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A major global concern is the emergence and spread of systemic life-threatening fungal
infections in critically ill patients. The increase in invasive fungal infections, caused most
commonly byCandida and Aspergillus species, occurs in patients with impaired defenses
due to a number of reasons such as underlying disease, the use of chemotherapeutic and
immunosuppressive agents, broad-spectrum antibiotics, prosthetic devices and grafts,
burns, neutropenia and HIV infection. The high morbidity and mortality associated with
these infections is compounded by the limited therapeutic options and the emergence of
drug resistant fungi. Hence, creative approaches to bridge the significant gap in antifungal
drug development needs to be explored. Here, we review the potential anti-fungal targets
for patient-centered therapies and immune-enhancing strategies for the prevention and
treatment of invasive fungal diseases.
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INTRODUCTION
From among more than a million species of fungi present in nature, only a few 100 of them are
capable of causing infections in humans (O’Brien et al., 2005). Of these, only a handful can cause
diseases in healthy people, which ismostly superficial in nature (Kohler et al., 2015; LIFE at www.life-
worldwide.org). Invasive fungal diseases (IFD) usually occur in susceptible individuals who are
immunocompromised due to serious illnesses such as leukemia, neutropenia, AIDS, etc. In addition,
medical advances have created vulnerable populations such as patients undergoing chemotherapy,
solid and hematopoietic stem cell transplantation (HSCT), complex surgeries, immunosuppressive
therapies for auto-immune and auto-inflammatory diseases, antibiotic therapies and treatment in
intensive care units.

The major fungi responsible for these invasive infections, which kill about one and a half million
people every year, are Candida, Aspergillus, and Zygomycetes species. Invasive candidiasis is the
fourth and sixth most common nosocomial infection in US and Europe respectively with a high
mortality rate ranging from 36 to 63% (Wisplinghoff et al., 2004; Brown et al., 2012; Rodrigues
et al., 2014). The risk factors for candidemia include prior antibiotic usage, abdominal surgery,
Candida colonization, central lines and parenteral nutrition (Wey et al., 1989; Blumberg et al.,
2001) Aspergillus is a ubiquitous filamentous saprophytic mold whose conidia are dispersed in
the air. Like the Zygomycetes, these molds cause several invasive diseases in hosts with markedly
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suppressed immunity and have a mortality rate in excess of
50–60% despite treatment (Herbrecht et al., 2002; Neofytos et al.,
2009).

Such is the concern of the impact of IFD in immuno-
compromised patients. This is despite the ever wider availability
of anti-microbials beyond the conventional amphotericin-B
based preparations and in the recent decade especially, the
newer generation and classes of anti-fungals like voriconazole,
posaconazole, and isavuconazole (of the azole family) and the
echinocandins (caspofungin, anidulafungin, and micafungin).
Some of the reasons for the high mortality are the difficulties
in the early and correct diagnosis of invasive fungal infections
(de Pauw and Picazo, 2008; Erjavec et al., 2009) as well as
drug resistance profiles among specific fungal pathogens (Perlin,
2007; Verweij et al., 2007; Xie et al., 2014). The main reason
for the poor outcomes from invasive disease nonetheless, is
the incapacity of the patient’s compromised immune system
to respond appropriately to the invading pathogen despite the
presence of antimicrobials.

The response to such a challenge faced by the clinician
at the bedside has led to exploration of novel therapeutic
modalities beyond conventional antimicrobials; specifically, the
manipulation and augmentation of the host immune response
in the face of IFD. Through understanding how the immune
system can detect the fungi, immunotherapeutic strategies may
be formulated as adjuncts in the management of IFD.

IMMUNE RECOGNITION AND RESPONSE
BY THE HOST

The susceptibility and outcome of fungal infections depend on
two main factors: the pathogen and the host. Pathogen factors
may include the dose of the infecting fungi and its virulence. The
efficacy of the immune response and the degree of the immune
suppression in the patient are the major host determinants.
The host defense capacity to fungal infection range from the
protective mechanisms provided by skin, mucosa and innate
immunity to the humoral response and adaptive immunity
(Mueller-Loebnitz et al., 2013). The innate immune systemdespite
its lack of specificity has been considered to bear significant
importance in the defense mechanism against fungi. Monocytes,
macrophages, neutrophils, and natural killer (NK) cells effect anti-
fungal capabilities through phagocytosis, and directed pathogen
killing. The fungal cell wall is the first structure encountered by
host cells. Fungal cell wall is made up of various polysaccharides
that have immune activating and modulatory properties. These
pathogen associated molecular patterns (PAMPs); such as alpha
and beta glucans, chitins, mannans, β- 1, 2-oligomannosides and
galactomannan of varying constitutions in the cell wall of various
fungi allow recognition by the innate immune cells; mainly
monocytes, macrophages, dendritic cells (DCs) and endothelial
cells (Netea et al., 2008). Pathogen recognition receptors (PRRs),
a protein family of cellular receptors that mediate recognition
of microbial pathogens and subsequent inflammatory response
are present on the surface of DCs and macrophages (Hamad,
2012).

IMMUNE RECOGNITION

One of the main PRRs are the Toll-like receptors (TLRs), whose
role in the recognition of Aspergillus and Candida has been
well documented especially, TLR2, TLR4, and TLR9 (Pasare
and Medzhitov, 2005; Takeda and Akira, 2005; Goodridge and
Underhill, 2008; Uematsu and Akira, 2008; Loures et al., 2010).
The PRRs mounted on the host cells recognize specific fungi
cell wall moieties of polysaccharide origin, namely the PAMPs.
Fungal PAMPs for cell surface TLRs have been identified mainly
through studies involving fungi with cell wall mutations. For
instance, fungal phospholipomannans (PLMs), linear beta-1, 2-
oligomannosides and glucuronoxylomannan (GXM) are known
to bind with TLR2, while, O-linked mannans have been shown
to activate TLR4 (Netea et al., 2006). Apart from cell surface
PAMPs, nucleic acids released from the fungi in the phagosome
also stimulate TLRs and modulate the host responses. TLR 9
activation occurs through interaction of genomic DNA whereas
double stranded and single stranded RNA stimulate TLR3 and
TLR7 respectively (Bourgeois and Kuchler, 2012).

Recognition of fungal antigen by TLR4 leads to pro-
inflammatory cytokine production by NF-κB activation mediated
by the adaptor protein Myd88. Bellocchio et al. (2004) supported
that TLR4-mediated pro-inflammatory effects are protective
against invasive aspergillosis by showing increased susceptibility
of TLR4−/− mice to Aspergillus fumigatus infection. Mutation
of Asp299Gly in TLR4 is associated with increased incidence
of pulmonary aspergillosis (Carvalho et al., 2008). It was
subsequently demonstrated that HSCT patients in possession
of the D299G/T399I haplotype were at higher risks of invasive
aspergillosis (Bochud et al., 2008). TLR2 was shown to influence
early recruitment and killing capacity of neutrophils against
A. fumigatus (Bellocchio et al., 2004). TLR2−/− mice infected
intraperitoneally with Candida albicans were found to have
lesser recruitment of neutrophils and monocytes (Tessarolli
et al., 2010). However, TLR2−/− mice had decreased fungal
burden compared to the control mice accompanied by increased
production of interleukin 12 (IL12) and decreased production
of IL10. The role of TLR2 is still under debate as studies based
on targeted patient genotype of TLR2 did not reveal enhanced
susceptibility. TLR9−/− mice are reported to have higher fungal
burden than control mice and found to be producing more IL10
and lower IL12 which is in contrast to findings in TLR2−/− mice.
Mutations in TLR9 are associated with increased incidence of
allergic bronchopulmonary aspergillosis (Carvalho et al., 2008;
Mezger et al., 2010). An association of invasive aspergillosis was
also seen in patients undergoing HSCT with SNPs in TLR1 and
TLR6 (Kesh et al., 2005). It should be noted that TLR response
may vary depending on fungal species and morphotype, and
route of infection as well as the specific fungal infection (Romani,
2011).

Another family of PRRs that are important in the recognition
of fungal PAMPs are C-type lectin receptors, otherwise known
as CLRs. β-glucans present on the cell walls of Candida and
Aspergillus species activate Dectin-1 receptor, while Dectin-2, and
Dectin-3 mainly recognize hyphal α-mannan (Saijo et al., 2010).
N-mannan is recognized by mannose receptor while galectin-3
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binds to β-mannans. Fungal N- linked mannans also bind to DC-
SIGN and mannose binding lectin (MBL) receptors present on
phagocytes (Becker et al., 2015).

Dectin-1 is the most widely known CLR associated with
fungal recognition. Dectin-1 recognition of β-glucan activates
canonical and non-canonical NF-κB activation by two pathways,
Syk-CARD9 and RAF pathways, resulting in increase in the
pro-inflammatory cytokine production. Stimulation of Dectin-
1 also increases IL1β and IL18 production through NLRP3
inflammasome pathway. Dectin-1 also collaborates with TLR2 to
trigger pro-inflammatory cytokine production upon recognition
of Candida albicans and zymosan. Dectin-1 deficient and CARD
9 deficient mice have predisposition to Candida infections
(Ferwerda et al., 2009; Drewniak et al., 2013). Dectin-2 pairs
with FcRγ to induce pro-inflammatory cytokine release. Dectin-
1 plays an important role in human fungal infections too. It
is evident from the polymorphism Y238X noticed in a Dutch
family whose members were subject to recurrent vulvovaginal
candidiasis and/or onychomycosis, while increased oral and
gastrointestinal colonization of Candida was observed in HSCT
recipients. In addition, it was noticed that there were defects
in the expression of Dectin-1 and β-glucan recognition by
phagocytes coupled with decrease in the production of cytokines,
especially IL17 (Ferwerda et al., 2009; Plantinga et al., 2009).
Similarly CARD9−/− patients show increased susceptibility to
chronic mucocutaneous candidiasis and reduced Th17 cells
(Glocker et al., 2009). MINCLE, which is mainly expressed by
macrophages, also induce NF-κB activation through Syk-CARD9
signaling. Mannose receptors are involved in the phagocytosis of
un-opsonized Candida yeasts. Mannose receptor interacts with
galectin-3, a PRR which recognizes carbohydrate moieties on
fungal cell wall, to induce TNFα production (Esteban et al., 2011;
Kawai and Akira, 2011).

Both Candida and Aspergillus also trigger an immune response
through activation of the inflammasome—most well described
through NLRP3 and caspase-1 activation, with the involvement
of the tyrosine kinase Syk and Dectin-1 (Gross et al., 2009; Said-
Sadier et al., 2010). The non-canonical caspase-8 pathway is also
implicated in the context of Candida (Gringhuis et al., 2012).
Both result in the cleaving and production of IL1β, a pivotal
mediator of inflammatory response together with interferon
gamma (IFNγ) and tumor necrosis factor alpha (TNFα). The
invocation of a “pro-inflammatory” response necessitates a
“counter-regulatory” component which is maintained by IL4 and
IL10 and more recently, possibly through the inhibitory group of
NLR (nucleotide-binding domain, leucine-rich repeat containing)
proteins (Ting et al., 2010). It is believed that it is in the context
of such a conventional paradigm of a balance between a “pro- and
anti-inflammatorymilieu” that host susceptibility and outcome of
an IFD episode may be determined (Chai et al., 2011).

IMMUNE REGULATION

Role of Neutrophils
The state of neutropenia is a well-established risk factor for
invasive aspergillosis (Marr et al., 2002). Neutrophils, being
the primary effector cells of innate immune system, efficiently

and rapidly kill fungi by various mechanisms. Neutrophils are
capable of recognizing fungi by TLR2, TLR4, Dectin-1, and
complement receptors such as CR1 and CR3 (Braem et al.,
2015). MAP kinase signaling is reported to mediate neutrophil
activation, especially ERK signaling pathway, since inhibition of
ERK signaling pathway abolishes C. albicans induced neutrophil
migration (Wozniok et al., 2008). Once activated, neutrophils are
able to release neutrophil extracellular traps as well as an array
of cytokines and chemokines. Neutrophils recruitment, activation
and survival in inflammatory sites are affected by Th17 controlled
pathway in fungal infections. Neutrophils are also the source of
pattern recognition molecule, pentraxin 3 (PTX3) which forms
complexes on the conidial surface of the fungus and acts as
an opsonin, enhancing recognition and phagocytosis of conidia
through mechanisms that depend on Fcγ receptor, CD11b and
complement (Mantovani et al., 2011; Cunha et al., 2014).

Role of Dendritic Cells/Monocytes/
Macrophages
Dendritic cells serve the bridge between innate and adaptive
immunity since they can present antigen to T cells, activate both
innate and adaptive immune system by release of cytokines and
chemokines. DCs can recognize fungal pathogens by the receptors
such as Dectin-1, TLR2, and TLR4. Production of CCL20 as well
as PTX3 increasedwith the activation ofDCs (Mezger et al., 2008).
DCs alsomature after phagocytosis of fungal cells andpromote the
differentiation of naive T cells to CD4+ T cells which are essential
for antifungal defense.Aspergillus conidia and hyphae induce NF-
κB translocation and release of proinflammatory cytokine TNFα,
and MIP2 in TLR2 and TLR4 dependent manner via adaptor
protein Myd88.

Monocytes are macrophage and DC precursors; they serve
as phagocytes as well as antigen presenting cells. Monocytes
produce CCL20which activates neutrophils, monocytes and naive
T cells. Alveolar macrophages destroy Aspergillus conidia via
non-oxidative mechanisms. The activity of macrophages can be
enhanced by GM-CSF or IFNγ (Mueller-Loebnitz et al., 2013).

IMMUNE RESISTANCE VS IMMUNE
TOLERANCE
T cells act as the immune modulators and master effectors in the
immune response against fungal pathogens. Conventionally, Th1
response is associated with TLR4 signaling resulting in secretion
of IFNγ and TNFα (for protection against fungal pathogen), while
Th2 response is associated with TLR2 signaling resulting in the
production of anti-inflammatory cytokines (IL4 and IL10) to
regulate the inflammatory response (which unfortunately leads
to more susceptibility against fungal infection). Th17 cells have
been increasingly recognized to serve one of the central roles
in the anti-Candida response especially the mucosal immunity.
Th17 has long been attributed to autoimmune diseases while
defective Th17 response results in mucocutaneous candidiasis
in patients with primary immunodeficiencies (Zelante et al.,
2009). In fungal infections, Th17 activation occurs through
Syk-CARD9, Myd88 and mannose receptor signaling pathways in
DCs and macrophages (Romani, 2011). Activation of IL17 results
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FIGURE 1 | Immune enhancement strategies for invasive fungal infections in immunocompromised hosts.

in the recruitment of neutrophils, defensins and ultimately results
in inflammation. However, IL17 activation is also associated
with high inflammatory pathology and inhibitory effects on
the IFNγ related activation of indolamine 2, 3-dioxygenase
(IDO) that is important for immune tolerance function (Romani
and Puccetti, 2008). Candida albicans is known to dampen
Th17 response resulting in chronic inflammation due to the
impairment of IL17 dependent neutrophil recruitment leading
to fungal persistence and immune dysregulation (Cheng et al.,
2010).

While inflammation and immune response is necessary to
eliminate the fungus, it is also important to limit the collateral
damage to tissue and restore homeostasis to the environment.
IL10, a major suppressive cytokine produced by CD4+ T
regulatory cells plays an important role in keeping inflammation
under control. However, the delicate balance of IL10/IFNγ needs
to be in check since high level of IL10 suppresses the activity
of IFNγ which provides the main Th1 defense against fungal
infections. IDO which is a product of tryptophan metabolism is
also increasingly recognized as the master regulator of immune
resistance and tolerance since it can induce T regulatory cells and
inhibit Th17. IDO and kynurenines balance immune tolerance
and resistance by providing adequate elimination of fungal

pathogenwhile preventing the unacceptable level of inflammation
and allergy (Zelante et al., 2009).

IMMUNE ENHANCEMENT STRATEGIES
The increased understanding of anti-fungal host responses
has facilitated novel approaches into molecular and cell-based
immunotherapeutics for invasive fungal infections (Figure 1).
Notably, the major protective host response against fungi is
the effective induction of Th1 and IFNγ responses, which in
turn, activates effector phagocytic cells that kill the fungi. A
cautionary note, however, is that this inflammatory response
needs to be appropriately regulated or curbed when the pathogen
or stimulatory ligand is contained, to minimize progression into
a chronic inflammatory state which may induce collateral tissue
damage.

Cytokine Therapy
The use of recombinant cytokines such as human granulocyte
macrophage colony-stimulating factor (GM-CSF), granulocyte
colony-stimulating factor (G-CSF), macrophage colony-
stimulating factor (M-CSF) and interferon-gamma (IFNγ) have
been explored as immune enhancing agents. GM-CSF, G-CSF,
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andM-CSF belong to the family of hematopoietic cytokines. They
stimulate the proliferation of granulocyte and/or macrophage
progenitor cells, induce differentiation and maturation, and
stimulate functional activity of mature hematopoietic cells
(Pikman and Ben-Ami, 2012). GM-CSF alone or in combination
with IFN-γ has been shown to enhance the fungicidal activity of
innate phagocytic cells in vitro and in vivo. GM-CSF has been
shown to preferentially enhance both the numbers and activity
of type 1 DCs and cause upregulation of macrophage dectin-1
expression (Willment et al., 2003; Van de Veerdonk et al., 2010).
Human M-CSF enhanced the activity of phagocytic cells and
prolonged survival alone or in combination with amphotericin
B in immunosuppressed mice with systemic Candida infection
(Kuhara et al., 2000). Similarly, M-CSF when added to standard
antifungal treatment of 46 stem cell transplantation recipients
with progressive fungal infections showed better overall survival
rates (Nemunaitis et al., 1993).

G-CSF is widely used in clinical practice during chemotherapy
induced neutropenia. While G-CSF clearly reduces neutropenic
days and neutropenia-related hospitalization, its efficacy in
clinical outcomes including infection and mortality rates remain
less clear (Smith et al., 2006). In a review of 925 mucormycosis
cases, 15 of 18 patients showed favorable clinical response when
given G-CSF adjunctive therapy (Roden et al., 2005). Clinical data
on the use of GM-CSF as adjuvant antifungal therapy are scarce.
Few case reports or small patient series with drug-refractory
invasive aspergillosis infection have been published but provide
limited information. Recently, a retrospective assessment of 66
patients was performed in whom GM-CSF was given during
antifungal therapy to high-risk cancer patients and stem cell
transplant recipients with IFD. A complete or partial response
occurred in more than half of the patients treated with GM-CSF
despite recent treatment with antineoplastic therapy and presence
of other predictors of poor outcomes (Safdar et al., 2013). Further
prospective studies to assess CSFs efficacy in the treatment of
established fungal disease are needed.

IFNγ, produced by T and NK cells, increases the cytotoxic
capacity of antigen presenting cells and intracellular killing. In a
recent prospective case series, eight patientswith invasiveCandida
and/or Aspergillus infections were treated with recombinant
IFN-γ for 2 weeks in addition to standard antifungal therapy.
Recombinant IFN-γ treatment in patients with invasive Candida
and/or Aspergillus infections partially restored immune function,
as characterized by an increased HLA-DR expression in those
patients and an enhanced production of pro-inflammatory
cytokines involved in antifungal defense (Delsing et al., 2014).
IFNγ is also used in the treatment of recalcitrant aspergillosis
(Kelleher et al., 2006; Bandera et al., 2008; Estrada et al., 2012).
Further large-scale clinical studies to assess the potential clinical
benefit of IFNγ is needed, but the cost of the drug remains amajor
concern.

Preclinical trials have assessed other pro-inflammatory
cytokines that upregulate the antifungal Th1 response such as
IL12, IL15, and TNFα as candidate adjuvants. IL12 is required
for Candida-induced differentiation of Th1 cells in vivo (Romani
et al., 1997) and for the antifungal activity of monocytes
against A. fumigatus hyphae in vitro (Roilides et al., 1999). The

usefulness of IL12 as immune enhancer is controversial. Invasive
mold infections were reported in two autologous stem cell
transplantation recipients treated with IL12 (Toren et al., 1997),
raising concern that IL12 may paradoxically provoke an immune
flare to fungal pathogens.

IL15 is also a potential new drug candidate. This cytokine,
shares biological activities with IL2, in enhancing antifungal
granulocyte activity in cell cultures (Vazquez et al., 1998; Winn
et al., 2003). Neutralization of TNFα, a signature cytokine
of Th1 cells, increases the susceptibility of mice to invasive
aspergillosis, whereas intratracheal instillation of TNFα agonist
peptides confers protection against A. fumigatus conidia (Mehrad
et al., 1999). Further preclinical investigation is required not only
for these cytokines, but also for IL18 and IL36 belonging to the
interleukin 1 family (Gresnigt et al., 2013; Ketelut-Carneiro et al.,
2015).

Granulocyte Transfusion
Transfusion of granulocytes from healthy donors has been
used anecdotally for immune enhancement in patients with
neutropenia who suffer from invasive fungal infections. Earlier
attempts were beset by the lower yield and quality of granulocytes
recovered from steroid treated donors. However, with advances in
apheresis methods, better sedimenting agents and the recent use
of recombinant cytokines like G-CSF and IFN-γ1b in addition to
steroids, the yield and quality of leukocytes from healthy donors
have improved.

The efficacy of granulocyte transfusion has been shown by the
increased survival rates following its use in the treatment of cancer
patients with candidemia (Price et al., 2000). In an uncontrolled
prospective study of 23 patients treated for IFD with granulocyte
transfusion, no recurrent infection was observed (Mousset et al.,
2005). However, in a Phase III randomized trial of 74 patients
with febrile neutropenia, 55 of whomhad IFD and 39 had received
stem cell transplantation, there was no clear effect of granulocyte
transfusion on survival up to day 100 (Seidel et al., 2008). Though
major randomized trials are lacking for patients with invasive
aspergillosis and mucormycosis, good clinical efficacy and safety
using appropriate granulocytes is evident through various small
case series and case reports (Dignani et al., 1997; Illerhaus et al.,
2002; Slavin et al., 2002; Safdar et al., 2006). Therefore, the use of
granulocyte transfusions in patients with severe neutropenia and
uncontrolled infection, in spite of appropriate antifungal therapy
might be considered as a potential life-saving treatment option.

Antibodies
The era of antibody-based therapy for invasive fungal infections
dawned with the discovery of protective monoclonal antibodies
(mAbs) against the capsular polysaccharide of Cryptococcus
neoformans (Dromer et al., 1987). Subsequently, protective
antibodies against Candida albicans (Han and Cutler, 1995;
Moragues et al., 2003), Aspergillus fumigatus (Chaturvedi et al.,
2005) and other fungi were elucidated.

Two antifungal mAbs have been evaluated in clinical trials.
18B7, amAb against the capsular polysaccharide of C. neoformans
was found to be safe in a Phase I study (Larsen et al., 2005)
but there is a lack of efficacy data. Efungumab (Mycograb) is
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a genetically engineered human recombinant antibody against
fungal heat shock protein 90. HSP90 is an immunodominant
antigen of the Candida cell wall and is required for its survival.
In preclinical studies, Mycograb showed activity against a wide
range of Candida species and synergized with antifungal drugs
(Matthews et al., 2003; Hodgetts et al., 2008). But the role of
Mycograb at the bedside remains still controversial. Results of a
double-blind clinical trial in 117 patients with invasive candidiasis
receiving liposomal Amphotericin B with or without Mycograb,
showed that by day 10, the patient group receiving Mycograb
combination (84 vs 48%; p < 0.001) had complete response with
more rapid clearance of fungal cultures and reduced Candida-
attributable mortality rate (Pachl et al., 2006). However, due to
methodological and safety issues (Herbrecht et al., 2006), the drug
has not gained licensure yet.

On a similar note, monoclonal antibodies mAb C7 and mAb
A9, against Candida cell wall mannoprotein and A. fumigatus cell
wall glycoprotein respectively, exhibit direct fungicidal activity
(Moragues et al., 2003; Chaturvedi et al., 2005) with reduced
fungal burden and increased survival rate in murine models of
invasive infection.

Killer anti-idiotypic antibodies, which mimic broad spectrum
antimicrobial peptides have been developed. These antibodies,
upon intranasal administration to immunosuppressed mice with
invasive aspergillosis have resulted in cure and long-term survival
(Cenci et al., 2002).

Radioimmunotherapy is another novel antibody-based
concept, whereby radiolabeled antibodies that recognize fungal
antigens are used to deliver microbicidal radiation with less
systemic toxicity (Bryan et al., 2010). It is hoped that radiolabeled
mAbs that bind antigens shared by many pathogenic fungi, such
as HSP60 and β1, 3 glucan, may act as adjuncts in tandem with
conventional antifungals (Bryan et al., 2012).

Vaccination
Antifungal vaccines is an area that has drawn increasing interest
and research in recent years. The effective usage of fungal vaccines
is limited in the immunocompromised hosts as they not only
tend to mount weak protective responses to vaccines but are also
at risk from live attenuated formulations. Hence fungal vaccines
are often based on standardized cellular subunits which require
an adjuvant to induce protective immunity. Heat shock proteins
may serve as powerful adjuvants while the immune response
may be enhanced by mannosylation of antigens (Spellberg, 2011).
Protective immunity arises frombothT-cell responses, specifically
Th1 and/or Th17 (Wuthrich et al., 2011) and antibody responses.

Preclinical evaluation of vaccines to a number of important
fungal pathogens have been performed and at least two have been
subject to Phase I clinical trials (Pikman and Ben-Ami, 2012).
Universal fungal vaccines may be on the horizon with a conjugate
vaccine that evokes antibodies to β-glucans offering cross-
protection against three major fungal pathogens: C. albicans, A.
fumigatus, and C. neoformans (Torosantucci et al., 2009). Another
promising panfungal vaccine preparation originates from heat-
killed Saccharomyces and is found to confer protection against
Aspergillus, Coccidioides, and Candida infections (Stevens et al.,
2011).

Though animal studies with crude A. fumigatus antigens are
promising, the ideal dose that can be safely administered to
humans is not well understood (Stevens, 2004). Vaccination
of mice with a distinct Aspergillus antigen Aspf 3 prior to
immunosuppression was shown to confer protection against
subsequent inhalational challenge with A. fumigatus (Ito et al.,
2006). It was shown that immunization confers cellular rather
than humoral immunity since naive mice were protected from
invasive aspergillosis by passive transfer of CD4+ cells rather than
anti-Aspf 3 antibodies from immunizedmice (Diaz-Arevalo et al.,
2011). Additional vaccine candidates include secreted protein
Pep1p and anchored proteins Gel1p and Crf1p (Bozza et al., 2009)
of which, Crf1p proved to be immunogenic with cross-reactivity
and protection against C. albicans (Stuehler et al., 2011).

Natural Killer Cell Treatment
Recently the role of NK cells in antifungal immunity is being
investigated. It has been found that IL2-primed NK cells are
cytotoxic toward A. fumigatus germlings and hyphae, an effect
that is not mediated through degranulation of its cytotoxic
proteins like perforin, granzymes etc., but mediated by IFNγ and
TNFα secretion (Bouzani et al., 2011; Schmidt et al., 2011). NK
cells have been shown to be the most important source of IFN-
γ in the lungs of neutropenic hosts during the early stages of
invasive aspergillosis (Park et al., 2009). It was also shown that
the chemokine ligand MCP1/CCL2 mediates recruitment of NK
cells resulting inmore rapid clearance ofAspergillus from the lungs
(Morrison et al., 2003) implicating the potential for NK-based
therapeutic applications.

Adoptive T cell Transfer
Defective T-cell immunity is a hurdle in the path to a robust
immune response to vaccines and antimicrobial treatment.
Conceptually, this problem could be overcome by T-cell-
independent vaccination, wherein the CD4+ T-cell-derived factor
CD40L, required for DC costimulation of B cells, is replaced
(Zheng et al., 2005).

One of the strategies to reduce the risk of invasive aspergillosis
is the induction of Th1-type immune response that may be
achieved by either transferring Aspergillus-specific Th clones
or DCs that have been primed to trigger Aspergillus-specific
immunity (Pikman and Ben-Ami, 2012). Adoptive T-cell transfer
has been shown to decrease galactomannan levels significantly
with higher survival rates as compared with patients who did not
receive immunotherapy (Perruccio et al., 2004). Specific Candida
cell wall proteins expressed during invasive infection have
been synthesized as immunogenic peptide epitope–β-mannan
conjugates. DCs pulsed with three of these epitopes conferred
protection against disseminated candidiasis inmice.Of note is one
epitope, derived from fructose-bisphosphate aldolase, which was
shown to induce robust antibody dependent protective responses
to C. albicans (Xin et al., 2008).

Various vaccine formulations using DCs to induce adoptive
immunity to Aspergillus have been studied. DCs pulsed
with live conidia, transfected with conidial RNA or primed
with unmethylated CpG oligodeoxynucleotides and pulsed
with Aspf16 antigens trigger specific Th1-type responses and
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protective immunity against invasive aspergillosis in a mouse
model. DC infusion was shown to be more effective and superior
to that of Aspergillus-specific T cells (Bozza et al., 2002, 2003).
Subsequently, it was shown that DCs transfected with IL-12 DNA
and pulsed with heat-inactivated A. fumigatus induced protective
immunity against invasive pulmonary aspergillosis, as reflected by
decreased fungal burden and increased survival (Shao et al., 2005).

CONCLUSIONS AND FUTURE
PERSPECTIVES
Despite the advances in our knowledge and understanding in
pathogenesis, IFD continues to result in significant morbidity
and mortality in immunocompromised patients. The current
conventional therapeutic modalities have not been fully effective.
In addition, prolonged use of antifungal agents pose the risk of
emergence of fungi resistant to conventional drugs.

The urgent need of the hour is to improve treatment options
for patients with IFD by the usage of newer and more effective
drugs, alone or combined together that can cure the infection. The
other promising solution would be the use of immunotherapeutic

modalities to improve and enhance the host defense system
against fungal pathogens. The increase in knowledge of the
pathogenesis of fungal infections has ushered in a new era of
immunotherapeutic options. It is of utmost importance that
further relevant clinical trials be conducted to explore the various
immunotherapeutic strategies that hold promise for the better
treatment and control of IFD in the near future.
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