate that the higher PEP in host networks
reflects a higher proportion of positive ecological interactions
in host microbial communities (in the form of cross-feeding
relationships, biofilms, etc.).

However, the soil-specific dependency of PEP on prevalence
supports another hypothesis, which attributes the differences
between soil and host to global community properties. When
negative interactions tend to form predominantly between less
prevalent community members, they are easier to detect in even
than in uneven communities, since more sequencing effort is
necessary in the uneven than in the even community to study the
relationships between less prevalent members. This hypothesis
explains the observed negative correlation between evenness and
PEP for the biomes as well as the absence of this trend in the
simulations (where neither negative nor positive interactions
were introduced).

There may be other ways in which community structure
impacts PEP; according to our simulations taxon group number
may also play a role (Figure 5B). Taxon groups can be
considered as the microbial equivalent to gene modules: the
members of a taxon group respond together to varying
environmental conditions and as a result are highly positively
correlated, thus forming cliques. In environmentally driven
taxon groups, the edges within and between groups can be
considered as indirect, since group taxa co-varymainly because of
underlying environmental factors. The maximal possible number
of negative between-group edges scales quadratically with the
group number whereas the maximal number of positive within-
group edges scales linearly. In agreement to this, the positive edge
percentage decreased with larger numbers of simulated groups
(Figure 5B).

When taxon groups include a large fraction of the taxa,
they can be interpreted as alternative community types.
Alternative community types can be the consequence of a
direct or indirect disturbance or result from intrinsic system
dynamics (Costello et al., 2009; Faust et al., 2015). While
alternative communities have been identified in a number
of body sites (Arumugam et al., 2011; Ravel et al., 2011;
Ding and Schloss, 2014), the existence of soil community
types has to our knowledge not yet been explored. In
this context, the strongly significant difference in θ values,
which are much higher in host communities, is of interest
(Wilcoxon rank sum test p-value: 0.00003). Although sample
heterogeneity as measured by the median sample-wise Bray–
Curtis dissimilarity did not differ significantly between soil
and host, its standard deviation was highly correlated with
over-dispersion (Supplementary Figure S7). Based on these
observations, we speculate that over-dispersion as well as the

standard deviation of the Bray–Curtis dissimilarity may indicate
the presence of alternative community types in a data set. Future
comparative clustering analysis of biomes may shed further light
on taxon groups, community types and their impact on positive
edge percentage.

In addition, the connectivity patterns of taxa could reflect
some underlying biases, such as a different depth of taxonomic
resolution at the same sequencing similarity cut-off or varying
degrees of cosmopolitanism. Cosmopolitanism, i.e. the wide-
spread occurrence across different environments, has recently
been linked to a tendency to form positive connections (Pascual-
García et al., 2014). Although typical soil bacterial classes such
as Acidobacteria, Chloracidobacteria and Solibacteres have lower
aggregated PEPs and occur in fewer data sets than typical host-
associated classes such as Clostridia and Bacilli (Supplementary
Table S3), it is unclear whether this variation in class-specific PEP
is driving the difference between soil and host communities or is
in turn driven by it.

We also detected a weak positive and a moderate negative
correlation of PEP with sequencing depth and richness,
respectively. Sequencing depth and richness are weakly correlated
to each other across all biomes (Spearman’s rho: 0.28), but highly
correlated to each other and to PEP when only soil is considered
(Spearman’s rho sequencing depth versus soil richness: 0.72, soil
richness versus PEP: 0.72, soil sequencing depth versus PEP: 1).
As expected, the effect of sequencing depth and consequently of
richness is stronger in soil than in host-associated biomes, since
at the same sequencing depth, more taxa (and taxon groups)
will be discovered in an even than in an uneven community.
However, when taking all biomes together, sequencing depth
alone is not sufficient to explain the observed difference in
PEP.

The elevated PEP in host-associated biomes can also be seen
in the majority of the 18 host networks inferred from the HMP
data by Friedman and Alm (2012), whereas the low soil PEP is
in agreement with PEPs (averaging to 42%) reported in a recent
study on 10 Brazilian soil sample sets (Lupatini et al., 2014).
However, additional data sets and biomes need to be considered
in future comparative network studies to validate the trends
discussed here.

Overall, this study demonstrates the impact of global
community structure properties on inferred microbial networks.
This observation warrants thorough analysis of the whole
range of community properties in microbial network inference,
to avoid naive interpretations of these networks and flawed
biological conclusions. Simulations such as those presented
here will be instrumental in fully untangling the interplay
between community structure and the interaction between its
members.
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