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Recent scientific investigations have shed light on the ecological importance and
physiological complexity of subaerial biofilms (SABs) inhabiting lithic surfaces. In the
field of sustainable cultural heritage (CH) preservation, mechanistic approaches aimed
at investigation of the spatiotemporal patterns of interactions between the biofilm, the
stone, and the atmosphere are of outstanding importance. However, these interactions
have proven difficult to explore with field experiments due to the inaccessibility of
samples, the complexity of the ecosystem under investigation and the temporal
resolution of the experiments. To overcome these limitations, we aimed at developing
a unifying methodology to reproduce a fast-growing, phototroph-heterotroph mixed
species biofilm at the stone/air interface. Our experiments underscore the ability of
the dual-species SAB model to capture functional traits characteristic of biofilms
inhabiting lithic substrate such as: (i) microcolonies of aggregated bacteria; (ii) network
like structure following surface topography; (iii) cooperation between phototrophs
and heterotrophs and cross feeding processes; (iv) ability to change the chemical
parameters that characterize the microhabitats; (v) survival under desiccation and
(vi) biocide tolerance. With its advantages in control, replication, range of different
experimental scenarios and matches with the real ecosystem, the developed model
system is a powerful tool to advance our mechanistic understanding of the stone-
biofilm-atmosphere interplay in different environments.

Keywords: subaerial biofilms, stone monuments, Lab-scale system, phototroph-heterotroph interactions, dual-
species subaerial biofilm

INTRODUCTION

Microbiologists working in the field of cultural heritage (CH) are faced with the challenge of
understanding the physiology and the activity of biofilms inhabiting outdoor stone heritage
(subaerial biofilms, SABs), and their complex interactions with the mineral substrate and the
atmosphere at different spatial and temporal scales (Gorbushina, 2007; Pinna, 2014).

The approaches used to explore such complexity rely mainly on field investigations (Polo et al.,
2012; Villa et al., 2015). Although field experiments are undoubtedly instrumental in understanding
the relationship between SABs and ecosystem properties, their experimental design and execution
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are hampered by a number of challenges. These challenges
include limited and extremely small samples, complexity of
sample structure, the importance of maintaining spatial integrity
and inaccessibility to repeated sampling (Owens et al., 2014).
Furthermore, the results of many field-based studies are limited
by the temporal resolution of the experiments, as many processes
that might be important in structuring SAB communities and
activity, such as succession, coevolution, invasion, and climate
change occur over a longer time scale than those of the average
research grant, limiting the understanding of the phenomena
under investigation.

In the light of the previous considerations, the simplicity of
model systems provides a stark contrast to the complexity and
inaccessibility of the environmental system, enabling researchers
to test hypotheses about the physiology of SAB on stone,
and to establish the plausibility of mechanisms governing the
biogeochemical processes occurring in the field (Jessup et al.,
2004).

Despite the significance of model systems in CH studies,
the development and explicit use of microbial lab-scale systems
has been relatively rare, and most of them are experimental
model systems of phototrophic biofilms (Ortega-Calvo et al.,
1991; Guillitte and Dreesen, 1995; Monte, 2003; Prieto and Silva,
2005; Miller et al., 2008; Sanmartín et al., 2011, 2015). In fact,
within the list of the most typical stone colonizers, cyanobacteria
have received particular attention as they adapt to extremes of
environmental stress and they are able to readily colonize a
wide variety of terrestrial habitats, including modern and ancient
buildings, sometimes causing extensive esthetic, physical and
chemical damages (Crispim and Gaylarde, 2005; Cappitelli et al.,
2012). In most of these works, the individual members of the
phototrophic community were studied separately, precluding
the investigation of species interactions. Miller et al. (2008,
2009) cultivated a natural green biofilm from an enriched
microbial consortium residing on a limestone monument. The
biofilm was grown over a 3-month period under laboratory
conditions in a custom chamber, which exposes stone samples
to intermittently sprinkling water. These biofilm studies showed
complex microbial communities, simulating the existence of
competition and/or synergy between colonizing microorganisms
(Miller et al., 2008, 2009).

Despite the success in reproducing complex phototrophic
SABs, diagnostic and prognostic tools for biofilm studies on
different materials and under different environmental conditions
require microorganisms with available genetic and physiological
information (Noack-Schönmann et al., 2014), features that are
rarely encountered in complex microbial consortia isolated from
the field. Gorbushina and Broughton (2009) proposed a model
biofilm comprising the cyanobacterium Nostoc punctiforme
strain ATCC 29133 (PCC 73102) as phototroph, and the
well-studied marble-derived isolated microcolonial fungus A95
Knufia petricola (syn. Sarcinomyces petricola; Nai et al., 2013) as
heterotrophic component of the dual-species consortium. Mixed
cyanobacterial/fungal biofilms were grown on membrane filters
placed on top of agarized media without carbon and nitrogen
sources. In this case, the biofilm was grown at the agar/air
interface following the colony biofilm method, which simulates

a no-shear environment (Anderl et al., 2000). Seiffert et al. (2014)
used the same well-characterized consortium to test the mineral
weathering potential of mono and dual-species biofilms grown at
the solid/liquid interface. Minerals with different grain sizes and
mineralogy were incubated with andwithout biofilm in batch and
in flow through experiments over a 5-month period. The biofilm
was exposed to an organic-carbon-rich environment, being fed
with a nutrient medium.

Although many authoritative scientific works have
successfully embraced microbial model systems as tools to
address questions related to the biological colonization of lithic
substrate, none of them offer the opportunity in one single
system to reproduce a fast-growing, phototroph-heterotroph
mixed species biofilm at the stone/air interface.

To overcome these limitations, we aimed at developing a
unifying methodology to obtain a laboratory model of SAB
biofilm able to mirror the main features of biofilms inhabiting
lithic substrate, while keeping simplicity and high degrees
of experimental control. More specifically, we established
a dual-species biofilm model system that incorporates the
following characteristics: (i) stone/air interface, (ii) phototroph-
heterotroph interactions, (iii) oligotrophic environment,
(iv) microorganisms well-characterized, amenable to genetic
manipulation and with already developed in silico metabolic
models, (v) discontinuous low-shear/laminar flow and high gas
transfer environment and (vi) fast-growing biofilm.

These results showed the efficacy of the system in reproducing
SABs, being able to capture features typical of biofilms on outdoor
stone monuments such as: (i) microcolonies of aggregated
bacteria; (ii) network-like structure following surface topography;
(iii) cooperation between phototrophs and heterotrophs and
cross feeding processes; (iv) ability to change the chemical
parameters that characterize the microhabitats; (v) survival in
harsh environment including desiccation stress and (vi) biocide
tolerance.

To the best of our knowledge, this is the first time that a
phototroph-heterotroph association at the stone/air interface has
been successfully obtained at laboratory scale starting from two
introduced, controlled species and not from an environmental
microbial consortium. The present study has the potential to
significantly advance our mechanistic understanding of the
biofilm-stone-air interplay that has proven difficult to study in
field experiments due to the inaccessibility of samples and the
complexity of the ecosystem under investigation.

MATERIALS AND METHODS

Laboratory Strains and Culturing
Conditions
Axenic batch cultures of the photoautotrophic bacterium
Synechocystis PCC 6803 (ATCC 27184) were routinely grown
in BG11 medium (Sanmartín et al., 2011). The cultivation
was carried out at room temperature in a 250-mL Erlenmeyer
flasks on a standard orbital shaker, under a 14/10 day/night
photoperiod and 40 μmol (photons) m−2 s−1 illumination over
a period of 17 days. Axenic cultures of GFP-Escherichia coli K12
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MG1655 were grown overnight in M9 medium (Harwood and
Cutting, 1990) amended with 10 g l−1 glucose and supplemented
with 100 mg l−1 ampicillin at 37◦C.

Subaerial Biofilms (SABs) Growth using
the Drip Flow Biofilm Reactor
A modified Drip Flow Reactor (DFR, Biosurface Technology
Corp., USA) with a glass lid was used in this study to reproduce
SABs at the stone/air interface. To initiate biofilm growth,
individual stationary-phase cultures of Synechocystis PCC 6803
and E. coli K12 were centrifuge at 3500 rpm at room temperature
for 15 min, rinsed two times with BG11 and then resuspended
in the same medium. The axenic cultures were adjusted to
obtain a cell concentration of approximately 108 cell ml−1.
Next, a volume of each of the Synechocystis and E. coli cultures
were mixed, and the mono-cultures diluted 1:2 with BG11 to
obtain a final cell concentration of approximately 5 × 107 cell
ml−1 for each microorganisms in both mono and co-cultures.
Twenty ml of the mixed planktonic culture was added to each
channel, which also held a 0.5 cm thick limestone tile cut to
the dimensions of a microscope slide. The reactor was placed
in a flat, level position on the bench top and left for 24 h
at room temperature under a 14/10 day/night photoperiod of
40 μmol(photons) m−2 s−1 illumination (the light cycle began
with inoculation of the stone coupons). After 24 h of batch
conditions, the reactor was set on a surface held at a 10◦ slant
and attached to the medium reservoir. The medium (100%-
strength BG11) was pumped through the system every 12 min
at 1 ml min−1 for 3 min, creating a discontinuous flow rate.
The reactor operated in discontinuous flow mode for 10 days
at room temperature under a 14/10 day/night photoperiod and
40 μmol(photons) m−2 s−1 illumination. Every 48 h, biofilms
were sampled for either plate-count enumeration or microscopy
investigations. Biofilm growths were repeated multiple times (N:
5) using a separate inoculum mixture.

Biomass Quantification by Plate
Counting
Viable cell counts for each species within the established mono
and dual-species SABs were determined using selective agar.
Every 2 days, the stone coupons were aseptically removed from
the reactor and placed into 50-ml Falcon tubes containing 10 ml
phosphate buffered saline (PBS, 10 mM phosphate buffer, 0.3 M
NaCl pH 7.4 at 25◦C, Sigma–Aldrich, USA). Sessile cells were
dislodged from the stone coupon by brushing off the surface with
a sterile toothbrush. The dislodged biofilms were homogenized
(IKA T25 Ultra Turrax) at 10000 rpm for 30 s followed by 30 s
vortex mixing. The biofilm suspension was then serially diluted
in PBS and drop-plated (Herigstad et al., 2001) on agarized BG11
(Noble agar, Fisher Scientific, USA) and TSA, to isolate and
enumerate Synechocystis and E. coli, respectively. The plates were
then counted, and the number of CFU per cm2 was calculated for
each microorganism. The maximum specific growth rates (μm)
of each bacterium in both mono and dual-species SABs were
estimated from the CFU cm−2 data vs. time (days) as reported
by Cattò et al. (2015). Experiments were performed in triplicate.

Escherichia coli Growth on
Cyanobacterial Extracellular Polymeric
Substances (EPS)
Mature mono-species cyanobacterial SABs (n = 6 stone coupons
combined in one sample) were collected and resuspended in
2 ml 2% ethylenediaminetetraacetic acid (EDTA, Sigma–Aldrich,
USA). Biofilm cell suspensions were first gently sonicated and
then shaken at 300 rpm for 3 h at 4◦C. After incubation,
the samples were centrifuged for 20 min, 5000 rpm at 4◦C to
separate the supernatants containing the EPS from the cell pellets.
EPS was recovered from filtered supernatant (0.45 μm, Fisher
Scientific, USA) after overnight precipitation with two volumes
of chilled ethanol at −20◦C, centrifugation at 13000 rpm for
30 min at 4◦C, washing with 95% ethanol, drying under air,
and re-suspension in 380 μl M9 mineral medium. This volume
corresponded to the biofilm volume estimated as follows: (area
of the stone coupons, 11856 mm2) × (average of the biofilm
thickness, 0.032 mm). Total carbohydrate contents of EPS were
measured by the phenol-sulfuric method, and the amount of EPS
was calculated as the average ratio of the EPS quantity over the
dry biomass as reported by Villa et al. (2012).

Planktonic growth of E. coli on EPS solutions was carried out
in 96-well microtiter plates. Growth curves at room temperature
were generated using the Synergy HT microplate reader (Biotek,
USA). The growth was followed by measuring the absorbance
at 600 nm (OD600) every 10 min for over 17 h in wells
inoculated with 3 μl of an overnight E. coli culture (final
concentration 107 cells ml−1). Experiments were performed in
triplicate.

Biofilm Imaging by Confocal Laser
Scanning Microscopy (CLSM) and Field
Emission Scanning Electron Microscopy
(FE-SEM)
The development and the structure of the dual-species
SABs were monitored by CLSM and FE-SEM. For CLSM
analyses, samples were stained with the lectin ConA-Texas
Red conjugate (Invitrogen, USA) as reported by Villa et al.
(2012). Confocal images were collected using a Leica TCS-SP5
confocal microscope (Leica Microsystems Heidelberg GmbH,
Germany) and a 40× 0.7NA 3.3 mm WD water immersion
objective. Fluorescence was excited and collected using the
following laser lines and emission parameters: for GFP-tagged
E. coli cells, ex 488 nm, em 500–550 nm ConA-Texas Red ex
561 nm, em 570–620 nm, and autofluorescence of Synechocystis
ex with 633 nm, em 650–750 nm. In addition, the CLSM was
used in reflectance mode with the 488 nm argon line for relief
imaging of specimens. Captured images were analyzed with the
software Imaris (Bitplane Scientific Software, Switzerland) for
3D reconstructions of SABs.

Field Emission Scanning Electron Microscopy analyses of SAB
samples were carried out using a Zeiss SUPRA 55VP (Zeiss,
Oberkochen, Germany) at an acceleration voltage of 1 kV using
the Everhart-Thornley SE-detector and the inlens SE-detector in
a 25:75 ratio.
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A minimum of three biofilm samples was analyzed and
representative images are presented.

Biofilm Cryosectioning and Thickness
Measurements
Subaerial biofilms cryosectioning and thickness measurements
were conducted as reported by Villa et al. (2012).

Briefly, SABs on limestone coupons were carefully covered
with a layer of OCT (Tissue-Tek Optimum Cutting Temperature,
VWR Scientific, USA) and placed on dry ice until completely
frozen. The frozen samples were sectioned at −19◦C using a
Leica CM1850 cryostat (Leica Microsystems Heidelberg GmbH,
Germany), and the 5-μm thick cryosections were mounted on
Superfrost/Plus microscope slides (Fisher Scientific, USA).

Sections were observed using a Nikon Eclipse E800
microscope with a 20× dry. The sections were viewed in the
epifluorescence mode with red (to visualize Synechocystis cells)
and green (to visualize GFP-E. coli cells) filters. The software
MetaMorph (Molecular Devices, Downingtown, PA) performed
the image analysis and biofilm thickness measurements. More
than five images per sample were taken for microscope analysis.
For each picture, the biofilm thickness was measured at three
different locations randomly selected along the profile. These
measurements were used to calculate the average thickness
and the associated standard deviation. The experiment was
conducted in triplicate.

Oxygen and pH Microsensors Analyses
Dual-species SABs were grown as previously described on agar-
coated slice coupons to allow the use of microelectrodes that
otherwise would be hampered by the presence of the stone
substrate. The local concentrations of O2 and pH at different
locations on the biofilm surface were measured over time
to analyze the response of the biofilms to light and dark
conditions.

The microelectrodes for oxygen (OX-10, Unisense, Denmark)
and pH (pH-25, Unisense, Denmark) were connected to
a millivolt meter (Unisense, Denmark) for voltage supply
and signal acquisition. A micromanipulator with motor
controller (MM-2, Unisense, Denmark) was used to position the
microelectrodes in the SAB. Data acquisition was performed on a
laptop computer connected to the multimeter, using SensorTrace
Pro software (Unisense, Denmark).

Oxygen microsensor measurements were performed using
Clark-type oxygen microelectrodes with tip diameters of 10 μm,
described in detail elsewhere (Revsbech, 1989). A two-point
calibration was performed for O2 sensors using medium
saturated with dissolved O2 for a 100% O2 saturated value
and medium sparged with pure N2(g) for at least 30 min
for a zero value. Calibrations were repeatedly checked in
the anoxic standard and in air-saturated diH2O throughout
the experiments. Microsensor measurements were performed
at room temperature under both dark and light conditions
(PAR = 40 μmol photons m−2 s−1) in presence of the liquid
medium BG11. Before the microsensor measurements, the SAB
was incubated 20–25 min in the dark at room temperature.

For the pH measurements, a pH microelectrode was used
with a tip diameter of 25 μm in combination with an open-
ended Ag-AgCl reference microelectrode with a tip diameter of
25 μm (REF-25; Unisense, Denmark). The sensor was linearly
calibrated from signal readings in pH standard buffers of 4.0, 7.0,
and 10.0 at the experimental temperature. The pHmeasurements
were conducted as described for the oxygen microsensor. The
reference electrode was placed in the micromanipulator and
lowered into the biofilm alongside the pH electrode, to ensure
fluid contact between the pH and reference electrode during the
measurements.

Microelectrode measurements were taken in three different
spots of two different SABs. During time resolved measurements
of O2 and pH change during light/dark shifts, measurements
were recorded at a single location at an interval of 5 s.

Desiccation Experiment and Live Cell
Imaging of Biofilm Recovery
Mature mono- and dual-species SABs were left in the
reactor channels. Influent tubings were attached to air supply
systems composed of common aquarium air pumps, ultrafilter
membranes and rubber tubing. Air entered at the top of each
single reactor channel and exited at the bottom through the
effluent port, without being pressurized in the DFR. The idea
was to expose the SABs grown on stone to constant breeze
and extreme dry conditions over 1 h. After that time, the
samples were removed from the reactor and inserted into an
environmental control chamber (Pathology Devices LiveCell+
system, USA) to control both the temperature and the humidity.
The chamber was mounted on the motorized stage of an
inverted Leica TCS SP5 confocal microscope (LeicaMicrosystems
Heidelberg GmbH, Germany). The CLSM control software
was set to take a series of time-lapse xyzt scans at intervals
of 5 min at different depths in the biofilm over a period
of 90 min. The environmental chamber was set at 25◦C,
and the relative humidity (RH) was gradually increased from
28 to 90%.

Biofilms were scanned at 600 Hz using a 10× dry objective
with a 488 and 633 nm laser excitation lines to visualize
both green GFP-E. coli cells and the red autofluorescence
of the phototrophic component of the mono- and dual-
species SAB. Images were analyzed in MetaMorph software
(Universal Imaging Corp., Downington, PA) in order to track
the average fluorescence intensity of the entire image for
each channel. Average intensity values were normalized by
dividing the fluorescence intensity recorded at the different
time points by the initial average fluorescence intensity
values.

The emission spectra of cyanobacterial pigments were
obtained using a wavelength λ-scan function of the CLSM as
reported by Roldán et al. (2014). Region of interest (ROIs)
representing single cells were used to obtain fluorescence
spectra. The fluorescence spectra were analyzed by Pickfit
deconvolution software (PeakFit, SPSS, Inc.) to resolve individual
phycobiliproteins as reported by Wolf and Schübler (2005).
Representative fluorescence spectra of dehydrated and rewetted
cells within the biofilm are presented.
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Antimicrobial Effectiveness of a Biocide
Solution against Planktonic and Biofilm
Cells
A 12-day mature dual-species biofilm was challenged with
the quaternary ammonium solution D/2 (D/2 Biological
Solutions, Inc., USA), a biocide frequently used in restoration
of architectural surfaces including monuments, sculpture and
headstones.

The undiluted D/2 was dripped onto the stone coupons to
wet the entire surface with the biocide solution. D/2 was allowed
to remain on the surface for 15 min at room temperature as
per manufacturer’s instructions. After the contact period, the
coupons were rinsed with water and transferred to Falcon tubes
for colony counting.

Planktonic cell experiments were performed with a mixed
culture of Synechocystis and E. coli to simulate conditions in
dual-species biofilm experiments. Stationary-phase cultures of
the individual two species were centrifuged at 3500 rpm for
15 min at room temperature and then resuspended in BG11 at
the final concentration of 108 CFU ml−1 for each of the species.
Antimicrobial agent solutions were added to the planktonic
cultures as for the biofilm experiments. Planktonic cells were
treated for 15 min at room temperature. The disinfection efficacy
of each sample was evaluated by plate counting as described
for biofilm experiments. Antimicrobial efficacy was expressed as
log10 reduction in the microbial survival. The log10 reduction
was calculated relative to the cell count in the control samples
without biocides. The antimicrobial experiments were conducted
in triplicate.

The susceptibility of the dual-species SAB to D/2 was
also evaluated by time lapse CLSM. This technique permits
the direct visualization of cell inactivation patterns in biofilm
structure during biocide action. Fluorescence loss from GFP
E. coli cells and autofluorescence loss from Synechocystis cells
were used to monitor real-time loss in cell viability. The
stone coupon hosting the dual-species SAB and exposed to
undiluted D/2 was mounted on the motorized stage of an
inverted Leica SP5. Biofilms were scanned at 600 Hz using a
10× dry objective as previously described in the “Desiccation
experiment and live cell imaging of biofilm recovery” section.
Biofilms were then scanned every 3 min at different depths
over 45 min, and both red and green fluorescence loss within
the structure was recorded. The overall effect of a treatment
on SAB was assessed by tracking the average fluorescence
intensity of the entire image for each channel. A control test
was also performed in order to quantify the fluorescence lost by
photobleaching.

Statistical Analysis
Analysis of variance (ANOVA) via a software run in MATLAB
environment (Version 7.0, The MathWorks Inc., USA) was
applied to statistically evaluate any significant differences
among the samples. Tukey’s honestly significant different test
(HSD) was used for pairwise comparison to determine the
significance of the data. Differences were considered significant
for p < 0.05.

RESULTS AND DISCUSSION

Mono- and Dual-species Biofilm Growth
The unicellular cyanobacterium Synechocystis sp. strain PCC
6803 and the chemoheterotroph E. coli K12 were used to
reproduce a laboratory-scale dual species SAB on limestone, as
calcareous stone materials are typical CH surfaces with high
bioreceptivity (Miller et al., 2012).

These two microorganisms have been previously retrieved on
stone heritage (inter alia Ortega-Morales et al., 2000; Bellinzoni
et al., 2003; Crispim et al., 2003; Bartolini et al., 2004; Ikner
et al., 2007; Pereira de Oliveira et al., 2008; Macedo et al., 2009;
Bastian et al., 2010), highlighting their occurrence in biofilm at
the stone/air interface.

The selected model organisms are fast-growing
microorganisms, enable the design of replicated experiments
across a wide range of spatial and temporal scales, and to
better explore biofilm responses to environmental changes in
a reasonable timescale. Furthermore, they have a number of
other important advantages, namely a well-developed literature
base, being genetically tractable and amenable to molecular
technique such as mutagenesis and “omics” based approaches,
existence of in silico metabolic models, as well as relevance to
bioremediation and biomineralization (Ikeuchi and Tabata,
2001; Hayashi et al., 2006; Yoshikawa et al., 2011; Han et al.,
2013).

Although Synechocystis and E. coli are components of
the biofilm community inhabiting stone heritage, they direct
interactions have never been explored. In the proposed lab scale
system we forced the two microorganisms to interact with each
other in an oligotrophic environment, providing the platform
to address many important questions about the mechanisms of
species interactions on stone.

The DFR has been previously successfully applied to modeling
biofilms in industrial piping systems, catheters, wounds, lungs,
and oral cavity environments (inter alia Goeres et al., 2009;
Brindle et al., 2011; Woods et al., 2012; Tremblay et al., 2013).
In this work, for the first time, the DFR was used to reproduce
at laboratory scale biofilms at the stone-air interface. The DFR
can be modeled as a plug flow reactor in which cell density and
nutrient concentration change along the length of the coupon
(Goeres et al., 2009). The wall of stone heritage exhibits the
properties of an open plug flow reactor. SABs on outdoor stone
monuments show a typical colonization pattern, following the
water flow downward. Biofilms inhabiting stone monuments
experience low fluid velocity over the surface, and the biomass is
continuously exposed to the air. In the same way, biofilms in the
DFR are under low-shear/laminar flow as the medium drips onto
a surface set at a 10◦ angle, and high gas transfer environment
as the biofilm is continuously exposed to the air in the head
space (Woods et al., 2012). The system used in this work can be
easily adapted to mimic a variety of environmental conditions.
By simply modifying the composition and the flow rate of
the influent, it is possible to simulate different environmental
scenarios such as acid rain, drought, increase in salinity, increase
in rainfall events etc. The gas in the headspace can be varied,
and the reactor can be accommodated inside an environmental
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chamber to control intensity of the incident radiation and the
experimental temperature.

As a first step, we sought to examine the biofilm growth
of Synechocystis and E. coli alone and in combination. The
results demonstrated the ability to grow dual-species SABs as
well as mono-species photoautotrophic ones, but not mono-
species chemoheterotrophs, which lack carbon-fixing ability
(Figures 1A–C). After 24 h of batch condition, the attached
cyanobacterial cells in the mono-species SAB averaged 6.2 ± 0.14
Log10 CFU/cm2 compared to just 4.01 ± 0.06 log10 CFU/cm2

in the dual-species SAB. The decreased attachment success of
both E. coli and Synechocystis in the dual-species biofilm can
be explained taking into account the competitive attachment
phenomenon. Attachment by different bacterial species in mixed
culture suspensions might be expected to be competitive, thus
resulting in reduced attachment of the component species
(Lappin-Scott and Costerton, 1995).

Despite the initial difference in the number of attached cells,
plates count showed that mono-species Synechocystis SAB formed
less rapidly (1.31 ± 0.19 log10 CFU/day) than the dual-species
SAB (1.66 ± 0.084 log10 CFU/day). This disparity was even more
strikingly evident at the 8th day, where the cell numbers in the
dual-species SABs were higher than in mono-species SABs, both
for Synechocystis and E. coli. At the 10th day, the SABs appeared
similar to the 8th day, suggesting that a ‘steady state’ had been
reached.

Observation in field demonstrates that SABs on stone heritage
are dominated by associations of phototrophic and heterotrophic
microorganisms (Albertano and Urzì, 1999; Cappitelli et al.,

2012; Polo et al., 2012). The accumulation of photosynthetic
biomass provides an excellent organic nutrient base for
subsequent heterotrophic microbiota and their biodeterioration
activities (Crispim and Gaylarde, 2005). Phototrophs facilitate
the establishment of a complex SAB community by excreting
carbohydrates and growth factors (Crispim and Gaylarde, 2005;
Dakal and Cameotra, 2012). In subaerial environments, an
important class of interactions is based on cross-feeding and
metabolic exchange, whereby photosynthetically fixed dissolved
organic carbon sustains the growth of heterotrophic bacteria
(Cole et al., 2014; Valverde et al., 2015). The heterotrophs, in turn,
can promote cyanobacterial growth by providing key metabolites
and scavenging waste products (Morris et al., 2008; Hayashi et al.,
2011; Beliaev et al., 2014). In this way, the metabolic capacity
of the consortium expands and improves resource utilization
efficiency in comparison to its individual members (Cole et al.,
2014).

In oligotrophic conditions, cyanobacterial extracellular
polymeric substances (EPS) represent a notable source of organic
carbon available for cross-feeding processes (Rossi and De
Philippis, 2015). In this work, we tested whether E. coli could use
the biofilm EPS produced by Synechocystis as a carbon and energy
source, laying the foundation for one of the possible mechanisms
behind the cross-feeding processes. The EPS extracted from the
mono-species cyanobacterial SAB was used as a culture medium
to sustain the planktonic growth of E. coli. The results showed
that the EPS of Synechocystis presented a polysaccharide content
of 21.68 μg/mgdry biomass that can sustain the planktonic growth
of E. coli (Figure 1D). Interestingly, the heterotrophic bacteria

FIGURE 1 | Biofilm growth curves. Biofilm growth of Synechocystis and Escherichia coli in mono (A,B, respectively) and co-culture (C). Data points are average of
triplicate experiments. Error bars represent standard deviation of experiments. Panel (D) shows the growth of E. coli on cyanobacterial EPS. Data points are average
of triplicate experiments. Error bars represent standard deviation of experiments.
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FIGURE 2 | Biofilm imaging by Confocal Laser Scanning Microscopy (CLSM) and Field Emission Scanning Electron Microscopy (FE-SEM). Panel (a)
shows the extended view (z-y and z-x planes) of a SAB colonizing the marble surface of the Lincoln Memorial (Washington, DC, USA). Scale bars represent 30 μm.
Color key: heterotrophs, green; Phototrophs, blue; EPS-labeled ConA, red; reflection from inorganic materials, gray. Panel (b) represents the extended view (z-y and
z-x planes) of a mature dual-species SAB. Scale bars represent 50 μm. Color key: Synechoscystis cells, green; EPS-labeled ConA, red; reflection from inorganic
materials, gray. Panels (c,d) show the EPS of a mature dual-species SAB. Arrows indicate the fibriform extracellular matrix-like structures. Panels (e–g) display the
development of a dual-species SAB over time monitored by CLSM. Scale bars represent 30 μm. Color key: E. coli cells, green; Synechocystis cells, red; reflection
from inorganic materials, gray. Panels (h–j) show the FE-SEM micrographs of cells arrangement during the development of the dual-species SAB over time. Arrows
indicate the rod-shaped E. coli cells. The images reported are representative of different images taken from independent experiments.

exhibited a diauxic growth, in which the preferential carbon
source is consumed in the first growth phase, whereas the less
favorable secondary carbon source supports growth during the
second growth phase.

Microscopy
The presence of a polysaccharide-rich matrix was further
confirmed by images captured from CLSM combined with lectin
staining. The fluorescently labeled Concanavalin A (ConA), has

Frontiers in Microbiology | www.frontiersin.org 7 November 2015 | Volume 6 | Article 1251

http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/
http://www.frontiersin.org/Microbiology/archive


Villa et al. Laboratory Model of Subaerial Biofilms

been widely used to characterize glycoproteins and other sugar-
containing entities on the surface of various cells as well as
in the biofilm EPS (Roldán and Hernández-Mariné, 2009; Villa
et al., 2012). Microscopic observations of SABs inhabiting real
stone monuments revealed the presence of ConA-labeled EPS
in contact with the lithic substratum, and the biomass lying
on the top of the visualized matrix (Figure 2a). In the same
way, ConA signal from the lab-scale SAB mainly accumulated
on the bottom of the biofilm, showing the intimate connection
with the stone as the signal spread between the mineral
grains filling depressions, fissures and intergranular spaces
(Figure 2b). Field Emission Scanning Electron Microscope (FE
SEM) images further confirmed the presence of amorphous
materials -consistent with an EPS layer in contact with the stone
(Figures 2c,d).

It has been well established that cyanobacteria produce EPS
mainly of polysaccharidic nature (De Philippis et al., 2001; Pereira
et al., 2011). The monosaccharides most frequently found in
cyanobacterial EPS are fucose, rhamnose, arabinose, galactose,
glucose, mannose, xylose, galacturonic acid and glucuronic acid
(Rossi and De Philippis, 2015). The complex carbohydrates act as
barriers against different type of stress and play a role in intra-
as well as inter-species interactions (Kehr and Dittmann, 2015).
It is a fact that cyanobacteria isolated from stone monuments
excrete large amounts of EPS as an adaptation to drought
(Macedo et al., 2009; Rossi et al., 2012; Vázquez-Martínez
et al., 2014). In addition, the presence of a large number of
different monosaccharides in the cyanobacterial EPS represents
a considerable trophic resource for the epilithic community
when polymers are degraded (Flemming and Wingender, 2010;
Rossi et al., 2012). For instance, a study of EPS turnover in
modern stromatolites reported that 3–4% of the total carbon fixed
through photosynthesis was incorporated in newly produced
EPS, and that 40–60% of this new EPS was degraded to
CO2 by heterotrophic bacteria within 24 h (Decho et al.,
2005).

Confocal Laser Scanning Microscopy and image analysis of
biofilms formed by the fluorescent protein-tagged E. coli and
autofluorescent Synechocystis were used as non-invasive tools to
investigate the development and the structure of dual-species
SABs. Different projections were generated by Imaris software
package for 3D reconstruction of cell aggregates (Figures 2e–g).
The investigation revealed discrete colonies of Synechocystis
surrounded by loose assemblages of E. coli at day 1 (Figure 2e).
At day 6 the association changed, showing aggregation of
E. coli cells in small colonies surrounded by cyanobacterial
cells (Figure 2f). Within a few more days, E. coli colonies
had been overgrown by a mantle of Synechocystis (Figure 2g).
FE SEM analyses further corroborated the colonization pattern
previously described (Figures 2h–j). The dual-species SAB
appears patchy or network like, following the topography of the
surface.

Ramirez et al. (2010) reported stratifications of SABs
developed on the stone, stucco and mortar of El Palacio wall
(Mexico). In particular they observed that the lower portion
of the SABs contained coccoid and colonial cyanobacteria as
well as other bacteria, whereas the upper portions encompassed

mainly filamentous cyanobacteria, coccoid cyanobacteria and
green algae. Thus, the phototrophic component of the SABs
resides in contact with the air, covering the heterotrophic
biomass. This stratification could be rationalized by not only
considering the light and CO2 requirements of cyanobacteria,
but also their capacity to survive harsh environmental conditions
(e.g., desiccation, UV radiation) while offering protection to
sensitive microorganisms. In aerial microbial mats, UV tolerant
species like cyanobacteria normally occupy the mat surface,
giving protection to the more sensitive species below (Norris
et al., 2002).

On lithic surfaces, phototroph-heterotroph associations
produce different colonization patterns and appear as a patchy
distribution of cells that accumulate in fissures, cracks, or
subsurface and deep layers, depending on the porosity and state
of conservation of the material, as well as on the ecological
requirements of individual species (Urzì and Albertano,
2001; Gorbushina, 2007; Gorbushina and Broughton, 2009).
Furthermore patchy SABs serve as condensation and water
collecting points, where liquid water and water vapor are not
only quickly absorbed by the biofilm, but also retained for longer
periods than on the neighboring rock surface (Gorbushina,
2007).

Cryosections of the dual-species SABs combined with
microscopy revealed a biofilm thickness of 32.27 ± 9.21 μm,
in line with in field observations of SABs on stone monuments.
Ramirez et al. (2010) investigated the phototrophic SABs
inhabiting a Mayan monument in Palenque, Mexico. The
microscopic investigations revealed a biofilm thickness ranging
from 21.8 to 64.5 μm. The SABs inhabiting three Spanish
caves had a thickness ranging from 6.45 to 25.47 μm, and the
biofilm thickness decreased with decreasing light (Roldán and
Hernández-Mariné, 2009).

Microelectrode Measurements
Despite small thickness and low biomass, SABs on stone
monuments show high physiological capabilities. Microelectrode
measurements were carried out to give experimental evidence of
the effect of cyanobacterial photosynthesis on oxygen production
and pH variation in dual-species SABs. The dissolved O2 (DO)
measured as % saturated DO at the biofilm surface during
a light/dark cycle is shown in Figure 3A. The increase of
oxygen concentration occurred immediately after the start of
the illumination. The production of oxygen increased over
time, reaching a plateau after few minutes of light exposure
(Figure 3A). The results of pH measurements for dual-
species SABs showed that starting from near neutral values
(pH 7.4) the H+ concentration increased about 2 pH units
(pH 9.6) in the transition from dark to light (Figure 3B).
The microelectrode measurement was integrated over a depth
of approximately 20–25 μm, thus the measured DO and
pH are representative of the conditions throughout most of
the biofilm depth. In cyanobacterial communities, intensive
photosynthesis results in a sharp increase of pH due to
the consumption of protons due to equilibration between
CO3

−2 and HCO3
− (Albertano et al., 2000; Dhami et al.,

2014).
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FIGURE 3 | Results of changes in O2 % saturation (A) and pH (B) in dual-species SABs during shifts between light and dark conditions. Data points are
average of triplicate experiments. Error bars represent standard deviation of triplicate experiments.

FIGURE 4 | Biofilm recovery after desiccation. Recovery of fluorescence of a mono (A) and dual-species SAB during rewetting (B). Emission spectra recorded
in cyanobacterial cells before (C) and after (D) rewetting. Spectral profiles were analyzed by PICKFIT deconvolution software to show individual phycobiliproteins:
Phycoerythrin, 575 nm; Phycocyanin, 645 nm; Allophycocyanin, 665 nm; Chlorophyll a, 685 nm (Wolf and Schübler, 2005).

Measurements of pH showed that, starting with values
slightly below neutral, the pH in cyanobacterial biofilms
increased by 0.24–0.77 units in the transition from dark to
1000 μmol photon m−2 s−1 irradiance (Albertano et al.,
2000).

The variation from neutral pH values during the dark
period to alkaline pH during illumination occurred to a
sufficient extent to possibly induce precipitation of mineral
compounds, especially in calcareous substrata (Albertano et al.,
2000). The microelectrode measurements demonstrated that
photosynthetic/respiration activity of the dual-species SAB

induced variation in the chemical parameters that characterize
the microhabitats of lithic sites.

Desiccation Recovery
Periods of desiccation and rewetting are regular, yet stressful
events encountered by SABs on stone monuments. To examine
the recovery of SABs following dehydration, mono- and dual-
species SABs were allowed to desiccate for 1 h under a
stream of sterile air (25% RH), followed by exposure to
atmospheric moisture in form of humid air (90% RH). Live
cell imaging showed that during rewetting the recovery of both
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FIGURE 5 | Antimicrobial effectiveness of D/2 solution. (a) Susceptibility of Synechocystis and E. coli in planktonic cultures and SABs observed as log10

reduction in the number of CFU after exposure to the antimicrobial agent. Data represent the mean ± standard deviation of three independent measurements. The
letters above the histogram represent the results of Tukey’s post hoc comparisons of group means. According to post hoc analysis (p < 0.05), means sharing the
same letter are not significantly different from each other. (b) Quantification of biofilm fluorescence intensity lost during exposure to the biocide. (c–f) Real-time loss in
cell viability over time in absence of a biocide treatment (control sample). (g–j) Real-time loss in cell viability over time in presence of the biocide treatment (treated
sample). Color key: E. coli cells, green; Synechocystis cells, red.

GFP (E. coli) and red chlorophyll fluorescence (Synechocystis)
was simultaneous and it occurred within minutes when
the RH rose above 70% (Figures 4A,B and Video 1 in
Supplementary Materials). In photosynthetic microorganisms,
autofluorescence of photosynthetic pigment is considered an
indicator of cyanobacterial cell viability showing the integrity
of the photosynthetic apparatus (Billi et al., 2011; Roldán
et al., 2014). GFP has already been applied as an indicator
for cellular viability in both bacteria and yeasts (Lehtinen
et al., 2003; Mohan et al., 2013; Hoogenkamp et al., 2015).
Furthermore, the fluorescence emission spectra recorded in
cyanobacterial cells after desiccation showed a weak fluorescence
within the green range indicating degraded photosynthetic
pigments (Figure 4C, Roldán et al., 2014). After rewetting,
cyanobacterial cells exhibited a spectral profile corresponding
to the emission peaks of phycobiliproteins and chlorophyll a,
corroborating the recovery of the photosynthetic apparatus from

desiccation (Figure 4D, Wolf and Schübler, 2005; Roldán et al.,
2014).

Desiccation tolerance is well documented in the literature for
cyanobacteria (Gorbushina and Broughton, 2009; Keshari and
Adhikary, 2013). Nostoc and Chroococcidiopsis, two of the main
genera retrieved on stone monuments, were found to survive
repeated cycles of desiccation and rehydration (Crispim et al.,
2003; Tamaru and Takani, 2005), preserve the structural integrity
of their cell structures after many years of storage in a dry state
(Billi et al., 2013), and resume respiration and photosynthesis
within minutes after rewetting (Wynn-Williams, 2000; Abed
et al., 2014). SABs are highly water absorbent and are rapidly
hydrated by atmospheric moisture available in form of rain, dew,
fog, and humidity (Gorbushina, 2007). Recently, Davila et al.
(2013) observed that the photosynthetic systems of endolithic
cyanobacteria found in halite nodules in the hyperarid core of
the Atacama Desert were inactive below a RH of 60%. However,
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when the RH rose above 70% and the salt became wet by way of
deliquescence, fluorescence appeared within minutes, suggesting
that the cyanobacteria are optimally adapted to ‘power up’ and
‘power down’ rapidly to take advantage of available moisture
(Davila et al., 2013).

Biocide Tolerance
Biofilm resistance to biocides is becoming a global issue
with an impact on many fields, including CH. Biofilms are
commonly viewed as being resistant to killing by a broad range
of antimicrobial agents. In these experiments we compared
the susceptibility of planktonic and SAB cells to quaternary
ammonium salt-based disinfection treatment.

The log inactivation results based on viable plate counts are
summarized in Figure 5a. As expected, the dual-species SAB
showed more tolerance to antimicrobials than do planktonic
cells. These modest log reductions, after 45 min of antimicrobial
exposure, suggest that the dual-species SAB captures the
antimicrobial tolerance that is a hallmark of the biofilm
mode of growth. The overall loss of fluorescence in cell
clusters after 45 min of exposure to the treatment agent was
also recorded (Figures 5g–j and Video 2 in Supplementary
Materials). The extent of fluorescence loss was 80 and
46% for Synechocystis and E. coli, respectively (Figure 5b).
The control experiment showed that both the green and
red fluorescence dropped less than 5% in absence of the
biocide treatment (Figures 5c–f). Thus, the fluorescence
loss observed in presence of D/2 can be ascribed to the
treatment.

Interestingly, both the plate count and the time-lapse CLSM
analyses showed that the biocide treatment affected mainly the
phototrophic component of the dual-species biofilm, suggesting
protection of the heterotrophic population is provided by the
cyanobacteria. It has been well recognized that different factors
affect biofilm tolerance to antimicrobial agents, including the
effects of the limited penetration of antimicrobial agents, changes
in the bacterial phenotype of biofilm cells, as well as biofilm cells
in persister states (Hall-Stoodley et al., 2004). In addition, after
antimicrobial treatment the biofilm community may be turned
into one that is resistant to those particular biocides, exerting
evenmore harmful effects on the object of art. For instance, in the
Lascaux Caves, the long series of biocide treatments triggered the
development of resistant strains with biodeteriogenic properties
(Martin-Sanchez et al., 2012).

CONCLUSION

The primary accomplishment of the work described herein is the
development of a methodology to obtain a new in vitromodel of
a fast-growing, phototroph-heterotroph mixed species biofilm at
the stone/air interface.

The experiments reported underscore the ability of the dual-
species SAB model to capture functional traits characteristic of
biofilms inhabiting lithic substrata such as: (i) microcolonies
of aggregated bacteria; (ii) a network like structure following
surface topography; (iii) autotroph-heterotroph interactions; (iv)

the ability to change the chemical parameters that characterize
microhabitats; (v) survival in harsh environment; and (vi) biocide
tolerance.

The inherent features of this biofilm are typical for any natural
biofilm. However, to the best of our knowledge, this is the
first time that all these properties have been proved in a lab-
scale system mimicking phototroph-heterotroph mixed species
biofilm at the stone/air interface.

Distinguishing characteristics that make the developed
SAB system widely applicable as compared to other systems
available for research purposes include the following: (i)
a commercially available bioreactor, (ii) microorganisms
genetically tractable and amenable to mutagenesis and
“omics” based approaches, (iii) fast-growing biofilm, and (iv)
adaptability of the system to a variety of different environmental
conditions.

We should emphasize that bare rock surfaces are habitats
for highly adapted, strongly melanized, slow growing
Ascomycetes that are highly relevant to CH studies as well
as other groups such as actinobacteria and nitrifying bacteria.
Despite the precise choice to use Synechocystis and E. coli
as representatives of the phototrophic and heterotrophic
biofilm community, the present system can be adapted to host
different microorganisms, including the most ecologically
relevant melanized fungi, actinobacteria and nitrifying
bacteria.

We would like to point out that this laboratory model
system is not intended to be a miniaturized version of
field systems. Rather, the purpose of the laboratory model
systems is to simplify nature so that it can be more easily
understood. If we cannot accurately predict the behavior of a
simplified laboratory system, it is unlikely we can understand
enough to make predictions of field systems (Jessup et al.,
2004).

With its advantages in control, replication, range of
different experimental scenarios and matches with the real
ecosystem, the developed dual-species SAB model system
is a particularly powerful tool to advance our mechanistic
understanding of the spatial-temporal patterns of interactions
between biofilm, stone and the atmosphere. Understanding
these interactions is crucial to addressing ecological and
biogeochemical questions, as well as developing tools to predict
and model biodeterioration/bioprotection processes on lithic
surfaces.

In addition, the present lab-scale system has the potential to
mimic SAB inhabiting rocks in hyperarid zones or biological soil
crusts. This lab-scale model system provides an elegant ecological
framework for deciphering interspecies interactions, principles of
microbial community assembly, biofilm biology, biogeochemical
processes, and feedback responses to climate change.
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2015.01251

VIDEO 1 | Time lapse Confocal Laser Scanning Microscopy (CLSM) of
biofilm recovery after desiccation. The method is based on the monitoring of
fluorescence recovery of the dual-species SAB during rewetting. Live cell imaging
showed that during rewetting the recovery of both GFP (Escherichia coli) and red
chlorophyll fluorescence (Synechocystis) was simultaneous and it occurred within
minutes when the relative humidity rose above 70% (50 min).

VIDEO 2 | Time lapse CLSM of D/2 action was performed in the
dual-species SAB. This technique permits the direct visualization of cell
inactivation patterns in biofilm structures during the biocide action. The method is
based on the monitoring of fluorescence loss from GFP E. coli cells and
autofluorescence loss from Synechocystis cells, used to monitor real-time loss in
cell viability.
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