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The hydrothermal vent system is a typical chemosynthetic ecosystem in which
microorganisms play essential roles in the geobiochemical cycling. Although it has
been well-recognized that the inorganic sulfur compounds are abundant and actively
converted through chemosynthetic pathways, the sulfur budget in a hydrothermal vent
is poorly characterized due to the complexity of microbial sulfur cycling resulting from the
numerous parties involved in the processes. In this study, we performed an integrated
metagenomic and metatranscriptomic analysis on a chimney sample from Guaymas
Basin to achieve a comprehensive study of each sulfur metabolic pathway and its
hosting microorganisms and constructed the microbial sulfur cycle that occurs in the
site. Our results clearly illustrated the stratified sulfur oxidation and sulfate reduction
at the chimney wall. Besides, sulfur metabolizing is closely interacting with carbon
cycles, especially the hydrocarbon degradation process in Guaymas Basin. This work
supports that the internal sulfur cycling is intensive and the net sulfur budget is low in
the hydrothermal ecosystem.

Keywords: hydrothermal vent, metagenomics, metatranscriptomics, sulfur cycle, carbon cycle

INTRODUCTION

Hydrothermal vents are often discovered in ocean ridges where hydrothermal fluid is emitted
after the hydrothermal circulation and alteration of seawater entrained through geothermally
heated subseafloor basalt (Von Damm, 1990). The deep-sea hydrothermal vent fluid is commonly
characterized by its high temperature, varied salinity, enriched metallic elements, and particularly
high contents of reduced chemicals, such as H2, CH4, and H2S (Jannasch and Mottl, 1985).
A thermodynamic non-equilibrium is created when the hydrothermal vent fluid encounters sea
water that is cold and at a rather high oxidative state, which allows various abiotic and biotic
reactions occur. Thus, the hydrothermal vent system is a typical chemosynthetic ecosystem in
which microorganisms play essential roles in the generation, consumption, and modification of
energy available in the environment (Reysenbach and Shock, 2002).
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In the hydrothermal vent ecosystem, almost all types of
inorganic sulfur compounds (e.g., S2−, S, S2O2

2−, SO2, S2O3
2−,

and SO4
2−) are abundant and actively converted through

chemosynthetic pathways to provide energy and thus sustain
the microbial population in the ecosystem (Nakagawa et al.,
2005). For example, in the Lost City hydrothermal field, the
dominant Thiomicrospira-like group, which consists of sulfur-
oxidizing chemolithoautotrophs, was observed in the carbonate
chimney (Brazelton and Baross, 2010). In the Lau Basin
hydrothermal vent field, sulfur-oxidizing Alphaproteobacteria,
Gammaproteobacteria, and Epsilonproteobacteria have been
suggested to be dominant in the exterior chimney, whereas
putative sulfur-reducing Deltaproteobacteria are dominant in the
interior of the chimney (Sylvan et al., 2013). In the Guaymas
Basin hydrothermal vent field, sulfate-reducing microorganisms,
e.g., Desulfobacterales, have been detected and are hypothesized
to be involved in the anaerobic methane-oxidation process
(Biddle et al., 2012). Moreover, the sulfur cycling is alternated
by the chemical reactions that occur during the emitting and
growth of the hydrothermal vent. Reduced sulfur compounds
are extremely sensitive to oxidants and easily precipitated with
metal ions to form chimney or nodule structures (Orcutt et al.,
2011). Moreover, shifts in temperature and fluid composition
have been observed during the life span of a hydrothermal
vent. For example, at 9◦N East Pacific Rise, Bio9 vent fluids
were 368◦C in 1991, increased to an estimated temperature
greater than or equal to 388◦C after a second volcanic
event in 1992, and thereafter declined over the next similar
to 2 years reaching a temperature of 365◦C in December
1993 (Fornari et al., 1998). The hydrogen concentration
in the hydrothermal plum in the NE Lau Basin dropped
from 14843 nM in 2008 to 4410 nM in 2010 then further
to 7 nM in 2012 (Baumberger et al., 2014). As a result,
environmental fluctuations may be induced between sulfate-
and sulfur-reducing archaea and contribute to the diverse
roles of these microorganisms in the ecosystem (Teske et al.,
2014). Therefore, a better understanding of sulfur cycling is
essential for describing the geobiochemistry and providing
hints to identify the life status of a hydrothermal vent
ecosystem.

Due to the complexity of microbial sulfur cycling resulting
from the numerous parties involved in the process, the
sulfur budget in a hydrothermal vent is poorly characterized.
To date, most studies have focused on the abundance
and diversity of sulfur oxidizers and sulfate reducers in
environmental samples through a metagenomic approach
(Nakagawa et al., 2005). The exception is the study conducted by
Anantharaman et al. (2013), who combined metatranscriptomic
and metagenomic analyses of a hydrothermal plume sample
and demonstrated the novel metabolic potentials of the SUP05
group of uncultured sulfur-oxidizing Gammaproteobacteria.
However, this finding is based on the near-complete genomes
of two SUP05 populations, and the information is restricted
to this particular group of sulfur oxidizers (Anantharaman
et al., 2013). The in-depth mining of the metatranscriptomic
data remains too scarce to allow construction of the entire
sulfur cycle and thus further illustrate the interactions of

this process with the biological cycling of C, N, and O
elements.

The Guaymas Basin in the Gulf of California is a young
marginal rift basin characterized by the active hot venting
of reduced sulfur compounds and the rapid deposition of
organic-rich sediments. These features make the sulfur cycle
in this ecosystem particularly intensive and closely interact
with the carbon cycle, including hydrocarbon degradation
(Bergmann et al., 2011). Thus, this sampling site is ideal
for illustrating all of the possible microbial sulfur metabolic
pathways and to evaluate the maximal biomass contribution
of sulfur-metabolizing microorganism to the hydrothermal
vent ecosystem. In this study, we performed an integrated
metagenomic and metatranscriptomic analysis on a chimney
sample from Guaymas Basin to achieve a comprehensive study
of each sulfur metabolic pathway and its hosting microorganisms
and constructed the microbial sulfur cycle that occurs in the
site.

RESULTS

Composition of the Microbial Community
The composition and function of this microbial community
were assessed at both the DNA and RNA levels to estimate the
community metabolic potential and activity, respectively. The
metagenome and metatranscriptome sequencing resulted in
199,903,215 and 1,885,022,958 bp clean sequences, respectively
(Table 1). Themetagenome raw reads were assembled into 49,055
contigs with an average length of 544 bp. In total, 5,417,253
reads (26.2%) from the metatranscriptome were mapped onto
metagenomic contigs for quantification of the gene transcripts.
222 and 690,059 16S rRNA gene fragments were identified
from the metagenome and metatranscriptome, respectively.
The class-level taxonomic compositions of the metagenome
and metatranscriptome revealed obvious differences in the
presence and the activity of microbes in this community
(Table 1). At the DNA level (Figure 1A), Archaeoglobi were
found to be the most abundant, with 24.0% of the sequences
assigned, and followed by Deltaproteobacteria (23.6%) and

TABLE 1 | Summary of the metagenome and metatranscriptome.

Metagenome Metatranscriptome

Size of raw reads (bp) 199,903,215 1,885,022,958

Total no. of raw reads 512,830 20,714,538

Size of assembled contigs (bp) 26,703,275 –

Total assembled contigs 49,055 –

Average contig length (bp) 544 –

Average GC content of assembled
contigs (%)

43

Total no. of genes encoding in the
contigs

53,034 –

Total no. of metatranscriptomic reads
mapped to the metagenome

– 5,417,253

Total no. of 16S rRNA sequences 222 690,059
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FIGURE 1 | Microbial composition of the enriched AOM-SR community. Detailed information is displayed in Table 1. (A) Percentage of the microbial
community determined from the 16S rRNA gene sequences retrieved from the metagenome. (B) Percentage of the microbial community determined from the 16S
rRNA gene sequences retrieved from the metatranscriptome.

Epsilonproteobacteria (11.3%). At the RNA level (Figure 1B), the
same dominant groups were found: Deltaproteobacteria (31.8%),
Archaeoglobi (13.3%), and Epsilonproteobacteria (12.8%). As
reported previously (He et al., 2013), 53,034 gene features
were predicted and then followed by manual examination
and 19,491 gene features (36.8%) were considered to have

expressions determined by transcriptomic reads mapping (see
Materials and Methods). A total of 8929 (45.3%) and 4628
(23.7%) of all of the expressed genes were assigned (based
on the BLAST results as described in Section “Materials and
Methods”) to Bacteria and Archaea, respectively, and the
remaining sequences were not assigned to any category. Among
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the 13,557 expressed genes with taxonomic information,
2135 (15.7%) were from the highly abundant Archaeoglobi,
which is consistent with the results from the 16S rRNA
gene analysis. Although the assignment of bacterial genes
could not be resolved well at the family level, the dominance
of Deltaproteobacteria and Epsilonproteobacteria was still
observed. As the archaeal cells typically have fewer copies of the
16S rRNA gene compared with bacterial cells, the proportion
of active Archaeoglobi in this community was underestimated.
Nevertheless, the predominant active players in this microbial
community were Deltaproteobacteria, Archaeoglobi, and
Epsilonproteobacteria.

The de novo assembly of metagenomic reads and binning
by tetranucleotide signatures (Dick et al., 2009) identified three
genomic bins (Supplementary Figure S1 and Supplementary
Table S1). These three bins (herewith denoted bin20, bin21,
and bin22) were assigned based on their phylogenomic
marker genes to Desulfobacteraceae, Desulfovibrionales and
Archaeoglobus. The identified genes in the obtained bins
ranged from 486 to 1224. The genome completeness was
estimated to range from ∼10 to 34%, based on single-
copy gene estimation (Supplementary Table S1). These three
genomic bins will improve the taxonomic assignment of
the expressed genes and the reconstruction of the metabolic
pathways.

Sulfur Metabolism
The genes involved in the oxidation of reduced sulfur (ORS)
are sulfide quinone oxidoreductase (sqr), which mediates the
oxidation of sulfide (HS−) to elemental sulfur (S0), the Sox
enzyme complex (soxABXYZ), which is responsible for the
oxidation of thiosulfate (S2O3

2−) to elemental sulfur, the
reverse dissimilatory sulfite reductase complex (rdsr), which
is responsible for the oxidation of elemental sulfur to sulfite
(SO3

2−), and adenosine 5′-phosphosulfate reductase (apr) and
sulfate adenylyltransferase (sat) for oxidation of sulfite to
sulfate (SO4

2−; Anantharaman et al., 2013). Conversely, the
genes associated with the dissimilatory sulfate reduction (DSR)
pathway (Fritz et al., 2002) are sat, apr, and sulfite reductase
(dsr). The repertoire of genes associated with the ORS and
DSR pathways were found to be expressed in this community
(Table 2). Both apr and dsr were found at high expression
levels in bin21 and bin22, confirming their active presence in
SRB and Archaeoglobus. The sqr gene, key gene in the ORS
pathway, is found present and active in Epsilonproteobacteria,
of which the most highly expressed representative was classified
into Sulfurimonas (Figure 2) that is one of the most abundant
sulfur-oxidizing bacteria found in hydrothermal vent chimneys
(Cao et al., 2014). The sox genes were not identified in
either the metagenome or metatranscriptome (Table 2). In
Epsilonproteobacteria, the proposed microorganism in the
present study to perform the ORS pathway, sat gene was found to
exhibit high and medium expression levels (Table 2). However,
either aprAB or dsrAB was identified in the metagenome
or metatranscriptome. This finding may be due to the fact
that the 454-based metagenomes are still with low coverage
and unable to present all the important functional genes. In TA
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FIGURE 2 | Maximum likelihood phylogenetic tree of the sqr genes.
The bootstrap values are based on 1000 replicates, and the percentages are
shown at the nodes. The genes identified in this study are highlighted with
black dots. Numbers of genomes in each collapsed clade are displayed
before the clade name.

Deltaproteobacteria and Archaeoglobales, which were proposed
to conduct the DSR pathway in this study, aprAB and dsrA
genes were found to be highly expressed in both of these two
taxonomic groups, whereas sat and dsrB genes were found
only in Deltaproteobacteria. The phylogenies of aprA and
dsrA further confirmed their assignment to Deltaproteobacteria
(Supplementary Figures S2A,B). In a previous study, the
aprA with the highest abundance was assigned to the genus
Desulfobulbus (Cao et al., 2014). In our study, the aprA
gene with the highest expression was assigned to Desulfovibrio
(Supplementary Figure S2A). To summarize, the taxonomic
assignment and expression of key genes in the sulfur cycle suggest
that both the ORS and DSR pathways are highly active in this
oil-immersed microbial community, and the energy generated by
the sulfur metabolism supports the dominant and active group
(Figure 3).

Because there are no metatranscriptome published
for any hydrothermal vent chimneys, we compared the
expression patterns of the sulfur-metabolizing genes in this
metatranscriptome to those in the available metatranscriptome
of a plum sample that was also collected from Guaymas
Basin (Lesniewski et al., 2012). As shown in Figure 4,
sulfur metabolizing (including oxidation and reduction)
genes were among the most abundant genes found in
the metatranscriptome, and a significant difference (p-
value < 0.001) in the expression profiles of sulfur metabolizing
genes was observed between the chimney and the plume
metatranscriptome. Therefore, the sulfur-metabolizing genes
were highly abundant and expressed in this GB chimney sample,
and displayed significantly higher expression pattern than

those of a hydrothermal vent plume sample from Guaymas
Basin.

Carbon Metabolism
In this study, the complete WL pathway was identified in
Archaeoglobales with high expression levels (Supplementary
Table S2). The CBB cycle was not identified. The genes involved
in the complete rTCA cycle were found to be actively present
in both Deltaproteobacteria and Epsilonproteobacteria that
dominated this chimney microbial community (Table 3). The
key gene in the rTCA cycle, ATP-citrate lyase (acl), identified
in this study to exhibit the highest expression was from
Epsilonproteobacteria and exhibited the highest similarity to
Sulfurovum, a novel sulfur-, nitrate-, and thiosulfate-reducing
and strictly anaerobic chemolithoautotroph bacterium isolated
from a deep-sea hydrothermal vent chimney at the Central
Indian Ridge (Mino et al., 2014). In this study, the key
enzyme for the utilization of acetate, acetyl-CoA synthetase
(acd/acs), was found to be expressed and was assigned to
sulfate-reducing bacteria (SRB; bin21 as shown in Table 3).
In addition, the rTCA cycle and WL pathway were found to
be the main pathways for carbon fixation by the dominant
Bacteria and Archaea, respectively. This result suggests that,
in combination with sulfur metabolism, autotrophic carbon
fixation may play an important role in the survival and
dominance of these species in the community. Moreover, as
shown in Supplementary Table S3, genes involved in the
flagellar assembly process were found to be actively present
in Desulfovibrionales (bin21). The active role of the flagellar
system in SRB may facilitate the movement toward electron
donors and nutrients that occurs under the highly fluctuating
conditions resulting from eruptions of hydrothermal vents.
SRB have been reported to have the potential to anaerobically
oxidize diverse hydrocarbons, such as alkanes, in Guaymas Basin
sediments and chimney samples (Rueter et al., 1994). In this
study, the activity and expression level of the presumably key
gene in fumarate addition, a process through which alkanes
are added to the double bond of fumarate based on the
activity of alkylsuccinate synthase (ass), was checked. The ass
genes were found to be highly active in this community, as
determined through their expression level, and the most highly
expressed hits were from Desulfoglaeba alkanexedens (Agrawal
and Gieg, 2013), a typical sulfate-reducing and alkane-oxidizing
bacterium (Supplementary Table S4). Moreover, the enzymes
required for the degradation of a variety of organic compounds,
such as hydrocarbons, fatty acids, chitins and proteins, have
been detected in both the metagenome and metatranscriptome
(Supplementary Table S5). Despite their important roles in
carbon and global sulfur cycle, the energy metabolism of
SRB remains poorly understood. After taxonomic assignment
(see Materials and Methods), cyctochrome c (cytC), formate
dehydrogenase (fdh), F-type ATPase (atp), NADH-quinone
oxidoreductase (nuo), electron transport complex protein (rnf )
and hydrogenases, such as Ni/Fe-hydrogenase I (hyaAB) and
hydrogenase nickel incorporation and accessory protein (hypA
and hypB), were found with expressions and assigned to SRB
(Supplementary Table S6). The presence of hydrogenases and fdh
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FIGURE 3 | Proposed metabolic and active pathways in this chimney community. The expression and presence of the genes are indicated by the color and
thickness of the arrows, as shown in the bottom-right side bar. For genes with multiple hits, only the genes with the highest expression value (FPKM, expected
fragments per kilobase of transcript per million fragments mapped) are displayed and discussed. The processes conducted by Archaea are shown on the left,
whereas those conducted by bacteria are presented on the right. Detailed information of these genes is displayed in Tables 2–4.

FIGURE 4 | Expression profiles of the genes in the metatranscriptome. The gray circles indicate the genes of the whole community. The blue triangles and red
diamonds represent those related to sulfur oxidation and reduction in this metatranscriptome and a previous study (Lesniewski et al., 2012), respectively. The relative
abundance of the gene transcripts was normalized to the length of the gene fragment and the total number of all of the transcripts.

may suggest that H2 or formate and play important roles in the
flow of electrons during sulfate reduction. As shown above, the
sulfur cycle in this community was particularly intensive and

closely interacted with the carbon cycle, including carbon fixation
and hydrocarbon degradation, to sustain the primary production
in this ecosystem.
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TABLE 3 | Genes identified in the rTCA pathway in Delta- and Epsilonproteobacteria species.

Gene name Abbrevations Assigned taxonomy∗ FPKM#

Bin BLAST

Malate dehydrogenase mdh – Bacteria 424.81

Fumarate hydratase subunit alpha fumA bin21 Desulfovibrionales 355.77

Fumarate hydratase subunit beta fumB – Bacteria 135.08

Fumarate hydratase, class II fumC – Bacteria 0.00

Fumarate reductase, flavoprotein subunit frdA – Desulfovibrionales 1242.93

Fumarate reductase, iron–sulfur subunit frdB – Epsilonproteobacteria 7.09

Succinyl-CoA synthetase sucC Bacteria 57.34

Succinyl-CoA synthetase alpha subunit sucD – Desulfobacterales 724.00

2-Oxoglutarate ferredoxin oxidoreductase subunit alpha korA – Deltaproteobacteria 65.56

2-Oxoglutarate ferredoxin oxidoreductase subunit beta korB – Epsilonproteobacteria 232.91

2-Oxoglutarate ferredoxin oxidoreductase subunit delta korD – – −
2-Oxoglutarate ferredoxin oxidoreductase subunit gamma korC – Bacteria 71.01

Isocitrate dehydrogenase icdA – Bacteria 93.51

Isocitrate dehydrogenase (NAD+) IDH3 – Bacteria 0.00

2-Methylisocitrate dehydratase acnB – Proteobacteria 20.34

Aconitate hydratase acnA bin21 Desulfovibrionales 69.50

Aconitate hydratase 2 acnB – Proteobacteria 20.34

ATP-citrate lyase alpha-subunit aclA – Epsilonproteobacteria 238.10

ATP-citrate lyase beta-subunit aclB – – −
Pyruvate ferredoxin oxidoreductase alpha subunit porA – Epsilonproteobacteria 9.90

Pyruvate ferredoxin oxidoreductase beta subunit porB – Bacteria 59.23

Pyruvate ferredoxin oxidoreductase delta subunit porD – Bacteria 2.66

Pyruvate ferredoxin oxidoreductase gamma subunit porG – Epsilonproteobacteria 44.25

ADP-forming acetyl-CoA synthetase acd bin21 – 136.79

Acetate kinase ack – Thermotogaceae 22.44

Phosphate acetyltransferase pta – Caldisericaceae 21.14

424.81

∗The taxonomy assignments were determined by two methods, as described in Section “Materials and Methods.” The binning index is explained in Supplementary
Table S1. #FPKM is based on the maximal expression value of the annotated genes.

Nitrogen Metabolism
The key genes involved in the nitrogen metabolism were
found, and some of these were found to be actively expressed
(Table 4). Many Bacteria and Archaea have the potential to
perform denitrification (Philippot, 2002), and numerous organic
and inorganic compounds can be used as electron donors for
denitrification. The genes involved in denitrification, including
nar (nitrate reductase), nap (nitrate reductase), nir (nitrite
reductase), nor (nitric oxide reductase) and nosZ, were found
to be present in the metagenome. The narG gene was assigned
to Beggiatoa, a nitrate-respiring and sulfide-oxidizing bacterium
that has been found to dominate microbial mats in hydrothermal
sediments in the Guaymas Basin (Winkel et al., 2014). narJ was
found to be expressed in Alteromonadales, whereas napA and
napB were found to be expressed in Epsilonproteobacteria. To
summarize, a complete set of denitrification genes were found in
the bacterial community of the chimney, though some of them
were found at low expression levels (Table 4). Based on this
observation, we propose that nitrogen denitrification present in
this community is most likelymediated byGammaproteobacteria
and Epsilonproteobacteria, with electrons generated by the ORS
pathway.

DISCUSSION

Since the discovery of the deep-sea hydrothermal ecosystem in
1977, it has been proposed that hydrogen sulfide-oxidizing
chemoautotrophs may potentially sustain the primary
production in these ecosystems (Kvenvolden et al., 1995),
where hydrogen sulfide or sulfide is primarily supplied via
the high temperatures of seawater-rock interactions in the
subseafloor hydrothermal reaction zones (Jannasch and Mottl,
1985). The chemical and microbial oxidation and reduction
reactions of sulfur compounds probably establish the overall
sulfur metabolism in the ecosystem (Yamamoto and Takai,
2011). There is no doubt that the sulfur cycle is one of the
most important microbial chemosynthetic pathways in the
microbial habitats of hydrothermal vents, but few studies
have attempted to characterize the process, particularly at the
function and activity levels. To date, the mechanism through
which a microbial community in hydrothermal fields can be
fueled by sulfate metabolism remains unclear. In particular,
metagenomic approaches have not been widely applied in
studies of energy generation by the microbial sulfur cycle in
hydrothermal systems. In this study, a combined metagenomic
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TABLE 4 | Genes identified in the nitrogen metabolic pathway in the
microbial community.

Gene name Abbrevations Assigned taxonomy∗ FPKM#

Bin BLAST

Nitrate
reductase
alpha subunit

narG – Thiotrichales 49.68

Nitrate
reductase beta
subunit

narH – – 2360.80

Nitrate
reductase
gamma subunit

narI – Bacteria 380.02

Nitrate
reductase delta
subunit

narJ – Alteromonadales 7.17

Periplasmic
nitrate
reductase
NapA

napA – Epsilonproteobacteria 98.48

Cytochrome
c-type protein
NapB

napB – Epsilonproteobacteria 4.68

Nitrite
reductase
(NO-forming)

nirK – – −

Nitrite
reductase
(NO-forming)

nirS – – −

Nitric oxide
reductase
subunit B

norB – Epsilonproteobacteria 0.00

Nitric oxide
reductase
subunit C

norC – – −−

Nitrous-oxide
reductase

nosZ – Proteobacteria 284.50

∗The taxonomy assignments were determined by two methods, as described in
Section “Materials and Methods.” The binning index is explained in Supplementary
Table S1. #FPKM is based on the maximal expression value of the annotated
genes.

and metatranscriptomic study of a chimney in the Guaymas
Basin provides insight into the complete sulfur cycle based on
the results from not only the genomic but also the expression
analysis, the combination of which has not been previously
used for the analysis of a deep-sea hydrothermal vent chimney
sample.

The accumulation of hydrogen sulfides at the outer chimney
promoted the coupling of sulfide oxidation to the electron
acceptors present in the nearby marine water, including
oxygen and nitrate, as supported by the retrieval of the
functional and expressed genes described herein (Tables 2–4
and Figure 3). These findings suggest that the coupling
between sulfur oxidation and denitrification may fuel some
N-metabolizing microorganisms at the sulfide-enriched outer
chimney. As proposed in this study, the microorganisms involved
in this process were Epsilonproteobacteria as the sulfur-oxidizing
bacteria, and Gammaproteobacteria and Epsilonproteobacteria

as potential denitrifiers. The other sulfur-metabolizing group,
namely sulfate-reducing prokaryotes, may use hydrogen and/or
dissolved organic matter as electron donors, as hydrogenases
and key genes for the degradation of organic compounds have
been identified in this study (Supplementary Tables S5 and
S6).

Carbon fixation pathways other than the Calvin–Benson–
Bassham (CBB) cycle have been found to exhibit a notable
contribution to carbon fixation, mostly at deep-sea hydrothermal
vents (Campbell and Cary, 2004). The rTCA cycle was
found to be highly expressed in the dominant Delta- and
Epsilonproteobacteria. The key enzyme for the utilization of
acetate was also identified to be expressed in this study
(Table 3). Generally, the rTCA cycle appears to be dominant
in habitats with a temperature ranging from 20 to 90◦C,
whereas the CBB cycle and the Wood-Ljungdahl (WL) pathway
may be the principal pathways at temperatures lower than
20◦C and greater than 90◦C, respectively (Hugler and Sievert,
2011). In the present sample, the CBB cycle was not found
present, which is consistent with the fact that this sample
was collected from a high-temperature condition (He et al.,
2013). In addition, the enzymes for the degradation of a
variety of organic compounds, such as hydrocarbons, fatty acids,
chitins and proteins, have been detected at both DNA and
RNA level (Supplementary Table S5). Together, all of these
organic compounds may be the carbon source for this microbial
community.

In this scenario, both autotrophic and heterotrophic SRB
could inhabit the inner chimney (Figure 3), where sulfate
reduction is coupled to carbon fixation and hydrocarbon
oxidation. Based on the expression levels of key genes in rTCA
(Table 3) and alkane degradation (Supplementary Table S4),
hydrocarbon degradation might contribute substantially to the
linking of S and C cycle at inner layer chimney. In another
word, heterotrophic SRB, commonly found at vent systems,
may be the major player in coordinating and influencing the S
and C cycle. Compared the expression of key genes in sulfur
metabolizing and the rest processes (Figure 4), the reduced sulfur
would be quickly and intensively oxidized to fuel the community,
where sulfate-reducing microbes were found dominated. The
composition of the sulfate-reducing community was determined
by the way that microbes perform carbon metabolism. In
our sample, heterotrophic SRB was found prevalent with
their capabilities in hydrocarbon degradation. This finding
may improve our understanding on the structure, function,
and interaction within microbial community in hydrothermal
vent.

Meta-omics based approaches have the advantages in studying
the entire microbial community without pure cultures or
prior knowledge on the sample. Functional omics approaches,
such as transcriptome and proteome, could further confirm
the metabolic potential at the active level. More efforts will
be spent on quantification and comparison of these function
omics datasets. Together with in situ carbon stable isotope
measurement, and lipid type and diversity analysis, the activity,
rate and interaction of key process in a given environmental
condition could be accessed and estimated.
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MATERIALS AND METHODS

Sample Collection and Processing
The sample 4558-6 under investigation was collected from the
outer layer of a black-smoker chimney in the Guaymas Basin
andwas previously described through ametagenome-based study
(He et al., 2013). The sample was fixed with RNAlater (Sigma-
Aldrich, Munich, Germany) and stored at −80◦C prior to DNA
and RNA extraction. DNA isolation was conducted as described
previously (Wang et al., 2013). Metagenome pyrosequencing was
performed using a 454 Life Sciences GS FLX system with a
practical limit of 400 bp. RNA was isolated with a RNA isolation
kit (Omega Bio-Tek, Doraville, GA, USA) following the user’s
manual provided by themanufacturer. RNA samples were treated
with DNAse (Thermo) for 45 min at 37◦C, and then used as a
template for PCR to detect undigested DNA. The mRNA fraction
was enriched through the enzymatic digestion of rRNAmolecules
(mRNA-ONLY Prokaryotic mRNA Isolation kit, Epicentre
Biotechnologies, Madison, WI, USA) followed by the subtractive
hybridization of rRNA with capture oligonucleotides (Ambion
MICROBExpress kit, Life Technologies, Gaithersburg, MD,
USA). The mRNA isolates were first amplified (MessageAmp
II-Bacteria kit, Ambion, Life Technologies) and then reversely
transcribed into complementary DNA. Afterward, the cDNA was
directly sequenced using the Illumina (BGI-Shenzhen, China)
Hiseq2000 platform (2∗90 bp pair-end) for metatranscriptome
analysis.

Metagenome Assembly and Annotation
The reads obtained through metagenome sequencing were
assembled and annotated as previously described (He et al.,
2013). Briefly, low quality sequencing reads were trimmed in
Geneious 6.04 (Biomatters Ltd.) and technical replicates were
removed with cd-hit (at 96% sequence identity; Fu et al., 2012).
After removing short reads (<100 bp), the remaining reads
were assembled with Velvet (Zerbino and Birney, 2008). Coding
regions of the metagenomic assembly were predicted using
FragGeneScan (Rho et al., 2010) and then BLASTed (Altschul
et al., 1997; 1e−5) against an NCBI non-redundant (NR) protein
database. The 16S rRNA genes were picked using Sortmerna
and BLASTed against GreenGene database (e-value < 1e−5)
respectively. For functional annotation, sequences with matches
to the COG (Tatusov et al., 2003), Pfam (Finn et al., 2014), and
KEGG (Ogata et al., 1999) databases were retrieved to establish
the functional categories and reconstruct the metabolic pathways.
The genes of interest, such as transposases, were subjected
to manual checkup, and spurious annotations (putative, like-,
similar to) were excluded from further analysis.

Taxonomic Assignment
Two different methods were applied to assess the taxonomic
information. First, the assembled metagenomic sequences
was binned using the tetranucleotide frequencies in emergent
self-organizing maps (ESOMs; Dick et al., 2009) with a
window size of 8 kbp, a sliding window size of 4 kbp, and
the minimum fragment size of 2 kbp. Complete genomic

sequences of 20 species were used as references (designated
as bin1–20), these microorganism were listed as following:
Acinetobacter pittii ANC 4052, Alteromonas macleodii str. ‘Deep
ecotype,’ Candidatus Pelagibacter ubique HTCC1062, uncultured
marine crenarchaeote E37-7F, Marine group II euryarchaeote
SCGC AAA288-C18, Marine Group II euryarchaeote SCGC
AB-629-J06, uncultured marine group II euryarchaeote
(marine metagenome), Marine Group III euryarchaeote
SCGC AAA007-O11, Marine Group III euryarchaeote SCGC
AAA288-E19,Marinobacter nanhaiticusD15-8W,Methylobacter
tundripaludum SV96, Methylophaga aminisulfidivorans MP,
Methylotenera mobilis JLW8, Nitrosopumilus maritimus SCM1,
Candidatus Nitrospira defluvii, Planctopirus limnophila DSM
3776, Pseudomonas denitrificans ATCC 13867, Candidatus
Ruthia magnifica str. Cm (Calyptogena magnifica), SAR324
cluster bacterium SCGC AAA240-J09 and SAR86 cluster
bacterium SAR86E. After binning, the completeness and
taxonomic classification of the genomes within bins were then
estimated by counting and BLASTing universal single-copy
genes as previously described (Rinke et al., 2013). Alternatively,
each predicted sequence feature in the metagenome and
metatranscriptome was assigned to a certain taxon if at least 75%
of the BLAST hits of this query were from that specific taxon.
A BLAST search of all of the reads against the non-redundant
protein database in NR was performed. All of the hits obtained
from the BLAST searches were retained, and their taxonomic
affiliations were determined using MEGAN (Huson et al., 2007)
with bit-score values of 100. The taxonomic compositions of
each predicted gene feature was then visualized using MEGAN.

Metatranscriptome Mapping and
Transcript Quantification
The raw shotgun sequencing metatranscriptomic reads obtained
by Illumina pair-end sequencing were dereplicated (100%
identity over 100% lengths) and trimmed using sickle1. The
dereplicated, trimmed, and paired-end Illumina reads were
then mapped to the metagenome using Bowtie (Langmead and
Salzberg, 2012) with the default parameters. The unique mapped
reads were selected, and FPKM (expected fragments per kilobase
of transcript per million fragments mapped) was used to estimate
the expression level of each gene using a script downloaded from
GitHub2.

Estimation of the Completeness of
Genomic Bins
The complete genome sizes of the genomic bins were estimated
based on an analysis of conserved single-copy genes (CSCGs)
as described by Lloyd et al. (2013). In total, we were able to
collect 162 and 139 universal CSCGs for the archaea and bacteria
genomes, as in the previous study (Rinke et al., 2013). The ratios
between the numbers of CSCGs present in the metagenome and
the number of total CSCGs were then used to estimate the size of
each genome bin.

1https://github.com/najoshi/sickle
2https://github.com/minillinim/sam2FPKG
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Comparative Analysis
The expression patterns of the sulfur-metabolizing genes
in this metatranscriptome were compared to those in
the metatranscriptome of a plum sample from Guaymas
Basin (Lesniewski et al., 2012). Comparisons between two
metatranscriptomes were conducted using the Mann–Whitney
U-test. The gene expression profiles were compared between two
samples using the normalized rank from 0 to 1 in each respective
sample as the input. A difference was considered significant if the
p-value was lower than 0.001.

Construction of a Phylogenetic Tree
The predicted sequence features were checked across multiple
annotation databases and then aligned with ClustalW (Larkin
et al., 2007), and any gaps were removed manually. To construct
functional gene phylogenies, the aligned sequences were analyzed
by maximum likelihood-based FastTree (Price et al., 2010) using
the Jones–Taylor–Thornton (JTT) with CAT approximation.

Metabolic Pathway Identification
The gene products were searched for similarity against the KEGG
database. A match was counted if the similarity search resulted
in an expectation e-value below 1e−5. All of the occurring KO
(KEGG Orthology) numbers were mapped against the KEGG
pathway functional hierarchies and the COG database. For genes

with multiple hits, only the genes with the highest expression
value (FPKM) are displayed in the figures and tables and further
discussed in the text.

Data Availability
The metatranscriptome sequences are available on NCBI as
SRX1008212. The assembled sequence was uploaded to IMGwith
a project ID Ga0072503.
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