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The human gastrointestinal tract is a very complex ecosystem, in which there is a

continuous interaction between nutrients, host cells, and microorganisms. The gut

microbiota comprises trillions of microbes that have been selected during evolution on

the basis of their functionality and capacity to survive in, and adapt to, the intestinal

environment. Host bacteria and our immune system constantly sense and react to one

another. In this regard, commensal microbes contribute to gut homeostasis, whereas the

necessary responses are triggered against enteropathogens. Some representatives of

our gut microbiota have beneficial effects on human health. Some of the most important

roles of these microbes are to help to maintain the integrity of the mucosal barrier,

to provide nutrients such as vitamins, or to protect against pathogens. In addition,

the interaction between commensal microbiota and the mucosal immune system is

crucial for proper immune function. This process is mainly performed via the pattern

recognition receptors of epithelial cells, such as Toll-like or Nod-like receptors, which are

able to recognize the molecular effectors that are produced by intestinal microbes. These

effectors mediate processes that can ameliorate certain inflammatory gut disorders,

discriminate between beneficial and pathogenic bacteria, or increase the number of

immune cells or their pattern recognition receptors (PRRs). This review intends to

summarize the molecular players produced by probiotic bacteria, notably Lactobacillus

and Bifidobacterium strains, but also other very promising potential probiotics, which

affect the human immune system.
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THE HUMAN GUT MICROBIOTA AND THE IMMUNE SYSTEM

From the early stages of life, one of the most important roles of the gut microbiota is to contribute
to the development of a proper immune system. Normally, humans live in a homeostatic symbiosis
with their gastrointestinal microbes, providing them with nutrients and a friendly environment,
whereas the microbiota aids in the appropriate development and maintenance of the host’s gut
mucosa. Epithelial function is influenced by direct host/microbiota interactions and microbial
metabolism. The large intestine acts as an anaerobic bioreactor for the enteric bacterial community,
which is fueled by host diet components that cannot be processed in the small intestine, as well as
by endogenous nutrients, such as host glycans from mucus and cell debris released from epithelial
cells. Additionally, the microbiota synthesizes essential amino acids, vitamins, and short chain fatty
acids (SCFAs) by degrading a variety of proteins and otherwise non-digestible polysaccharides
(Sekirov et al., 2010).
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The commensal microbiota ensures the mechanical integrity
of the mucosal barrier, thereby offering protection against
harmful pathogenic microbes (Figure 1). Commensal bacteria
can adhere to the intestinal mucus and competitively inhibit the
adhesion of enteropathogens; they also produce bacteriocins and
SCFAs, compounds that are able to inhibit the growth of other
microorganisms. Additionally, some antimicrobial metabolites,
such as the defensins secreted in the intestine, contribute to the
host’s control of these microorganisms (Salzman et al., 2007).
Further protection of the host is provided by inducing the
mucosal immune system to produce immunoglobulin A, which
is released in the intestinal lumen in large amounts and limits
local bacterial colonization, thereby preventing bacteria from
penetrating the epithelium (Salzman et al., 2007).

A major issue is how the intestine distinguishes between the
abundant, normal microbiota and rare pathogens. The immune
system fights pathogenic bacteria, but tolerates the presence of
commensal species, even though their cellular structures are quite
similar and they have common mechanisms of interacting with
host immune cell receptors; this phenomenon is called immune
tolerance. In this way, our immune cells differentiate between
commensals and pathogens. This is carried out by our innate

FIGURE 1 | Schematic representation of the interactions established between the intestinal microbiota and the host immune system. (A) General

overview of the epithelium in contact with multiple species of microorganisms that constitute the intestinal microbiota: (1) enterocytes; (2)M cells; (3) Goblet cells;

antigen presentation cells (APC): (4) dendritic cells and (5) macrophages; (6) defensins, bacteriocins, and secreted IgA (sIgA) also play an important role in controlling

the levels of the different populations of microorganisms. A fine-tuned balance of Tcell maturation toward Treg or Thelper cells must be established to assure the

tolerogenic response of the host immune system. (B) Examples of molecular interactions between microbial antigens and host cells through Pattern Recognition

Receptors (PRRs). LPS, lipopolysaccharide; PGN, peptidoglycan; dsRNA, double-strand RNA; TLR, toll-like receptor; NODLR, nucleotide-binding oligomerization

domain-like receptors; RIG-like helicases, retinoic acid-inducible gene 1 like helicases.

immune system through pattern recognition receptors (PRRs)
(Figure 1), including Toll-like receptors (TLRs), transmembrane
receptors that scan the external milieu of the intestinal lumen,
and Nod-like intracellular receptors (NODLR), which guard
the cytoplasmic space (Claes et al., 2015; Sellge and Kufer,
2015). Other PRRs have also been described, such as C-type
lectin receptors, formylated peptide receptors, retinoic acid-
inducible (RIG)-like helicases, and intracellular interleukin-
1 (IL-1)-converting enzyme protease-activating factor (Denes
et al., 2012; Bufe et al., 2015; Dambuza and Brown, 2015;
Yao et al., 2015). PRRs are able to specifically recognize and
bind different microbial macromolecular ligands, which are
designated as microbial-associatedmolecular patterns (MAMPs),
such as lipopolysaccharide, flagellin and other proteins, bacterial
peptidoglycan, viral RNAs, and fungal carbohydrates. As a
result, the T cell subset involved in regulating the immune
balance is finely tuned by the host and the microbes with
which it interacts, and disequilibrium between effector T
helper (Th) and regulatory T cells (Treg) leads to impaired
immune responses (Noack and Miossec, 2014; Nyirenda et al.,
2015; Yousefi et al., 2015). Effector Th cells are derived from
progenitor naïve CD4+ T cells via maturational processes
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that are induced by antigenic stimulation. Their function
depends on complex interactions with antigen-presenting cells
(APCs) in a permissive environment, which is characterized
by the antigen type and load, costimulatory molecules, and
cytokine signaling. CD4+ T cells may differentiate into different
Th phenotypes (mainly Th1, Th2, and Th17) that produce
distinct cytokines with different biological functions, or they
may evolve into the inducible Treg lineage, which performs
immunomodulatory functions (Sakaguchi et al., 2010; Wing and
Sakaguchi, 2014). The Th1 subgroup recognizes intracellular
pathogens and mainly produces IL-2, interferon (IFN), and
tumor necrosis factor alpha (TNFα), thereby supporting typical
cellular immunity. Th2 cells, which are essential for eliminating
extracellular pathogens such as helminths, express IL-4, IL-
5, IL-10, and IL-13, which aid humoral immunity. The Th17
subset, which is involved in fighting Gram-negative bacteria,
fungi, and some protozoa, secretes IL-17, which has strong
pro-inflammatory effects. Overall, Th responses are accurately
balanced to avoid both self-antigen reactivity and excessive
reactions to antigens. In fact, dysregulated Th1 responses
drive cell-mediated autoimmune disorders, and enhanced Th2
activity is involved in atopy, whereas Th17 cells are probably
responsible for chronic tissue inflammation. In contrast, skewing
the response away from Treg cells may lead to the onset and/or
progression of autoimmune diseases in humans (Eisenstein and
Williams, 2009).

PROBIOTICS AND THE IMMUNE SYSTEM

During the last few years, it has been proposed that the intestinal
microbiota can be positively modulated by the administration
of bacteria or bacterial substrates, and it is likely that, to some
extent, this might lead to a significant modulation of the immune
system (Dongarrà et al., 2013; Sánchez et al., 2015; Scott et al.,
2015). To this end, substantial research efforts are concentrated
on using probiotics as potential modulators of gut microbial
community. Probiotics are commensal microorganisms that are
present in the intestinal tract and in many fermented foods, and
they are defined as “live microorganisms that, when administered
in adequate amounts, confer a health benefit on the host”
(Hill et al., 2014). The vast majority of probiotic bacteria are
Gram-positive strains, mainly species of the Lactobacillus and
Bifidobacterium genera, although some non-pathogenic strains
of Escherichia coli and certain yeasts are also considered to
be probiotics. Currently, there is an increasing interest in
considering some common colonizers of the human gut to be
novel probiotics, because of their potential health properties;
they are called emerging probiotics (Hill et al., 2014; Rodríguez
et al., 2015). Some examples are Faecalibacterium prausnitzii and
Akkermansia muciniphila.

Probiotics can exert their beneficial properties in a wide
range of ways, including direct cell-to-cell contact in the
human gut, by secreting diverse molecules that act as the
final mediators of probiotic crosstalk, or through cross-feeding
mechanisms. The chemical composition of the molecular
effectors is very diverse and consists of proteins that are secreted
into the extracellular milieu or localized on the surface of

the bacteria, low molecular weight peptides, amino acids, cell-
wall polysaccharides or components, bacterial DNA, or SCFAs
(Macpherson and Harris, 2004; Turroni et al., 2013). Given the
different molecular natures of these molecular effectors, their
mechanisms of action are very diverse. Therefore, this review
includes only a summary of the molecular bases underlying the
immunomodulatory properties of probiotic bacteria (Figure 2).
In addition, we must consider that genetic differences in the
expression of host receptors, the variable composition of the
autochthonous microbiota in different individuals, and other
host factors that contribute to the response to bacterial signals
are likely to explain the variability in responses to probiotics
in responding and non-responding individuals (Salonen et al.,
2014).

IMMUNOMODULATORY EFFECTORS

A significant number of relevant studies have highlighted
the immunomodulatory effects that Lactobacillus and
Bifidobacterium strains exert on the host immune system.
For instance, there is evidence that Bifidobacterium bifidum
LMG13195 and Bifidobacterium breve IPLA 20004 enhance
intestinal barrier function and preferentially elicit Treg
cell differentiation, which induces the expression of anti-
inflammatory cytokines, when co-cultured with the human
colorectal adenocarcinoma cell line HT29 (López et al., 2012).
Lactobacillus rhamnosus GG interacts with macrophages in such
a way that activated macrophages can discriminate between
probiotic and pathogenic bacteria by INF-mediated TLR gene
regulation (Miettinen et al., 2008), and the interaction between
Lactobacillus casei CRL 431 and gut-associated immune cells
induces an increase in the number of CD-206 and TLR2
receptors (Aragón et al., 2014).

The mediators of these interactions are largely unknown,
although surface and cell-envelope molecules have been
identified as some of the main players. Among them, we can
distinguish between proteins and other components, such as
peptidoglycan (PG), exopolysaccharides (EPS), teichoic acids
(TA), and lipoteichoic acids (LTA). Known molecular effectors
that mediate immunomodulatory mechanisms are listed in
Table 1.

Surface Proteins
Cell surface proteins include the S-layer proteins (Slp), which
constitute the major surface proteins of some lactobacilli. In
Lactobacillus helveticus fb213, Lactobacillus acidophilus fb116,
and L. acidophilus fb214, Slp are well studied, and it is likely that
they are necessary for lactobacilli survival in the gastrointestinal
tract, as they can bind to components of the extracellular
matrix, such as collagen and fibronectin, of intestinal cells
(Meng et al., 2014; Yadav et al., 2015). Konstantinov and
colleagues used an slpA knockout mutant of L. acidophilus
to show that the interaction occurs via the recognition of
SlpA by a specific receptor of dendritic cells, denominated
DC-SIGN (Konstantinov et al., 2008). Additionally, proteins
from structures that are included in the PG layer, such as
pili, fimbria, and flagella, are recognized by the host immune
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FIGURE 2 | Main molecular effectors that are able to trigger immunomodulatory responses in the host: Bifidobacterium (A) and Lactobacillus (B).

Some of these effectors are species-specific, such as the S-layer protein A from Lactobacillus acidophilus, whereas others, such as short chain fatty acids, are

secreted by the vast majority of strains. Detailed information about the mechanisms and the molecular effectors is included in Section Immunomodulatory Effectors.

system. Recently, it has been reported that bacterial SpaCBA
pilus fibers in L. rhamnosus GG may be responsible for its well-
known adhesion properties and confer the ability to contact

host cells (Reunanen et al., 2012). B. bifidum PRL2010 pili
have been shown to induce TNF-α production and decrease
IL-10 production in the mouse mucosa, as well as to adhere
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TABLE 1 | Examples of immunomodulatory effectors produced by classic/emerging probiotics.

Immunomodulatory effector Species Probiotic type Effect on host immune

system

References

Surface Layer Protein A (SlpA) L. acidophilus Classic Immunomodulation of intestinal

dendritic cells

Konstantinov et al., 2008

Pili proteins (SpaCBA) L. rhamnosus Classic Contact with mucosal cells Reunanen et al., 2012

Pili B. bifidum Classic Increase TNF-α and decrease

IL-10 production

Turroni et al., 2013

B. breve Classic Host colonization O’Connell Motherway et al., 2011

Fimbriae E. coli Emerging Host-colonization Kleta et al., 2014

L. plantarum Classic Immunomodulation Murofushi et al., 2015

Serpin B. longum Classic Human neutrophil and

pancreatic elastase inhibitor

Ivanov et al., 2006

Serine-threonine rich proteins Bifidobacterium sp. Classic Intestinal homeostasis Nezametdinova et al., 2014

Lactobacillus sp. Classic Intestinal homeostasis Zakharevich et al., 2012

Serine-threonine rich peptide (STp) L. plantarum Classic Anti-inflammatory; modulates

intestinal dendritic cell function

Bernardo et al., 2012; Al-Hassi et al., 2014

Lactocepin L. paracasei Classic Hydrolyzes IP-10 von Schillde et al., 2012

Secreted 15 kDa protein F. prausnitzii Emerging Anti-inflammatory Quévrain et al., 2015

Exopolysaccharides B. breve Classic Immunomodulation Fanning et al., 2012

B. lactis* Classic Immunomodulation Hidalgo-Cantabrana et al., 2014

Unmethylated CpG DNA Bifidobacterium sp. Classic Induces Th1 response Ménard et al., 2010

Teichoic/Lipoteichoic acids L. plantarum Classic Anti-inflammatory Grangette et al., 2005

Butyrate R. hominis

F. prausnitzii

A. muciniphila

Emerging Anti-inflammatory Maslowski et al., 2009

*Synonym of B. animalis subsp. lactis.

to diverse extracellular matrix proteins (Turroni et al., 2013),
while B. breve UCC2003 pili are essential for host colonization
(O’Connell Motherway et al., 2011). In another recent work, gene
complementation studies were used to show that the fimbriae
of the probiotic strain E. coli Nissle 1917 were involved in the
adhesion to porcine intestinal cells, thereby helping to prevent
infection with enteropathogenic E. coli (EPEC) (Kleta et al.,
2014).

Cell Wall Non-proteinaceous Components
Non-proteinaceous cell wall components have different roles in
microbe-host crosstalk. It has been shown that the EPS from
Lactobacillus and Bifidobacterium strains can have a modulator
role in preventing pathogen invasion, even though the EPS
of pathogenic bacteria have been classically viewed as possible
virulent factors. Examples of immunomodulatory EPS are those
from B. breve and Bifidobacterium animalis subsp. lactis (Fanning
et al., 2012; Hidalgo-Cantabrana et al., 2014) or Lactobacillus
plantarum strains (Murofushi et al., 2015). TAs are linear
polymers of ribitol phosphate or glycerol phosphate that are
covalently bound to D-alanine, monosaccharides, or amino
sugars, and they are attached either to PG (wall TAs) or to the
cytoplasmic membrane (membrane TAs or lipoteichoic acids;
LTAs). TAs from L. plantarum were shown to display anti-
inflammatory properties, as shown by the different cytokine
production profiles of peripheral blood mononuclear cells
(PBMCs) and monocytes exposed to this molecule (Grangette
et al., 2005). In addition, mice fed a diet supplemented with L.

plantarum LTAs or with an LTA-producing strain showed better
scores in a colitis model compared with the control group and
mice that were fed a L. plantarum LTA-deficient strain (Grangette
et al., 2005). Although there have been a few promising results,
this topic requires further research to clarify the mechanisms of
action of the cell wall components of probiotics on the human gut
microbiota.

Soluble Compounds
Soluble components that are produced by probiotic bacteria
can also affect the bacterial-host interplay. In Bifidobacterium
longum the secretion of serpin, a serine protease inhibitor,
which specifically binds and inactivates human neutrophil and
pancreatic elastase, was shown to contribute to gut homeostasis
(Ivanov et al., 2006). Additionally, it has been observed
that some proteins with characteristic biochemical motifs that
are produced by both commensal and pathogenic bacteria
can elicit specific functions and affect immune cells of the
intestinal lumen. This is the case for a family of serine-
threonine rich proteins, which was described in species of
Lactobacillus and Bifidobacterium, with a recently described
kinase function (Zakharevich et al., 2012; Nezametdinova et al.,
2014). In lactobacilli, a serine-threonine peptide, STp, which is
contained in a protein secreted by L. plantarum, was shown
to be involved in bacterial aggregation (Hevia et al., 2013).
Additionally, this peptide can modulate the dendritic cell
phenotype of ulcerative colitis (UC) patients (Bernardo et al.,
2012; Al-Hassi et al., 2014). It was also demonstrated that the
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immunomodulatory effect of Lactobacillus paracasei is mediated,
at least in part, by the secreted protease lactocepin, which
selectively degrades the chemokine IFN-γ-inducible protein 10
(IP-10) that functions in lymphocyte recruitment (von Schillde
et al., 2012). There are other examples of non-proteinaceous
compounds that can exert certain effects on the host. Some
species of Bifidobacterium possess unmethylated CpG motifs
in their DNA that were able to induce TLR9 activation,
which is known to trigger a Th1 orientation of the immune
system (Ménard et al., 2010). In contrast, in other studies, it
was shown that intragastric and subcutaneous administration
of DNA from a probiotic mix ameliorated the severity of
colitis in a murine experimental colitis model, whereas a
methylated probiotic DNA had no effect (Rachmilewitz et al.,
2004).

EMERGING PROBIOTICS, A NOVEL
SOURCE OF IMMUNOMODULATORY
EFFECTORS

In addition to Lactobacillus and Bifidobacterium, other
microorganisms have received substantial interest among
researchers as potentially new, beneficial gut bacteria. Most of
them are common colonizers of the human gut under normal
conditions. Some of these microbial types are considered to
be markers of dysbiosis in intestinal inflammatory diseases,
such as UC and Crohn’s disease (Manichanh et al., 2006; El
Aidy et al., 2013). In these conditions, a loss of microbial
diversity and a significant reduction of members of Clostridium
clusters IV and XIVa have been reported, particularly in bacteria
involved in butyrate and propionate metabolism, such as
Ruminococcus, Eubacterium, Roseburia, and Faecalibacterium. In
this section, we will highlight current research on F. prausnitzii
and A. muciniphila, two bacteria that have received much
attention during the last few years because of their potential
immunomodulatory properties.

F. prausnitzii is a “novel” intestinal bacterium whose
immunomodulatory properties have been well characterized
in vitro and in vivo. This anaerobic, Gram-positive bacterium
seems to play a role in the maintenance of gut homeostasis, and
its population is normally reduced in intestinal inflammatory
diseases (Sokol et al., 2008; Cao et al., 2014; Machiels et al.,
2014). In 2008, Sokol and colleagues studied the effects of whole
bacteria, a cell culture supernatant, bacterial DNA, ormembrane-
derived fractions in vitro using the Caco-2 epithelial colorectal
adenocarcinoma cell line and PBMCs, as well as in vivo in
a mouse model of 2,4,6-trinitrobenzene sulfonic acid (TNBS)-
induced colitis (Sokol et al., 2008). The results showed that F.
prausnitzii cells exerted anti-inflammatory effects in PBMCs.
Furthermore, its culture supernatant reduced IL-8 secretion and
abolished the activation of nuclear factor kappa-light-chain-
enhancer of activated B cells (NF-κB) in Caco-2 cells. Moreover,
although no significant improvement of the disease was detected
in mice, partial disease scores significantly improved in colitic
mice receiving the cell culture supernatants, compared with the
non-receiving group. Accordingly, the authors hypothesized that

the beneficial effects of F. prausnitzii must be executed by a
soluble compound that is secreted by the bacteria. In relation
to this, recent work showed that F. prausnitzii secreted a 15-
kDa protein with anti-inflammatory properties. This protein
was able to inhibit the NF-κB pathway in intestinal epithelial
cells, and it prevented colitis in an animal model (Quévrain
et al., 2015). Additional research showed that this bacterium
restored physiological parameters and downregulated cytokine
profiles in mice with colitis, as well as increased the Treg
population to a greater degree than other commensals such
as B. longum (Qiu et al., 2013; Martín et al., 2015). UC
patients have fewer butyrate-producing Roseburia hominis and
F. prausnitzii (Machiels et al., 2014). It is likely that a significant
part of their anti-inflammatory action results from the effect
of SCFAs in colonocytes, as acetate, propionate, and butyrate
modulate the inflammatory responses of immune cells through
receptors such as Gpr43 and Gpr41 (Maslowski et al., 2009).
However, despite all the information that has recently been
discovered about these bacterial groups in healthy and diseased
states, and besides butyrate seeming to be the key homeostasis
promoter, additional work is required to elucidate the molecular
mechanisms through which F. prausnitzii interacts with the host
gut environment.

A. muciniphila is another common member of the healthy gut
microbiota in humans at all stages of age (Collado et al., 2007;
Belzer and de Vos, 2012). A. muciniphila is a Gram-negative,
strictly anaerobic, mucin-degrading microorganism member of
the Verrucomicrobia phylum, and it was one of the first bacteria
shown to utilize mucin, the glycosylated protein layer that covers
the gut epithelium, as its sole carbon, nitrogen, and sulfur source.
The products derived frommucin degradation are mainly SCFAs
that feed colonocyte metabolism and confer health properties
to the host. By degrading the mucin of the external mucus
layer, A. muciniphila helps with the continuous renovation of
the protective cover of the mucosae, and it maintains a healthy
protective barrier that prevents the entrance of enteropathogens
into the epithelium (Lukovac et al., 2014). In addition, when
A. muciniphila was administered to mice, there were increased
intestinal levels of endocannabinoids that control inflammation,
the gut barrier, and gut peptide secretion, suggesting an
immunomodulatory role for this bacterium (Everard et al., 2013).

CONCLUDING REMARKS

In conclusion, even though much effort has been put into
probiotic research during recent decades, the mechanisms
underlying the immunomodulatory effects of beneficial
intestinal bacteria have scarcely been elucidated. There is
compelling evidence that novel bacterial players, other than
Lactobacillus and Bifidobacterium, could play a role in these
processes and are much more important than previously
thought; however, difficulties in growing some of these
bacteria on laboratory- and industrial-scales, and the lack of
molecular tools needed to perform functional genomic analyses,
seriously hamper the characterization of novel strains. Further
research is needed to overcome these culturing and functional
characterization difficulties to perform well-designed pre-clinical
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and intervention studies that shed new light on the mechanisms
responsible for the beneficial effects attributed to these bacteria.
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