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Due to their high frequency of genomic mutations, human retroviruses often
develop resistance to antiretroviral drugs. The emergence of drug-resistant human
immunodeficiency virus type 1 (HIV-1) is a significant obstacle to the effective long-term
treatment of HIV infection. The development of a rapid and versatile drug-susceptibility
assay would enable acquisition of phenotypic information and facilitate determination
of the appropriate choice of antiretroviral agents. In this study, we developed a
novel in vitro method, termed the Cell-free drug susceptibility assay (CFDSA), for
monitoring phenotypic information regarding the drug resistance of HIV-1 protease (PR).
The CFDSA utilizes a wheat germ cell-free protein production system to synthesize
enzymatically active HIV-1 PRs directly from PCR products amplified from HIV-1
molecular clones or clinical isolates in a rapid one-step procedure. Enzymatic activity
of PRs can be readily measured by AlphaScreen (Amplified Luminescent Proximity
Homogeneous Assay Screen) in the presence or absence of clinically used protease
inhibitors (PIs). CFDSA measurement of drug resistance was based on the fold
resistance to the half-maximal inhibitory concentration (IC50) of various PIs. The CFDSA
could serve as a non-infectious, rapid, accessible, and reliable alternative to infectious
cell-based phenotypic assays for evaluation of PI-resistant HIV-1.

Keywords: HIV-1, protease, cell-free protein synthesis, cell-free drug susceptibility assay, drug resistance

INTRODUCTION

Mortality associated with human immunodeficiency virus (HIV)-related diseases has declined
significantly since 1996, when antiretroviral therapy (ART) regimens were introduced as
standard interventions for affected patients. However, these regimens increased the risk of
emergence of drug-resistant strains of HIV-1 during long-term management of infected patients

Abbreviations: APV, amprenavir; ATV, atazanavir; CFDSA, Cell-free drug susceptibility assay; DHFR, dihydrofolate
reductase; DRV, darunavir; GSS, genotypic susceptibility score; GST, glutathione S-transferase; HAART, highly active
antiretroviral therapy; HIV-1, human immunodeficiency virus type 1; IDV, indinavir; PI, protease inhibitor; PR, protease.
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(Gupta et al., 2008). Indeed, the high mutation rates and
replication capacity of HIV-1 contribute to the generation of
drug-resistant variants (Perelson et al., 1996). The emergence
of drug resistance significantly impairs the efficacy of ART
(Gupta et al., 2008). Hence, drug resistance testing now provides
important information when selecting the most appropriate
antiretrovirals for treatment of HIV, leading to improved
therapeutic outcomes (Haupts et al., 2003; Bansi et al., 2011).

Currently, genotype- and phenotype-based assays are the
two major approaches for evaluating drug resistance of HIV-1.
Genotypic assays detect mutations that cause drug resistance,
and have the advantages of being less expensive and more rapid
than phenotypic methods. However, genotypic approaches have
several significant disadvantages: they provide only an indirect
measure of drug resistance, and they cannot provide a definitive
result, especially in the case of viral strains that have accumulated
complex genetic mutations (Hanna and D’Aquila, 2001). In
addition, the results of genotyping are sometimes discordant
between interpretation algorithms (Ravela et al., 2003), and
these strategies can only monitor the majority of quasispecies
(Derdelinckx et al., 2003). On the other hand, cell culture–
based phenotypic assays provide a direct measurement of drug
susceptibility and have the significant advantage of being able to
measure the cumulative effects of multiple mutations (Robinson
et al., 2000). The main disadvantage of a phenotypic assay is
the considerable time needed for completion (∼4 weeks) and
the requirement for a Bio-Safety Level 3 (BSL-3) laboratory.
Moreover, virus isolation or the use of recombinant virus
may select for replication-competent viruses in the cell-culture
system at the expense of populations of drug-resistant strains
that often exhibit lower replication fitness (Nijhuis et al.,
2001). Therefore, there is an urgent demand for a rapid and
reliable phenotypic assay that would allow easier acquisition
of phenotypic information and facilitate understanding of
associated genotyping results without the use of cell-culture.

As a step toward resolving these limitations, we developed
a novel CFDSA that combines a wheat germ cell-free protein
synthesis system (Ogasawara et al., 1999; Madin et al., 2000;
Sawasaki et al., 2002) and the Amplified Luminescent Proximity
Homogeneous Assay, AlphaScreen (Eglen et al., 2008; Matsunaga
et al., 2012). Our method can readily produce full-length active
HIV-1 PR proteins from PCR products and measure their
enzymatic activity without intervening protein purification. We
show here that CFDSAprovides an attractivemeans for analyzing
HIV-1 PR drug resistance.

MATERIALS AND METHODS

Reagents
Wheat germ extracts were obtained from CellFree Sciences,
Co. (Yokohama, Japan). Anti-HIV-1 PR monoclonal antibody
was purchased from Abcam (clone no. 1696, Cambridge, UK).
GST antibodies were purchased from GE Healthcare Biosciences
(Pittsburgh, PA, USA). Drug-resistant HIV-1 molecular clones
were provided by the AIDS Research Center, National Institute
of Infectious Diseases, Japan (Takeuchi et al., 2002).

Construction of in vitro Transcription
Templates
In vitro transcription templates for each HIV-1 PR gene were
constructed by split-primer PCR as described previously. To
generate transcription templates, the first round of PCR was
performed with 10 ng/µl of each plasmid using 100 nM of a
target-specific forward primer containing the S1 sequence at the
5′ end (5′-CCACCCACCACCACCAATGTTTTTTAGGGAA
GATCTGGCC-3′; underlined nucleotides indicate the S1
sequence (Takai et al., 2010), and non-underlined nucleotides
indicate the 5′-coding region of the target gene) and reverse
primer 1 (5′-CCTGATATAGGAAGGCCGGATAAGACGCGAC
CGGCGTCGCATCCGGCGCTAGCCGTAAATTCTATACAAA
AACTTATTAGCCATCCATTCCTGGCT-3′). The second round
of PCR was performed with 1/100th volume of the first PCR
product using 100 nM of primer SPu (5′- GCGTAGCATTT
AGGTGACACT-3′; Takai et al., 2010), 100 nM of primer sUTR
(5′-ACTACCTGATATAGGAAGGCCG-3′), and 1 nM of primer
deSP6E01 (5′- GGTGACACTATAGAACTCACCTATCTCCCC
AACACCTAATAACATTCAATCACTCTTTCCACTAACCACC
TCCACCCACCACCACCAATG-3′). As a substrate corres-
ponding to the p2–p7 junction of HIV-1 Gag, the p2/p7-bls
(bls: biotin ligase sequence; GLNDIFEAQKIEWHE) fusion
gene was inserted into vector pEU-E01-GST-MCS (CellFree
Sciences, Yokohama, Japan), and amplified using primers
SPu and AODA2303 (5′-GTCAGACCCCGTAGAAAAGA-3′)
with ExTaq (Takara Bio). Gag genes derived from HXB2 were
amplified by PCR and cloned into vector pEU-E01. Transcription
templates for Gag were constructed by PCR following the method
described above, using primers SPu and AODA2303.

In Vitro Transcription and Cell-free
Protein Synthesis
In vitro transcription and cell-free protein synthesis were
performed using WEPRO7240 wheat germ extract (CellFree
Sciences, Yokohama, Japan). Transcription was performed using
SP6 RNA polymerase, as described previously (Matsunaga et al.,
2014). The translation reaction was performed in bilayer mode
with slight modifications. Briefly, translation mixture (forming
the bottom layer) consisted of 10 µl of each mRNA (usually 30–
35 µg), 10 µl of WEPRO7240 (CellFree Sciences, Yokohama,
Japan), and 0.8 µl of 1 µg/µl creatine kinase (Roche Diagnostics
K. K., Tokyo, Japan) in 20.8 µl of SUB-AMIX R© (CellFree
Sciences, Yokohama, Japan). SUB-AMIX (206 µl) was placed
on top of the translation mixture, thus forming the top layer.
After incubation at 16◦C for 16 h, synthesized proteins were
confirmed by immunoblotting. For biotinylation of the substrate,
1 µl (50 ng) of crude biotin ligase (BirA) expressed in a
wheat germ cell-free system was added to the bottom layer,
and 0.5 µM (final concentration) of D-biotin (Nacalai Tesque,
Inc., Kyoto, Japan) was added to both the top and bottom
layers, as described previously (Matsuoka et al., 2010). As an
initial experimental test, radiolabeled protein was produced
by cell-free synthesis to confirm the yield and solubility of
generated proteins as described previously (Kamura et al., 2005).
In actual drug susceptibility testing, quantitations of synthesized
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HIV-1 PR proteins were performed by densitometric scanning of
Coomassie Brilliant Blue (CBB)-stained bands as compared with
purified HIV-1 PR or bovine serum albumin (BSA) (Madin et al.,
2000).

Immunoblotting
Five microliters of cell-free synthesized PRs (equivalent to
∼50 ng) was boiled in 2.5 µL of 3X SDS sample buffer
[150 mM Tris-HCl (pH 6.8), 6% SDS, 30% glycerol, and
0.6% bromophenol blue]. After separation by 15% SDS-
PAGE, the proteins were electrotransferred onto a PVDF
membrane (Bio-Rad, Hercules, CA, USA) by application of
100 V for 1 h. The membrane was then blocked in Tris-
buffered saline (TBS) containing 5% (w/v) skim milk for
1 h, and then incubated for 1 h with a HIV PR antibody
(ab8327; Abcam, Cambridge, MA, USA) in TBS containing
0.1% (v/v) Tween 20 (TBST; 1:1000 dilution) as described
previously (Matsunaga et al., 2014). After three washes with
TBST, the filter was incubated for 40 min in PBS containing
goat-anti mouse IgG-HRP antibody (1:5000; GE Healthcare).
After an additional three washes in TBST, HIV PR proteins
were detected with SuperSignal West Dura Extended Duration
Substrate (Thermo Fisher Scientific, Rockford, IL, USA) on
a Lumi-Imager F1 (Roche Diagnostics GmbH, Mannheim,
Germany).

Cell-free Enzymatic Assay using a
Luminescence Detection System
CFDSA was performed using cell-free–synthesized PR, substrate
peptide, and the AlphaScreen R© system (PerkinElmer, Boston,
MA, USA). Briefly, to bind PR and PI, pre-incubation was
performed in a total volume of 10 µl containing 3 µl of
cell-free–synthesized PR (∼0.25 µM as a homodimer) and
1X SUB-AMIX R© in the presence of serially diluted PI (0.1
to 105 nM indinavir, ATV, APV, or DRV). The mixture
was incubated at 37◦C for 30 min in a 384-well Alphaplate
(PerkinElmer). The enzymatic reaction was initiated by the
addition of 5 µl of 0.25 µM cell-free–synthesized GST-
p2/p7-bls substrate to each well, followed by incubation
at 37◦C for 2 h. Detection of PR activity was performed
essentially as described in the AlphaScreen IgG detection kit
instruction manual (PerkinElmer). Briefly, 10 µl of detection
mixture containing 20 mM Tris-HCl (pH 7.5), 0.2 mM DTT,
5 mM MgCl2, 5 µg/ml anti-GST antibody, 1 mg/ml BSA,
0.1 µl streptavidin-coated donor beads, and 0.1 µl anti-IgG
acceptor beads were added to each well of the 384-well
plate, followed by incubation at 23◦C for 1 h in the dark.
Luminescence signals were analyzed with the AlphaScreen
detection program using the EnSpire software (PerkinElmer),
and light intensities in the presence of the serially diluted
inhibitors were used to calculate their IC50 values. PI-resistance
levels were determined by comparing the IC50 values of drug-
resistant PR with those of NL4-3 PR. The results for each PR
were normalized based on protein productivity, as determined
by liquid scintillation counting. IC50 values were calculated using
XLfit (ID BUSINESS SOLUTIONS, Guildford, UK). The criteria
for CFDSA measurement of resistance were as follows: fold

resistance value (FRV) = IC50 ratio of test PR/IC50 ratio of
WT PR.

Clinical Isolates
Serum samples were collected from AIDS patients diagnosed at
Nagoya Medical Center. This study was conducted according
to the principles expressed in the Declaration of Helsinki,
and was approved by the Institutional Review Boards
of the National Institute of Infectious Diseases (approval
number: 166) and Nagoya Medical Center (approval number:
2010-310). All patients provided written informed consent
for collection of samples and subsequent analysis. Some
viral clones containing common clusters of drug-resistant
mutations were provided by Dr. Robert W. Shafer at Stanford
University.

RESULTS

Synthesis of Enzymatically Active HIV-1
Protease using a Wheat Germ Cell-free
System
To synthesize catalytically active HIV-1 PR, we initially generated
a transcriptional template of this enzyme by PCR, using the HIV-
1NL4−3 clone as a wild-type (WT) reference sample. We designed
a transcription template encoding the open reading frame of
HIV-1 PR flanked by 56 N-terminal amino acids (Gag p6 region)
and 18 C-terminal amino acids (the reverse-transcriptase region),
as shown in Figure 1A. The in vitro transcription template
for the HIV-1 PR gene was constructed by split-primer PCR
using primers encoding the SP6 and E01 sites, as described
in section “Materials and Methods.” To generate a catalysis-
incompetent PR, we designed a PRmutant harboring the catalytic
active site substitution D25N (D25N; Figure 1B). All cDNA
templates were subjected to cell-free transcription/translation
and then separated by SDS-PAGE. By CBB staining, WT PR
migrated at 11 kDa (as the truncated form of PR) due to
self-cleavage of the flanking 56 and 18 amino acids at the N-
and C-terminal ends, respectively, whereas D25N PR migrated
at 19 kDa, corresponding to full-length PR with the flanking
sequences (Figures 1C,D). Immunoblot analysis with anti-HIV-1
PR antibody recognizing mature form of HIV PR, only detected
the cleaved form of WT PR at the expected size (∼11 kDa;
Figure 1D).

Measurement of HIV-1 Protease Activity
using AlphaScreen
For the quantitative and high-throughput measurement of HIV-1
PR activity using AlphaScreen technology, we designed a reporter
substrate comprising a partial Gag p2-p7 junction peptide flanked
by N-terminal GST and C-terminal biotin binding sequence
(GST-p2/p7-biotin) as described in Figure 2A. Using the reporter
substrate, we attempted to measure the cleavage activity of
HIV-1 PR by AlphaScreen (Matsunaga et al., 2012). Cell-
free–synthesized HIV-1 PRs were incubated with the reporter
substrate, followed by the addition of AlphaScreen streptavidin
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FIGURE 1 | Synthesis of catalytically active HIV-1 PR using the wheat germ cell-free system. (A) Schematic representation of rapid production of HIV-1 PR
using a wheat germ cell-free system. A transcriptional template, including the HIV-1 PR open reading frame flanked by N-terminal 168 bases (56 aa) and C-terminal
54 bases (18 aa), produced by split-primer PCR as described in section “Materials and Methods.” Cell-free translation was carried out using products of in vitro
transcription. (B) The formation of WT PR (catalytic active) or D25N PR (catalytic inactive) after translation. WT PR generated as a 11 kDa protein by self-cleavage.
D25N PR (catalytic inactive) generated as a 19 kDa protein lacking self-cleavage activity. (C,D) WT or D25N PRs (-mRNA and DHFR as a negative control) were
separated by SDS-PAGE followed by CBB-staining (C) and immunoblotting using anti-HIV-1 PR antibody that recognizes only mature HIV protease (PR) but not its
precursor (D). Arrows depict protein products.

donor and protein A acceptor beads with anti-GST antibody
(Figure 2A). In this system, when PR does not cleave the reporter
substrate, singlet oxygen energy can be transmitted from the
donor beads to the acceptor beads, resulting in emission of

light. By contrast, when PR cleaves the substrate, no light is
produced.

Consistent with the theory described above, WT HIV-1
PR, but neither D25N PR nor DHFR (used as a negative
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FIGURE 2 | Measurement of HIV-1 PR cleavage activity using AlphaScreen. (A) Design of a reporter substrate (GST-p2/p7-biotin) used in the assay.
Schematic representation of the CFDSA used to evaluate drug susceptibility of HIV-1 PR. Cell-free–synthesized PR was incubated with the reporter substrate.
Subsequently, protein A–conjugated acceptor beads and streptavidin-coated donor beads were added and bound to the substrate. In this system, when PR does
not cleave the test substrate, energy is converted from the donor beads to acceptor beads, resulting in light emission at 520–620 nm (right upper part). By contrast,
when PR cleaves the substrate, no light is produced (right lower part). (B,C) Cleavage activity of HIV-1 PR was quantitated by AlphaScreen as shown in (A).
Luminescent AlphaScreen signal (B) and relative enzymatic activity (C) are listed. Each bar represents the mean ± SD of four independent experiments.
(D,E) Conformation of cleavage of the tester polypeptide by immunoblot analysis. The reporter substrate was incubated with HIV-1 PR or D25N mutant, and the
reaction mixtures were then separated by SDS-PAGE. Substrate cleavage was analyzed by immunoblotting against a GST antibody (left) or streptavidin conjugated
with peroxidase (right). Arrows depict protein products.
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control), diminished the AlphaScreen luminescence signal,
indicating proteolytic cleavage of the reporter polypeptide
(Figure 2B). The cleavage activity of PR was normalized
against the luminescence activity of DHFR (Figure 2C).
Parallel immunoblot analysis with an anti-GST antibody
or streptavidin-HRP demonstrated that WT PR, but not
D25N PR, efficiently digested the reporter substrate into
the expected cleavage products (GST -p2 and p7-biotin;
Figures 2D,E).

Evaluation of Drug-resistant HIV-1 PR by
CFDSA
We next investigated whether our assay system is applicable
to drug-resistance testing for HIV-1 PR. As an initial
approach, we examined the susceptibility of WT HIV-1
PR, or six PRs from clinically drug-resistant clonal isolates
(Figure 3A), to six different PIs (DRV; APV; ATV; IDV;
LPV, lopinavir; and RTV, ritonavir) at a single effective
concentration. Although all HIV-1 PIs tested markedly

FIGURE 3 | HIV-1 PR drug resistance profiles, as determined by CFDSA in a single-concentration experiment. (A) List of six PRs from clinically
drug-resistant clones used in this assay. (B) Schematic representation of CFDSA in case of drug sensitive PR or drug resistant PR. Drug sensitive PR does not cleave
the reporter substrate with PIs, energy is converted from the donor beads to acceptor beads, resulting in light emission at 520–620 nm. By contrast, when drug
resistant PR cleaves the substrate regard less with PIs, no light is produced. (C) WT PR and six patient-derived drug-resistant PR mutants were pre-incubated with
the indicated protease inhibitors (PI; DRV/darunavir, 100 nM; APV/amprenavir, 100 nM; ATV/atazanavir, 1 mM; IDV/indinavir, 100 nM; LPV/lopinavir, 100 nM; and
RTV/ritonavir, 1 mM), and then subjected to CFDSA. Relative cleavage activities were listed. Each bar represents the mean ± SD of two independent experiments.
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FIGURE 4 | Dose-response curve of HIV-1 PR activity in the presence of PIs, as determined by CFDSA. WT HIV-1 PR or a drug-resistant PR (PR02-A, as
shown in Figure 3) harboring L10I/G48S/I54V/V82F/L90M mutations was tested in the presence of the indicated concentration of PIs by CFDSA. Luminescent
AlphaScreen signals were plotted for each PI, and IC50 values were calculated using XLfit for each inhibitor. Fold resistance value (FRV) was calculated using the IC50

value of the drug-resistant PR divided by the IC50 value of the WT PR. NC, negative control (DHFR).

inhibited WT HIV-1 PR, HIV-1 PRs derived from drug-
resistant clones exhibited significantly variable drug
resistance at the indicated concentrations (Figures 3B,C).
Notably, PRs with the comparable “major” or “minor”
mutations exhibited distinct drug-resistance profiles,
indicating the advantage of CFDSA over the conventional
genotyping methods that target only these mutations
(Figures 3B,C).

We next attempted to determine IC50 values by titrating
the PIs (Figure 4). WT HIV-1 PR and a drug-resistant PR
harboring the L10I/G48S/I54V/V82F/L90M mutations were
tested. For WT PR, the IC50 values for DRV, APV, ATV,
IDV, LPV, and RTV were 22.0, 23.2, 17.8, 31.9, 1.1, and
0.3 nM, respectively. For the mutant PR, the IC50 values
(fold-resistance to WT PR) were 32.6 (1.5-fold higher), 93.5
(4.0-fold higher), 136.7 (7.7-fold higher), 1021.8 (32.0-fold
higher), 215.0 (193.0-fold higher), and 3133.0 (11426.9-fold
higher) nM, respectively (Figure 4). These results indicate
that our current assay system can readily determine the
susceptibility or resistance of a mutated PR to a particular drug
based on the fold change in IC50 values relative to those of
WT PR.

Comparison of CFDSA with PhenoSense
Assay
To evaluate the practical potential of our assay, we compared
drug susceptibility profiles obtained via CFDSA with those
determined by the phenotypic technique, PhenoSense R© . For this
purpose, we synthesized 15 patient-derived drug resistant PRs
with multiple mutations and measured their IC50 values against
the same four PIs (DRV, APV, ATV, and IDV). To minimize the
effects of cleavage-site mutations, we used molecular clones in
which mutant PR genes were inserted into the wild-type pNL4-
3 clone. The mutants’ sequence profiles are summarized in the
lower panel of Figure 5A.

Drug-resistance scores determined by CFDSA and
PhenoSense R© were plotted in scatter plots. The CFDSA
results were significantly positively correlated with those of
PhenoSense R© for ATV, APV, and IDV (Figure 5B); for DRV,
no correlation was found probably due to its mechanism of
action (Figure 5B; see discussion). These results indicate that
PI-resistance results obtained by CFDSA are almost, but not
completely, consistent with those determined by conventional
cell-based drug-susceptibility assays.
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FIGURE 5 | Comparison of CFDSA with the PhenoSense assay. (A) Information about the PR mutants used in this assay. (B) Assessment of drug susceptibility
and resistance determined by CFDSA, compared to those determined by the PhenoSense R© assay. The y-axis indicates CFDSA drug-resistant scores, whereas the
x-axis represents PhenoSense R© scores.

DISCUSSION

The phenotypic drug-resistance assays in current use are
complex, labor-intensive, and expensive. Therefore, there is an
urgent need for a simpler, safer, and less expensive method
for drug resistance testing (Garcia-Lerma and Heneine, 2002).

Here, we describe the development of a novel in vitro enzymatic
activity assay that provides a rapid and reliable method for
evaluating the PI-resistance of clinical HIV samples. Our
method is based on the direct measurement of the catalytic
activity of HIV-1 PR synthesized using a wheat cell-free
system.
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The advantages of CFDSA in comparison with conventional
cell-based phenotypic assays include (1) a relatively lower cost
than alternative in vitro and in vivo screening technologies (∼50–
60 cents/well including protein synthesis); (2) greater rapidity
than cell-based phenotypic assays (the entire test procedure is
completed in 2 or 3 days vs. several weeks); (3) no requirement
for a Bio-Safety Level 3 (BSL3) containment; (4) has the versatility
to be used in high-throughput assays with multi-well plates; and
(5) is a “mix and measure” assay system which can potentially
be automated. Although we demonstrate here that our newly
developed CFDSA could be a potentially powerful tool for the
measurement of catalytic activity of HIV-1 PR, it is still immature
to use for practical and actual HIV-1 PR drug-resistance testing in
clinics. Further studies involving a much larger sample size with
multiple drug-resistant mutations will be necessary to determine
whether CFDSA is truly applicable to clinical testing or use as
an effective diagnostic tool in the treatment of HIV-1-infected
patients.

Several related biochemical methods have been used to
evaluate HIV-1 PI susceptibility (Yu et al., 1995; Gutierrez et al.,
2002; Hoffmann et al., 2005; Hu et al., 2005; Matsuda et al.,
2007). The basic principle involved in these procedures is to
incubate the recombinant PR, substrate peptide, and PI in vitro,
and then measure the amount of substrate cleaved by PR. The
advantage of this approach is that it directly evaluates the drug-
resistance phenotype based on the catalytic activity of PR, even
in cases when there are cumulative effects of a large number
of mutations. However, it is often difficult to produce sufficient
quantities of enzymatically active PR in conventional cell-based
protein expression systems, such as Escherichia coli (E. coli).
In E. coli, HIV PR is usually expressed in the inclusion body
fraction due to its insolubility and cytotoxicity (Cheng et al.,
2006). In comparison to cell-mediated procedures, the wheat
germ cell-free system is advantageous for the efficient preparation
of high-quality proteins with natural folding and high enzymatic
activity, both of which enable high-throughput functional assays
(Endo and Sawasaki, 2006). Moreover, the wheat germ system
is suitable for the generation of toxic viral proteins such as
HIV-1 PR.

Cell-free drug susceptibility assay was designed to evaluate the
drug-resistance properties of PR enzymes that harbor complex
and multiple mutations, a key limitation of genotypic assays
(Baldanti et al., 2004). Assessment of drug resistance of HIV PRs
that harbor highly complex mutations, or PRs derived from non-
B subtypes of the virus, is currently the focus of a great deal
of attention (Llibre et al., 2010). However, the aforementioned
limitations of genotypic assays, which can only indirectly evaluate
this characteristic, may result in a lack of information. In this

regard, when scoring drug susceptibility, genotypic assays usually
consider only predetermined major and minor drug-resistance
mutations. On the other hand, our CFDSA method can evaluate
PI resistance based on actual enzymatic activity in real time. Thus,
CFDSA provides a means for predicting the drug resistance of
PRs that have accumulated complex mutations.

Our results demonstrate that the drug-resistance scores of
CFDSA were highly concordant with those of PhenoSense R© .
However, there were some discrepancies, specifically in regard
to susceptibility to DRV. DRV is a potent antiretroviral drug
that can block the dimerization of HIV-1 PR, and also has high
affinity for the mature enzyme, although the mechanism by which
it inhibits dimerization has not been well characterized (Huang
and Caflisch, 2012). Because CFDSA utilizes mature HIV-1 PR
to directly evaluate enzymatic activity, and does not reflect
differences in maturation, the results obtained for DRV may not
accurately represent the situation in vivo. Further biochemical
analysis will be necessary to clarify these intriguing findings.

In summary, we show here that our method provides a simple
and biologically relevant means for quantitative evaluation of
drug-resistant HIV-1 PRs using existing therapeutics.
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