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INTRODUCTION

Outer membrane vesicles (OMVs) shed from bacteria contribute to pathogenesis by promoting
colonization of host tissues and trafficking virulence factors into host cells via fusion with the host
cell plasma membrane. Glyeraldehyde-3-phosphate dehydrogenase (GAPDH) is also secreted by
prokaryotes, but enhances pathogenesis by promoting adhesion of bacteria to host cell surfaces.
However, GAPDH is also known to catalyze the fusion of membranes, and it has been shown to
promote OMV activity in the non-pathogenMyxococcus xanthus. We suggest that during infection
by Gram-negative bacteria, GAPDH and OMVs work synergistically to stimulate pathogenesis.

OUTER MEMBRANE VESICLES IN HEALTH AND DISEASE

A common bacterial mechanism for engineering the environment involves the secretion of
OMVs—10–300 nm diameter packages, pinched off from the outer membrane of Gram-negative
bacteria, enclosing periplasmic material (Figure 1). OMV constituents can be specifically targeted
for inclusion in OMVs, however the mechanisms of OMV biogenesis and cargo targeting remain
poorly defined (Kulkarni and Jagannadham, 2014).

OMVs are able to migrate away from their producing cells, accessing niches unavailable to the
producing cell, and delivering secreted material to distant sites of action. Packaging within OMVs
means their contents are not diluted as they are transported far from the cell, are protected from the
environment (e.g., extracellular proteases), and cargo complexes can be secreted as pre-assembled
entities (Ellis and Kuehn, 2010; Kulkarni and Jagannadham, 2014). At their site of action, OMVs
can deliver their contents by two mechanisms. They can fuse with target membranes (Figure 1;
Kadurugamuwa and Beveridge, 1999; Bomberger et al., 2009), or contact with a surface can trigger
OMV lysis (Kadurugamuwa and Beveridge, 1996), releasing OMV contents.

OMVs are produced by all Gram-negative bacteria, and are known to have diverse
antimicrobial, biofilm-promoting, virus-resistance, quorum-signaling and virulence-enhancing
properties (Manning and Kuehn, 2013). The virulence of pathogens is known to correlate with
the degree of vesiculation (Rolhion et al., 2005), and OMVs are able to enhance colonization of
host tissues, modify host cell biology, and/or protect the OMV-producer from therapeutics and the
host immune response (Inagaki et al., 2006; Thay et al., 2014; Vanhove et al., 2015).

OMV production is induced by stresses associated with host colonization (McBroom and
Kuehn, 2007), for example by exposure to host muscle tissue (Dutson et al., 1971). They are able
to adhere to host cells (Inagaki et al., 2006), and promote biofilm formation in clinically important
bacteria (Grenier and Mayrand, 1987; Kamaguchi et al., 2003; Yonezawa et al., 2009). The OMVs
of many pathogens have been documented to contain toxins and other virulence factors (Elluri
et al., 2014; Roier et al., 2014; Thay et al., 2014; Vanhove et al., 2015), and OMV-packaging has been
shown to stabilize, activate and/or regulate toxin activity (Fahie et al., 2013; Bielaszewska et al.,
2014; Elluri et al., 2014).
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FIGURE 1 | OMV production and targeting to a eukaryotic cell. A

Gram-negative cell (top) produces an OMV (middle) by pinching-off a

protrusion of the outer membrane (OM). The OMV is enriched in a subset of

OM and periplasmic (PP) material, including specific proteins and

peptidoglycan fragments (gray), while inner membrane (IM) and cytoplasmic

(CYT) material is absent. The OMV is able to fuse with a target membrane

(bottom), in this case the plasma membrane (PM) of a eukaryotic cell,

delivering its contents into the PM and cytoplasm (CYT). GAPDH (yellow

squares) is found on the surface of cells and OMVs, and can stimulate the

fusion of OMVs with target membranes.

THE GIFTED ENZYME
GLYCERALDEHYDE-3-PHOSPHATE
DEHYDROGENASE

GAPDH (EC 1.2.1.12) is first encountered by biology students
as an essential enzyme of central metabolism. It is a highly
conserved protein, typically found as a tetramer (Seidler, 2013),
and can be post-translationally modified in multiple ways
(Sirover, 2014).

Intriguingly, GAPDH has been ascribed many additional
roles beyond metabolism in eukaryotes, including glycosylation
of uracil in DNA, transcriptional activation and apoptotic
regulation (Sirover, 2005). One of its more exotic “moonlighting”
activities is the ability to fuse membranes together (Glaser
and Gross, 1995). This can occur in vitro, but has also been
implicated in the fusion of secretory granules with the plasma
membrane in neutrophils, fusion of presynaptic vesicles with the
synaptic membrane (and their loading with cargo), axoplasmic
transport, ER-Golgi vesicular shuttling, and nuclear membrane
fusion (Glaser and Gross, 1995; Hessler et al., 1998; Ikemoto
et al., 2003; Nakagawa et al., 2003). The structural basis of
fusogenesis is unknown, however fusion requires binding to the
relatively scarcemembrane lipid phosphatidylserine (PS), and the
PS binding site of GAPDH has been elucidated (Kaneda et al.,
1997).

The classic glycolytic role of GAPDH places it in the
cytoplasm, and it lacks an N-terminal signal sequence or other
trafficking motif. However, with the advent of proteomics, many
studies have identified GAPDH in extracellular fractions of a
wide range of bacteria (Curtis et al., 2007; Holland et al., 2010;
Deng et al., 2012; Vanden Bergh et al., 2013; Wang et al., 2013).
It is a major surface protein of Gram-positive (Pancholi and
Fischetti, 1992; Pasztor et al., 2010; Oliveira et al., 2012), and
Gram-negative bacteria (Egea et al., 2007; Gao et al., 2014).
In streptococci its release beyond the cell involves autolysis,
with released protein then specifically binding to the surface of
unlysed cells (Terrasse et al., 2015). Thus, GAPDH seems to be an
almost ubiquitous protein, being commonly found within cells,
on cells and beyond cells.

Extracellular bacterial GAPDH promotes adhesion to and
invasion of host tissue, inhibits host lysozyme, and triggers
apoptosis in macrophages (Seidler and Seidler, 2013). During
host colonization, it is known to adhere to a variety of substrates,
including PS, mucin, plasminogen and fibrinogen (Alvarez et al.,
2003; Egea et al., 2007; Gao et al., 2014). It is likely that further
mechanisms exist by which GAPDH promotes virulence, but
studies have been hampered by difficulties in deleting the gene
encoding GAPDH, due to its essential role in energy metabolism
(Henderson and Martin, 2011).

OMVS AND GAPDH WORKING TOGETHER

The soil-dwelling myxobacterium M. xanthus is a predator of
a wide range of bacteria and fungi, and OMVs are implicated
in several aspects of its life-cycle (Whitworth, 2011). Its OMVs
are loaded with hydrolases and they are able to kill other
microbes, including Escherichia coli and Pseudomonas aeruginosa
(Evans et al., 2012). Adding GAPDH to M. xanthus OMVs
enhances their ability to kill prey cells. This is attributable to
the fusogenic activity of the enzyme, as only intact OMVs
exhibit cytotoxic activity (Evans et al., 2012), and OMVs of
other bacteria are known to kill prey cells through fusion with
their outer membrane (Kadurugamuwa and Beveridge, 1996).
GAPDH has been found to be a major component ofM. xanthus
cells, OMVs and soluble secretome (Whitworth et al., 2015)
suggesting GAPDH stimulates the antimicrobial activity of M.
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xanthus OMVs in the wild, by promoting their fusion with prey
cells.

EVpedia, the EV database (Kim et al., 2013), shows that
GAPDH has been observed as a component of the OMVs of
many organisms (including E. coli, P. aeruginosa, Edwardsiella
tarda, Francisella tularensis, Francisella philomiragia,
Acinetobacter baumanii, and Neiserria meningiditis). Given
the virtual ubiquity of GAPDH and OMV secretion, it is possible
they could be working together in other contexts. The bacterial
behavior for which there is most evidence of potential GAPDH-
OMV synergy is pathogenesis. If the activities analogous to
those observed for M. xanthus occur for pathogens in vivo,
then pathogen OMVs would be stimulated to fuse with target
cells/membranes by pathogen-derived GAPDH.

GAPDH/OMV CO-OPERATION DURING
PATHOGENESIS

There are several lines of evidence described above which suggest
such GAPDH/OMV synergy:

• Both GAPDH and OMVs are secreted commonly
(ubiquitously?) by pathogens.

• Both GAPDH and OMVs stimulate pathogenesis.
• GAPDH is a common component of OMVs.
• GAPDH is an adhesin, but also has membrane fusion activity.
• OMVs can deliver their contents beyond target membranes by

fusing with them.
• GAPDH can enhance OMV activity by stimulating membrane

fusion.

Pathogen-derived GAPDH has been shown to have a mechanistic
role in tissue colonization and adherence, but in no other aspects
of the pathogenicity of Gram-negative organisms. However,
making a topological mutant that does not secrete GAPDH
results in a strain with reduced (but not abolished) host
cell adherence (Boël et al., 2005), indicating that pathogens
have other adhesins that complement GAPDH’s matrix-binding
activity. Nevertheless, non-pathogenic strains of E. coli do not
secrete GAPDH (Egea et al., 2007), which is taken as evidence
that GAPDH is required for pathogenicity. Together these
observations suggest that GAPDH has a role in virulence beyond
just adhesion.

The few studies that have demonstrated membrane fusion by
OMVs have taken no effort to reduce GAPDH levels/activity
in their OMV preparations, and the organisms whose OMVs
are known to fuse with membranes are also known to naturally
contain GAPDH. GAPDHmay be merely promoting an intrinsic
OMV activity, but the possibly cannot be discounted that
GAPDH is actually required for OMVmembrane-fusion activity
and resulting toxin delivery.

An interesting mechanistic feature common to OMV uptake
and GAPDH-catalyzed membrane fusion is that both processes
are thought to be dependent on specific lipids. The fusogenic
activity of GAPDH requires cholesterol and the ether lipid
plasmenylethanolamine, which are both commonly found in
mammalian membranes (Glaser and Gross, 1995). Kesty et al.

(2004) showed that enterotoxigenic E. coli secretes enterotoxin
via OMVs, and that host cells were able to endocytose the toxin-
containingOMVs by amechanism dependent on cholesterol-rich
lipid rafts. In principle, GAPDH could stimulate OMVs to bind
to cholesterol-rich membranes, which are then prime substrates
for GAPDH-mediated fusion or host-mediated endocytosis (with
delivery of OMV contents into the target cell).

There is also the potential for OMVs to affect GAPDH
function reciprocally. OMVs increase the effective amount
of bacterial OM, which GAPDH can cross-link by virtue of
its properties as an adhesin, potentially promoting biofilm
formation and uptake/fusion of OMVs.

BEYOND PATHOGENESIS

As OMVs and GAPDH appear to be ubiquitously secreted
by Gram-negative bacteria, it is likely that GAPDH will be
implicated in other functions of OMVs. Biofilm formation is an
important and universal phenomenon, promoted by OMVs. It
is also promoted by intercellular quorum signaling which itself
can be transduced through OMVs (Mashburn and Whiteley,
2005). Mixed biofilms are frequently observed in nature, and
competition between the different inhabitants is important for
determining fitness. Delivery of toxins to competitors or prey
organisms via OMVs has been observed and thus modulation of
OMV activity by GAPDH would likely be an important fitness
determinant.

In the laboratory, several obvious experiments arise from
considering the potential involvement of GAPDH in OMV
activity.

• No bacterial GAPDH has yet been shown to possess
fusogenic activity and this needs to be confirmed, perhaps
by monitoring lipid/content mixing through fluoresence
quenching/enhancement (Glaser and Gross, 1994). Care
would need to be taken however as GAPDH-mediated
membrane fusion may be dependent on membrane lipid
composition as it is in eukaryotes (Glaser and Gross, 1995).

• We would expect GAPDH-depleted OMVs to be impeded
in their ability to fuse with target membranes. This would
be a technically challenging prediction to test however, due
to the important metabolic role of GAPDH precluding
facile gene deletion, and the inherent membrane-binding
affinity of GAPDH defying physical removal. Nevertheless,
it should be possible to engineer a GAPDH deletant by
developing appropriate media to support metabolic bypassing
of glycolysis/gluconeogenesis in the mutant. Alternatively a
“functional” mutant could be created by placing the GAPDH
gene under the control of an inducible or repressible promoter,
or through the creation of a topologically restricted version
of GAPDH (Boël et al., 2005). GAPDH inhibitors are also
available, which might also affect fusogenic activity [e.g.,
pentalenolactone and koningic (heptelidic) acid].

• GAPDH is expected to promote adhesion between bacterial
cells, as well as cell-OMV adhesion. It would be interesting
to see whether reducing membrane-associated GAPDH levels
does impact negatively on colonial growth and/or aggregation.
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Perhaps by using simple assays which monitor sedimentation
of aggregated cells, for example the approach used by Chang
and Dworkin (1994) to measure bacterial cohesion.

• The effect of cholesterol and/or ether lipids on GAPDH-
mediated OMV-membrane fusion should be tested for a range
of OMV producers and target membranes, to delineate any
conservation of lipid requirements.

IMPLICATIONS

Bacterial GAPDH has already proven useful as a therapeutic
target with the development of cross-protective GAPDH-based
vaccines against Gram-negative and -positive bacteria for agri-
and aqua-culture (Li et al., 2011; Vanden Bergh et al., 2013;
Velineni and Timoney, 2013; Trung Cao et al., 2014). The
GAPDH inhibitor pentalenolactone (Cane and Sohng, 1994) is
known to act as an antibiotic due to its disruption of bacterial
glycolysis, but it is also potent against mammalian homologs
and is not used in the clinic. Nevertheless, there are enough
sequence differences between human and bacterial GAPDH to
make GAPDH-targeted therapies for the clinic plausible (Seidler
and Seidler, 2013), and such inhibitors could also be useful
beyond the clinic as antibiofilm/antifouling compounds.

OMVs are proving efficacious as hapten components of
antibacterial vaccines (Acevedo et al., 2014; Choi et al., 2014;

Nieves et al., 2014), and as adjuvants for delivery of heterologous
haptens (Moshiri et al., 2012). Perhaps part of the success
of OMV vaccines is because they are multivalent GAPDH-
presenting entities. Rationally combining GAPDH and OMVs
within vaccines has the potential to synergistically enhance
immunogenicity of each component. It is plausible that OMVs
could also see use in the clinic as antimicrobials. Not only
have they been shown to kill bacteria directly but they can
also act as delivery devices for antibiotics (Kadurugamuwa
and Beveridge, 1998). Potentially, the addition of stimulatory
“accessory proteins” such as GAPDH would help make such
OMV-based approaches more effective.

Beyond the clinic, a holistic understanding of the interaction
between GAPDH and OMVs will need to consider the relative
physical location of both entities and modulators of their
activities. This will be especially important when considering
mixed communities of bacteria, expressing a range of OMVs
and GAPDH isoforms with differing target specificities and
fusogenic potential. However, an enhanced understanding of
such processes will provide invaluable information regarding the
mechanisms of bacterial competition and co-operation.
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