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The great phylogenetic diversity of microalgae is corresponded by a wide arrange of
interesting and useful metabolites. Nonetheless metabolic engineering in microalgae has
been limited, since specific transformation tools must be developed for each species
for either the nuclear or chloroplast genomes. Microalgae as production platforms for
metabolites offer several advantages over plants and other microorganisms, like the
ability of GMO containment and reduced costs in culture media, respectively. Currently,
microalgae have proved particularly well suited for the commmercial production of omega-
3 fatty acids and carotenoids. Therefore most metabolic engineering strategies have
been developed for these metabolites. Microalgal biofuels have also drawn great
attention recently, resulting in efforts for improving the production of hydrogen and
photosynthates, particularly triacylglycerides. Metabolic pathways of microalgae have
also been manipulated in order to improve photosynthetic growth under specific
conditions and for achieving trophic conversion. Although these pathways are not strictly
related to secondary metabolites, the synthetic biology approaches could potentially be
translated to this field and will also be discussed.

Keywords: microalgae, metabolic engineering, transformation, carotenoids, biodiesel, biohydrogen, PUFA,
photosynthesis

INTRODUCTION

Microalgae, defined as a polyphyletic group of unicellular photosynthetic eukaryotes, are among
the most ancient and diverse organisms on the planet. There are at least 40,000-70,000 species
belonging to nine different phyla. Additionally, some estimates propose that there could be up to
eight times the amount of undiscovered or unclassified species (Norton et al., 1996; Bhattacharya
et al., 2004; Guiry, 2012).

Microalgae have evolved to adapt to a wide range of environments and consequently have
proven to be a rich source of genetic and chemical diversity (Dufresne et al., 2008; Parker et al.,
2008; Tirichine and Bowler, 2011; Blunt et al., 2012; Hildebrand et al., 2013). Figure 1 shows that
the polyphyletic nature of microalgae constitutes them as an excellent target for discovering unique
groups of protein orthologs (Chen et al., 2006).

Furthermore, algae diversity has been exploited as a unique source of bioactive compounds
like carotenoids, fatty acids (FAs), sterols, mycosporine-like amino acids, phycobilins, polyketides,
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FIGURE 1 | Diversity of protein ortholog groups in microalgae, higher plants, and vertebrates. (A) Phylogenetic tree of the selected species according to
NCBI taxonomy. The tree was constructed using PhyloT and iTOL (Letunic and Bork, 2011). (B) Unique and shared groups of protein orthologs according to
OrthoMCL database (Chen et al., 2006). The Venn diagrams were constructed using Euler8Applet (Chow and Rodgers, 2005). Common names for the species:
Chlamydomonas reinhardtii (green alga, red circle); Thalassiosira pseudonana (diatom, green circle) Cyanidioschyzon merolae (red alga, blue circle); Arabidopsis
thaliana (thale cress, red circle); Oryza sativa (rice, green circle); Ricinus communis (castor oil plant, blue circle); Homo sapiens (human, red circle); Gallus gallus

Arabidopsis thaliana

Vertebrates
Total Groups: 18424
Unique Groups : 6435 (34.4%)

pectins, halogenated compounds, toxins, etc., which have been
extensively reviewed previously (Pulz and Gross, 2004; Spolaore
etal., 2006; Cardozo et al., 2007; Hallmann, 2007; Milledge, 2011;
Borowitzka, 2013; Leu and Boussiba, 2014). Currently, algae
are the main sustainable source of commercial carotenoids and
omega-3 FAs (Borowitzka, 2013; Leu and Boussiba, 2014). In
addition, microalgae have also proven to be cost-effective and
safe hosts for expressing a wide array of recombinant proteins,
including human and animal therapeutics, and industrial
enzymes (Specht et al, 2010; Gong et al., 2011b; Maliga and
Bock, 2011; Rosales-Mendoza et al., 2012; Scranton et al., 2015).
Furthermore, studies have shown that microalgae have also
the potential to be an economically viable source of renewable
biofuels (Stephens et al., 2010; Davis et al., 2011; Jones and
Mayfield, 2011; Larkum et al., 2011).

While the potential of microalgae as a source of a wide range
of products is high, optimization of cultivation and processing
technologies will be required before algal-derived biofuels and
some of the strain-specific biomolecules can be profitable on
a large scale. Techno-economic analysis has identified that
three main factors that significantly contribute to the overall
cost of production for a microalgal metabolite are product
content, growth rate, and cultivation cell density (Davis et al.,
2011). These biological outputs are determined by a number of
constraints including light intensity, nutrient supply, and the
unique metabolism of individual species. Improvements in all

these areas will be major drivers in creating the most efficient
and economically viable strains of microalgae available for a
diverse arrange of biotechnological applications. In this review we
will mainly discuss strategies for increasing metabolite product
content through genetic engineering. Nonetheless, metabolic
engineering of photosynthesis and nutrient assimilation will
also be discussed since they directly affect growth rate
and cell culture density, thus overall metabolite productivity.
Algae biomass can also be converted into biocrude and
biogas, through thermochemical conversion and anaerobic
digestion, respectively. Since these products do not depend
on the accumulation of specific metabolites, engineering of
photosynthesis and nutrient assimilation would also be a
suitable approach for enhancing productivity of these types of
fuels.

GENETIC ENGINEERING OF
MICROALGAE

Microalgae can be transformed either in the nuclear, chloroplast
or mitocondrial genomes (Specht et al.,, 2010). Most enzymes
associated with secondary metabolism are coded in the nuclear
genome, but some of them are targeted to the chloroplast for
performing their function (Martin, 2010; Terashima et al., 2011;
Heydarizadeh et al., 2013). In these cases either the nuclear or
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plastid genome could be engineered for a desired metabolic trait
(Johanningmeier and Fischer, 2010). Electroporation, shaking
with glass beads, and particle gun bombardment (biolistic) are the
main methods for delivering DNA to microalgae (Coll, 2006), the
latter has proven so far the only successful mean for chloroplast
transformation (Purton et al,, 2013). Nuclear transformation
offers the advantages of post-translational modifications of
the protein of interest, the possibility of protein targeting
to any organelle, simpler transformation protocols and more
flexible regulatory sequence recognition, allowing for the use
of heterologous promoters and untranslated regions (Leon and
Fernandez, 2007; Diaz-Santos et al., 2013; Scaife et al., 2015).
It is worth mentioning that the nuclear genomes of some algae
also contain efficient microRNA systems for gene silencing,
which can also be harnessed for metabolic engineering (Molnar
et al., 2009; Cerutti et al., 2011). On the other hand, the main
disadvantage of nuclear transformation is the low expression
levels of the genes of interest due to silencing and position effects
(random integration; Leon and Fernandez, 2007; Specht et al,,
2010; Scranton et al.,, 2015). Recently a system based on the
co-translational fusion of an antibiotic-resistance gene with the
gene of interest has proven to be effective for alleviating some
of these drawbacks for nuclear expression in the model green
alga, Chlamydomonas reinhardtii (Rasala et al., 2012). On the
other hand, chloroplast gene expression offers higher levels of
transgenic protein accumulation (usually >1% of total protein)
and precise gene targeting given the effective homologous
recombination machinery (Johanningmeier and Fischer, 2010;
Purton et al, 2013). The latter also enables for efficient gene
disruption for metabolic engineering purposes (Fischer et al,
1996). Then again, the disadvantages of plastid-based expression
are the lack of post-translational glycosylation, lack of eukaryotic
folding machinery, strict codon bias, and the requirement of the
sequences for endogenous untranslated regulatory regions and
homologous recombination flanking regions (Specht et al., 2010;
Gimpel and Mayfield, 2013; Scaife et al., 2015; Scranton et al.,
2015).

The great physiologic and genetic diversity of microalgae
poses a great challenge for transforming new species given all
the variables aforementioned. A proper DNA delivery system
and optimized transformation conditions are recognized to
be specific for each microalgal specie. Furthermore, the use
of endogenous regulatory sequences has always proven to
achieve the highest amount of transgenic protein accumulation,
highlighting the need for endogenous genomic data (Diaz-
Santos et al.,, 2013; Gimpel and Mayfield, 2013). Additionally,
specie-specific codon optimization of the transgene is a
critical condition for achieving detectable levels of transgenic
protein accumulation (Specht et al., 2010; Gong et al., 2011b).
Attempts of circumventing these requirements have resulted
in non-reproducible transformation protocols. It is not rare
to find past published data of algae transformation that
has only been reported once, or by a single laboratory,
even though the specie is a highly attractive transformation
target for the scientific community (Chow and Tung, 1999;
Teng et al., 2002; Coll, 2006; Hallmann, 2007; Chen et al,
2008).

ENGINEERING OF THE LIPID
SYNTHESIS PATHWAYS

Lipid metabolism in microalgae can be regarded as complex and
diverse given the metabolic divergence between the phylogenetic
groups. It is clear that for engineering high-yield lipid producing
strains, characterization of the specific pathways for any given
phylogenetic group of algae will be required (Yu et al., 2011;
Hildebrand et al, 2013; Bellou et al, 2014). A simplified
scheme for FA, triacylglycerol (TAG), and polyunsaturated
fatty acid (PUFA) biosynthesis in green algae is shown in
Figure 2. Metabolic engineering strategies for these pathways are
summarized in Table 1.

The first metabolic engineering report for increasing FA
production in algae consisted in the overexpression of the acetyl-
CoA carboxylase gene (ACCase) from the diatom Cyclotella
cryptica. ACCase codes for the enzyme that carboxylates acetyl-
CoA to malonyl-CoA, the first committed step for FA synthesis.
Expression vectors and transformation protocols were developed
for C. cryptica and the diatom Navicula saprophila. A two-
threefold increase in the level of ACCase activity was reported
for the transformed diatoms, but no increase in FA accumulation
was detected. However, no experimental data was presented
for the increase of ACCase activity (Dunahay et al, 1996).
Eighteen years later research efforts have been undertaken once
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FIGURE 2 | Simplified biosynthetic pathways for fatty acids (FAs),
triacylglycerols (TAGs) and polyunsaturated FAs in green microalgae.
Enzyme names are colored according to their localization. Green: plastid;
Yellow: cytoplasm; Brown: endoplasmic reticulum. Asterisks denote enzymes
which have been targeted for metabolic engineering, as shown in Table 1.
PDC, pyruvate dehydrogenase complex; ACCase, acetyl-CoA carboxylase;
MAT, malonyl-CoA/ACP transacylase; ACP, acyl-carrier protein; LACS,
long-chain acyl-CoA synthetase; FAS, FA synthase; TE, fatty acyl-ACP
thioesterase; GPAT, glycerol-3-phosphate acyltransferase; LPAAT,
lyso-phosphatidic acid acyltransferase; LPAT, lyso-phosphatidylcholine
acyltransferase; DGAT, diacylglycerol acyltransferase; CoA, coenzyme A; G3P,
glycerate-3-phosphate; TAG, triacylglycerol; PUFA, polyunsaturated FA.
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TABLE 1 | Metabolic engineering reports for lipid synthesis in microalgae.

Gene source

Primary phenotype change

Reference

Target protein Host Type of modification
ACCase* Cyclotella cryptica Nuclear
Acetyl-CoA carboxylase oversexpression
PDK Phaeodactyllum Antisense cDNA
Pyruvate dehydroganase tricornutum
kinase
Malic enzyme Phaeodactyllum Nuclear
tricornutum oversexpression
Multifunctional lipase Thalassiosira RNAI
pseudonana
TE* Phaeodactyllum Nuclear overexpression
Fatty acid (FA)-ACP tricornutum
thioesterase
TE* Phaeodactyllum Nuclear overexpression
Fatty acid-ACP thioesterase tricornutum
TE* Chlamydomonas Nuclear overexpression
Fatty acid-ACP thioesterase reinhardtii
DGAT* Chlamydomonas Nuclear overexpression
Acyl-Coa:diacylglycerol reinhardtii
acyltransferase
DGAT* RNAI; three target
Acyl-Coa:diacylglycerol genes
acyltransferase
Five TAG biosynthetic Chlorella Nuclear overexpression
enzymes* minutissima
Lipid trigger transcription Chlamydomonas Nuclear overexpression
factor reinhardltii
Lipogenesis transcription Chlorella Nuclear overexpression
factor ellipsoidea
A4 desaturase™ Chlamydomonas Nuclear overexpression
reinhardtii microRNA
A5 desaturase* Phaeodactyllum Nuclear overexpression
tricornutum

Endogenous
Navicula saprophila

Endogenous

Two higher plants

Endogenous

Two higher plants

Endogenous

Three endogenous

2 yeasts

Endogenous

Soybean

Endogenous

Endogenous

No increase in total lipid
accumulation

82% increase in neutral lipids

2.5-fold increase in total lipids

3.3-fold increase in total lipids

No increase in total lipid
accumulation

Increased production of C12
and C14 FA

82% increase in total FAs
No change in chain-lengths
profile

No increase in lipids for all
genes

Shorter chain FA with the
endogenous gene

No increase in TAG
accumulation

No changes in TAG profiles
24 and 37% decrease in
TAGs with two genes

34% increase in TAGs with
one gene

Twofold increase in TAGS with
five genes

No change with individual
genes

11% increased total
extractable lipids

52% increase in total lipids

Increased accumulation of FA
16:4

Decreased accumulation of
FA 16:4

58% increased accumulation
of EPA

65% more neutral FA

Dunahay et al.,
1996

Ma et al., 2014

Xue et al., 2014

Trentacoste et al.,
2013

Radakovits et al.,
2011

Gong et al., 2011a

Blatti et al., 2012

La Russa et al.,
2012

Deng et al., 2012

Hsieh et al., 2012

Yohn et al., 2012
Zhang et al., 2014
Z&auner et al., 2012

Peng et al., 2014

Enzymes with asterisks are shown in Figure 2.

again for redirecting carbon and reducing potential toward
lipid biosynthesis. Pyruvate can be transformed to acetyl-CoA
(substrate for ACCase) through an oxidative decarboxylation
reaction catalyzed by the mitochondrial pyruvate dehydrogenase
complex (PDC), which is deactivated through phosphorylation
by pyruvate carboxylase kinase (PDK). In contrast, plastid PDC
is not regulated by a PDK homolog. Using an antisense cDNA
construct, PDK expression was knocked down in the diatom
Phaeodactylum tricornutum, resulting in up to 82% total neutral
lipid increase without changes in the lipid profile (Ma et al,
2014). Malic enzyme (ME) catalyzes the decarboxylation of
malate into pyruvate, producing at the same time NADH and
carbon dioxide. In addition to pyruvate, NADH is an essential

source of reducing power for lipogenesis. Overexpression of the
endogenous ME in P. tricornutum resulted in a 2.5-fold increase
of total lipid accumulation under nutrient-replete conditions
when compared to the control. This great increase didn’t affect
growth rate significantly, although cell morphology changes were
observed (Xue et al., 2014). Another way of enhancing lipid
accumulation is preventing lipid catabolism. After analyzing
transcriptomic data from the diatom Thalassiosira pseudonana
under silicon-deplete conditions a multifunctional lipase gene
was selected as a target for knockdown experiments. RNAi and
antisense constructs were transformed; the latter resulted in up
to 3.3-fold higher total lipid content than wild-type during the
exponential growth phase. Interestingly, the knockdown strains
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didn’t have a slower growth rate than WT (Trentacoste et al.,
2013).

In order to enhance biodiesel cold flow properties, the total
amount of short-chain FA (12-14 carbons) has been increased
by overexpressing two higher plant FA acyl-carrier protein
thioesterases (TE) in P. tricornutum. 75-90% of the short-
chain FA were incorporated into TAGs, but there was no
significant increase of total lipid accumulation (Radakovits et al.,
2011). On the other hand, an endogenous TE was expressed
in P. tricornutum (PtTE), resulting in 72% increase of total FA
without modification of the FA chain-lengths profile (Gong et al.,
2011a). This achievement in total FA increase would have a high
impact if it can be reproduced in other species. Furthermore,
two TE from higher plants and one endogenous TE gene from
C. reinhardtii were overexpressed in this green alga. Only the
overexpression of the endogenous gene (CrTE) resulted in higher
levels of short FA, while no increase of lipid accumulation
was achieved. The latter study also focused in the importance
of achieving appropriate protein-protein interactions between
the components of the FA synthesis machinery in order to
obtain favorable metabolic engineering results (Blatti et al.,
2012).

In addition to the modification of FA synthesis, the glycerol
acylation steps have also been engineered for improving TAG
accumulation. Overexpression of three endogenous Acyl-
CoA:diacylglycerol acyltransferases (DGAT) in C. reinhardtii
(CrDGAT2a, b,and ¢) didn’t result in increased TAG
accumulation or changes in TAG profiles (La Russa et al.,
2012). RNAi silencing of C. reinhardtii CrDGAT2-1 or CrDGAT2-
5 resulted in 24 and 37% decrease in lipid accumulation,
respectively. Surprisingly, silencing of CrDGAT2-4 caused an
increase of up to 34% total lipids. CrDGAT2-2 or CrDGAT2-3
silencing didn’t cause significant changes in lipid accumulation
(Deng et al., 2012). In contrast with the results of (La Russa
et al., 2012), overexpression of the endogenous DGAT?2 in the
diatom P. tricornutum resulted in 35% increase of neutral
lipid accumulation without significantly affecting growth rate.
Furthermore, the valuable omega-3 eicosapentaenoic acid (EPA)
accumulated 76% more than in the control (Niu et al., 2013).
The simultaneous expression of five TAG biosynthesis-related
enzymes derived from the yeasts Saccharomyces cerevisiae
and Yarrowia lipolytica (phosphatidic acid phosphatase,
lysophosphatidic acid acyltransferase, glycerol-3-phosphate
dehydrogenase,  glycerol-3-phosphate  acyltransferase, and
DGAT) in the green microalga Chlorella minutissima resulted
in a twofold increase in TAG accumulation. The expression of
each enzyme by itself didn’t result in significant changes in lipid
accumulation, thus pointing toward the effectiveness of system
level approaches (Hsich et al., 2012).

Transcription factors (TF) can also be manipulated as
an alternative to “classic” genetic engineering, which could
prove to be more effective for generating global metabolic
changes. A patent from Sapphire Energy, Inc. describes that
the overexpression of the SNO03 TF produces the effect of
a “lipid-trigger” in C. reinhardtii, thus resulting in 11%
more accumulation of total extractable lipids in nutrient-
replete medium. This TF was chosen based on comparative

transcriptomic data between nutrient-replete and nitrogen-
deplete cells (Yohn et al, 2012). Likewise, a lipogenesis
promoting TF from soybean was overexpressed in the green
alga C. ellipsoidea, which accumulated up to 52% more total
lipids. This TF resulted in the differential expression of 1046
transcripts, including the up-regulation of ACCase (top six up-
regulated transcripts were annotated as ACCase; Zhang et al.,
2014).

Omega-3 polyunsaturated FAs from microalgae can reach
much higher prices than biodiesel. Therefore commercial
production of PUFA from genetically engineered algae could
be a viable option in a much shorter term, but for a much
smaller and more regulated market. Metabolic engineering
of PUFA deals mostly with the overexpression of specific
FA desaturases and elongases, although TE have also proven
useful for this purpose (Niu et al, 2013). In C. reinhardtii,
overexpression of the endogenous A4 desaturase (CrA4FAD)
resulted in increased accumulation of its specific product
hexadeca-4,7,10,13-tetraenoic acid (16:4). Alternatively, silencing
through microRNA resulted in decreased 16:4 accumulation.
This shows that classical genetic engineering approaches can
result in rational results when modifying the expression of FA
desaturases (Zduner et al., 2012). An endogenous A5 desaturase
(PtD5b) was overexpressed in P. tricornutum resulting in 58%
increased accumulation of EPA. Additional poly and mono
unsaturated FA were also significantly augmented. Moreover,
this strain accumulated 65% more neutral FA, showing that this
strategy could also serve for improving biodiesel yields (Peng
etal., 2014).

The complexity of lipid biosynthesis poses a great challenge
if the final goal is to enhance accumulation of not only
a single type of lipid, but overall lipid accumulation for
biofuels. It is then necessary to investigate in further details the
regulatory mechanisms in order to deploy system level metabolic
engineering of lipid biosynthesis. The studies from (Yohn et al,,
2012), and (Zhang et al., 2014) involving TF engineering are great
examples in this direction. Additionally there is a lack of efforts
toward transforming lipogenic enzymes into the chloroplast
genome, given that most of the initial reactions for FA synthesis
take place in this organelle (Figure 2).

ENHANCEMENT OF BIOHYDROGEN
EVOLUTION

Green microalgae from the genera Chlamydomona, Scenedesmus,
Lobochlamys, and Chlorella can reduce protons to produce
hydrogen gas due to their hydrogenase activity, determined to
derive predominantly from the [FeFe]-hydrogenase (HYDAL1
in C. reinhardtii; Meuser et al., 2009, 2012). Biohydrogen is
an attractive fuel alternative because its combustion produces
no carbon byproducts and it is a superior fuel for electricity
production by fuel cells. Hydrogen production cannot be
sustained while photosynthesis is actively occurring because
oxygen inactivates hydrogenase. Therefore, a bi-phasic
production strategy is necessary, in which algae grow
photosynthetically to accumulate biomass, then the cells
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are exploited for H, production under anoxic conditions, which
can be achieved by inhibition of Photosystem II (PSII) by
sulfur deprivation or by using herbicides (oxidation of water
by PSII generates oxygen; Melis et al., 2007; Beer et al., 2009).
Nonetheless, two novel strains of C. vulgaris have been shown
to be able to produce hydrogen under atmospheric oxygen
concentrations (Hwang et al., 2014). Increasing hydrogenase
activity (or decreasing its oxygen sensitivity), anaerobiosis
induction, avoiding competition for electrons from other
pathways and increasing the sources of electrons are all steps
that could be improved through genetic engineering (Melis et al.,
2007; Beer et al., 2009; Esquivel et al., 2011; Dubini and Ghirardi,
2014).

Engineering hydrogenase in order to reduce its oxygen
sensitivity has yielded only modest improvements, primarily due
to the fact that gas channels are formed when the catalytic site
is properly folded (Dubini and Ghirardi, 2014). Alternatively,
the endogenous hydrogenase has been overexpressed in Chlorella
sp. strain DT, resulting in 7-10-fold hydrogen production under
semi-aerobic conditions (Chien et al., 2012).

Inactivation of PSII in C. reinhardtii has been achieved
by transforming an RNA antisense construct against a sulfate
transporter gene (SulP), leading to the accumulation of hydrogen
even in the presence of 100 wM sulfate (Chen et al., 2005).
Another system for achieving anaerobiosis is based on a copper
responsive nuclear transgene that is necessary for the expression
of the essential protein D2 of PSIL. Upon the addition of copper,
the transgene is repressed, along with D2, thus stopping evolution
of oxygen through PSIL. A brief period of anaerobiosis and
hydrogen production is achieved, but it is much shorter than
the standard method through sulfur deprivation (Surzycki et al.,
2007). In order to reduce PSII efficiency a double mutant of the
reaction center protein D1 was generated. The resulting strain
could evolve ten times more hydrogen than the control after
sulfur deprivation, mainly due to a longer productive period
(Torzillo et al,, 2009). In Chlorella sp. strain DT expression
knock-down of PsbO from PSII (part of the oxygen evolution
center) through short interference antisense RNA resulted in
up to 10-fold higher hydrogen evolution under semi-aerobic
conditions (Lin et al, 2013). The Ligh-Harvesting Complex
II (LHCII) captures and channels excitons toward PSII for
photochemistry, and thus oxygen evolution. Knock-down of the
three major proteins of C. reinhardtii LHCII (LHCMBI, 2, and
3) with three co-transformed RNAi constructs (each one specific
for a single gene) resulted in a twofold increase in hydrogen
production when compared to the parental strain (Oey et al.,
2013).

Oxygen sequestration is another alternative for enhancing
hydrogen biosynthesis. Chloroplast transformation of a codon-
optimized leghemoglobin protein from soy, which sequesters
oxygen in the nitrogen-fixing root nodules of this legume,
along with a ferrochelatase from a nitrogen-fixing bacterium
(for assembling the heme group) resulted in a fourfold increase
of hydrogen production in C. reinhardtii (Wu et al, 2011).
Alternatively, an Escherichia coli pyruvate oxidase has been
expressed in the nucleus of C. reinhardtii in order to reduce
intracellular oxygen concentration. This enzyme decarboxylates

pyruvate into acetyl-phosphate while consuming one oxygen
molecule. Transgenic algae strains produced up to 2.5-fold
more hydrogen than the parental strain under very low light
(30 wE m~2 s~ 1) and sulfur-replete conditions (Xu et al,
2011).

Securing additional reducing power can also result in
increased hydrogen yields. The HUP1 hexose transporter from
C. kessleri (green alga) was expressed in C. reinhardtii, resulting in
a strain that could use glucose as a carbon and electron source (see
Trophic Conversion below). This modification also translated
into 1.5-fold higher hydrogen production rate (Doebbe et al.,
2007). Carbon fixation by Rubisco competes for a significant
amount of reducing power. Expression of a mutated small sub-
unit of Rubisco (RBCS-Y67A) from the nucleus of an RBCS-
deficient C. reinhardtii strain resulted in abolishment of PSII
activity along with 10 to 15-fold increase in hydrogen yield in
sulfur-deplete medium (Pinto et al., 2013). Ferredoxin-NADP*+
reductase (FNR) is notoriously downregulated under sulfur
deprivation in C. reinhardtii. RNAi knockdown of FNR resulted
in decrease of Rubisco activity (60%) and oxygen evolution
(44%), accompanied by increase in starch degradation (140%),
under sulfur deprivation. These metabolic changes resulted in
2.5-fold increase in hydrogen production when compared to
sulfur-starved WT (Sun et al., 2013).

Despite the limitations in short-term applicability of hydrogen
based biofuels when compared to biodesel, algal hydrogen
production has received a great amount of scientific attention.
The research undergone so far constitutes C. reinhardtii
as a model organism for hydrogen biogenesis. Advances
in C. reinhardtii engineering could play a key role for
developing more sustainable alternatives in the long-term, such
as biohydrogen production from wastes degraded by either
bacteria or other microalgae species.

METABOLIC ENGINEERING OF
CAROTENOIDS

Despite the high value of carotenoids and the advantages of
microalgal platforms, there have been few reported efforts
toward carotenoid production optimization through metabolic
engineering in these organisms. Since most of the carotenogenic
pathway occurs in the chloroplast of algae, carotenoid metabolic
engineering could be achieved by either nuclear or chloroplast
transformation (or both; Kempinski et al., 2015). Figure 3 shows
the generally accepted pathway for B-carotene and astaxanthin
biosynthesis in green microalgae. Table 2 summarizes the
metabolic engineering approaches for modifying terpenoid
accumulation in these organisms. C. reinhardtii has served as the
model organism for studying the effects of genetic engineering
in carotenoid accumulation. In the first report of this type,
an archeal heat-stable geranylgeranyl-pyrophosphate synthase
(involved in the early steps of carotenoid biosynthesis) was
expressed in the chloroplast of C. reinhardtii. Unfortunately,
there were no measurable effects on the isoprenoid profile of
the algae (Fukusaki et al., 2003). Three years later, another
group attempted to produce keto-carotenoids (e.g., astaxanthin)

Frontiers in Microbiology | www.frontiersin.org

December 2015 | Volume 6 | Article 1376


http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/
http://www.frontiersin.org/Microbiology/archive

Gimpel et al.

Metabolic Engineering of Eukaryotic Microalgae

geranylgeranyl pyrophosphate
y psy*

R A A x

phytoene
\1, PDS*

NIRRT x S

C-carotene
\1, ZDS

A NIRRT RN A

lycopene

J Lcy-B

NIRRT

BKT* / \CrtR-b

T Echinenone © B-Cryptoxanthin

B-carotene

BKT* \L . \1, CrtR-b
° Cantaxanthin Zeaxanthin
CrtR-b BKT*

W ! Adonixanthin

CrtR-b \

FIGURE 3 | Proposed pathway for astaxanthin synthesis in green
microalgae. Asterisks denote enzymes which have been targeted for
metabolic engineering, as shown in Table 2. PSY, phytoene synthase; PDS,
phytoene desaturase; ZDS, ¢-carotene desaturase; LYC-B, lycopene
B-cyclase; BKT, B -carotene ketolase; CrtR-b, B-carotene hydroxylase.
Modified from (Grinewald et al., 2001; Ye et al., 2008). Synthesis of B
-carotene occurs in the chloroplast, while there is evidence that the
subsequent steps could also take place in the cytoplasm (Grinewald et al.,
2001; Guedes et al., 2011).

in C. reinhardtii by nuclear overexpression of the beta-carotene
ketolase genes from H. pluvialis (bkt3) and C. reinhardtii itself
(CRBKT). Following several efforts using different expression
vectors, no keto-carotenoids could be detected (Wong, 2006).
In parallel, (Leon et al., 2007) followed an analogous approach,
but using instead the bktl gene from H. pluvialis. In this case
a small peak of 4-keto-lutein could be detected, and it was
not present in the parental strain. Unfortunately, no peak for
astaxanthin was recorded. RNA interference technology has also
been used for altering the carotenoid profile of C. reinhardtii.
The phytoene desaturase gene (pds, coding for the second step
of carotenoid biosynthesis) was targeted, resulting in a 93%
reduction of its mRNA. Nonetheless, the carotenoid content
didn’t change significantly, pointing toward the existence of

additional rate-limiting processes (Vila et al., 2008). Additionally,
the phytoene synthase gene (psy), which codes for the committing
step enzyme for carotenoid synthesis, has been transformed in
the C. reinhardtii nucleus causing an increase in carotenoid
accumulation. Transformed strains overexpressing psy from
Dunaliella salina and C. zofingiensis stored 2.6 and 2.2-fold
more lutein than the wild-type, respectively (Cordero et al,
2011; Couso et al., 2011). Recently, the C. reinhardtii nucleus
has been transformed with a point mutant version of its
endogenous pds gene. The mutant enzyme had a 27% increase
in its desaturase activity in vitro. The algae became resistant
to the herbicide norflurazon and accumulated more lutein,
beta-carotene, zeaxanthin, and violaxanthin in vivo (Liu et al,,
2013).

Haematococcus pluvialis, D. salina, and Chlorella sp. are
highly relevant candidates for carotenoid metabolic engineering
given their commercial relevance. In the first attempt of stable
nuclear transformation, H. pluvialis was engineered with a
mutant pds gene that conferred resistance to norflurazon.
Transgenic strains accumulated up to 26% more astaxanthin
than the wild-type control after 48 h of induction with high-
light (Steinbrenner and Sandmann, 2006). RNAi constructs
have been used for reducing the mRNA accumulation of
the D. salina pds gene for up to 72%. Intriguingly, the
carotenoid content of these strains was not reported (Sun
et al,, 2008). The most recent metabolic engineering effort
involves the development of a nuclear transformation method for
C. zofingiensis. A mutant version of the endogenous pds gene was
transformed, conferring resistance to norflurazon. The mutant
PDS enzyme had 33% higher desaturation activity in vitro.
Transformed C. zofingiensis strains accumulated up to 32.1%
more total carotenoids and 54.1% more astaxanthin in vivo (Liu
etal., 2014).

It is worth mentioning that additional terpenoids from
microalgae can also be regarded as highly desirable feedstocks for
biofuels and specialty chemicals, which will further broaden the
interest for research toward optimizing the production of these
compounds (Davies et al., 2014; Heider et al., 2014). Recently,
C. reinhardtii has been engineered for accumulating the highly
valuable triterpenoid squalene. Wild-type C. reinhardtii contains
the necessary genes for squalene synthesis, although it cannot
be detected under standard growth conditions. Overexpression
of the endogenous squalene synthase didn’t result in squalene
accumulation. On the other hand, silencing of squalene epoxidase
(56-76% mRNA reduction) resulted in accumulation of up to
1.1 pg/mg dry weight of squalene. Transformation of squalene
synthase into these knockdown strains didn’t result in enhanced
squalene accumulation (Kajikawa et al., 2015).

Overall, carotenoid metabolic engineering in microalgae
has not vyielded consistent results. Perhaps the targeted
enzymes do not constitute the bottleneck steps, or there are
several rate-limiting reactions in the pathway. The future
trend in carotenoid engineering should be the simultaneous
transformation of three or more enzymes to strengthen
the desired metabolic flow. Discovery and engineering of
microalgae TFs that regulate terpenoid synthesis should also
be considered for this purpose. Use of herbicide resistant
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TABLE 2 | Metabolic engineering reports for terpenoid biosynthesis in microalgae.

Target protein Host Type of modification Gene source Primary phenotype change Reference
Geranylgeranyl- Chlamydomonas Plastid overexpression Archeabacterium No changes in isoprenoid profile Fukusaki et al.,
pyrophosphate synthase reinhardltii 2003
PSY* Chlamydomonas Nuclear overexpression Dunaliella salina 2.6-fold increase in lutein Couso et al., 2011
Phytoene synthase reinhardtii
PSY* Chlamydomonas Nuclear overexpression Chilorella zofingiensis 2.2-fold increase in lutein Cordero et al.,
Phytoene synthase reinhardtii 2011
PDS* Chlamydomonas RNAI 93% reduction of MRNA Vila et al., 2008
Phytoene desaturase reinhardtii Insignificant changes in

carotenoid profile
PDS* Chlamydomonas Nuclear overexpression Endogenous w/mutation Increase of several carotenoids Liu et al., 2013
Phytoene desaturase reinhardtii Norflurazon resistance
PDS* Chilorella Nuclear overexpression Endogenous w/mutation 32.1% increase in total Liu et al., 2014
Phytoene desaturase zofingiensis carotenoids

54.1% increase in astaxanthin
PDS* Haematococcus Nuclear overexpression Endogenous w/mutation 26% increase in astaxanthin Steinbrenner and
Phytoene desaturase pluvialis Norflurazon resistance Sandmann, 2006
PDS* Dunaliella salina RNAI 72% reduction of MRNA Sun et al., 2008
Phytoene desaturase Carotenoid profiles were not

reported
BKT* Chlamydomonas Nuclear overexpression Haematococcus pluvialis No keto-carotenoids detected Wong, 2006
B-carotene ketolase reinhardtii Endogenous
BKT* Chlamydomonas Nuclear overexpression Haematococcus pluvialis 4-keto-lutein detected Ledn et al., 2007
B-carotene ketolase reinhardltii No astaxanthin detected
Squalene synthase Chlamydomonas Nuclear overexpression Endogenous Squalene was not detected Kajikawa et al.,

reinhardtii 2015
Squalene epoxidase Chlamydomonas RNAI 56-76% knock-down of MRNA Kajikawa et al.,
reinhardtii Up to 1.1 pg/mg DW of 2015

squalene

Enzymes with asterisks are shown in Figure 3.

phytoene desaturase has proven useful for enhancing carotenoid
accumulation (Liu et al, 2014). This system could also be
expanded to additional terpenoid biosynthetic enzymes
like deoxyxylulose 5-phosphate synthase, deoxyxylulose 5-
phosphate reductoisomerase, phytoene synthase, (-carotene
desaturase, and lycopene B-cyclase, which are sensitive to various
bleaching herbicides (Sandmann, 2002; Ferhatoglu and Barrett,
2006).

ROBUST CARBON DIOXIDE FIXATION

When microalgae are grown under phototrophic conditions,
all newly produced biomass, including lipids, derive from the
fixation of CO; into ribulose-1,5-biphosphate (RuBP) to form
3-phosphoglycerate, catalyzed by the famous enzyme RuBP
carboxylase/oxygenase (Rubisco). Additional enzymes are also
required to regenerate RuBP in a process named the Calvin-
Benson-Bassham cycle (CBB). Significant amounts of ATP
and NADPH are also required for this process, which are
supplied by the light-driven activity of photosystems I and II
(photochemistry; Raines, 2011). Several studies have shown that
the activity of Rubisco is the major bottleneck for carbon flux
through the CBB when CO; is not supplied to the media, or
under high-light (excess ATP and NADPH) or high-temperature
conditions (prevalence of photorespiration, see below), which

are all present in commercial scale ponds for algae biomass
production in desert areas (Raines, 2011; Ducat and Silver,
2012).

Rubisco is regarded as a “slow and confused” enzyme.
Large amounts of this enzyme are required for achieving a
sustainable carboxylation rate and it has affinity for oxygen
which is used in a futile reaction. The affinity toward oxygen
increases at higher temperatures. The consequences of the
wasteful oxygenation reaction are partially alleviated by a process
named photorespiration (Whitney et al., 2011). C. reinhardtii
seems to be a perfect host for engineering Rubisco, since
there are Rubisco deficient strains that can complete their life
cycle heterotrophically, unlike plants (Whitney et al, 2011).
The small subunit of Rubisco genes (rbcS) of Arabidopsis and
sunflower have been transformed independently into an rbcS
deficient strain of C. reinhardtii (lacking the two nuclear rbcS
alleles), while preserving the endogenous large subunit gene
in the chloroplast (rbcL). The in vitro CO,/O; specificity
or discrimination factor (Q) was improved by up to 11%
while maintaining the Vmax of carboxylation catalysis (V¢).
Nonetheless the cells displayed slower autotrophic growth rates
and lacked pyrenoids (carbon-concentration sub-compartments
in the algal chloroplast), presumably due to mistargeting of
Rubisco caused by the heterologous small subunits (Genkov
et al., 2010). Chlamydomonas rbcL has also been subjected to
PCR-based gene shuffling with oligonucleotides representing the
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natural diversity of this gene. Three rounds of gene shuffling
and three rounds of strain selection resulted in a Rubisco with
increments of 20% Q and 56% Vc. Some of the enriched
mutations were then incorporated into the tobacco rbcL gene
and resulted in 14% Q and 15% Vc increments (Zhu et al,,
2010). Another interesting strategy could consist in tuning
Rubisco accumulation according to the environmental culture
conditions in order to optimize the utilization of energy, carbon
and nitrogen. Chlamydomonas strains with different amounts of
Rubisco have been engineered by expressing the rbcL mRNA
maturation factor MRL1 at different levels in the nuclear genome
of an MRLI1 deficient strain. Rubisco could be lowered up to
15% that of wild-type while maintaining phototrophic growth.
An inducible promoter for MRLI could be then used to tune
Rubisco accumulation according to culture conditions, such as
light intensity or CO; concentration (Johnson, 2011).

The CBB cycle has also been engineered for enhancing carbon
fixation. The CBB enzyme sedoheptulose 1,7-bisphosphatase
enzyme (part of CBB) from C. reinhardtii has been overexpressed
in P-carotene-producing green algae D. bardawil, resulting in
a clear increase of oxygen evolution efficiency Os/cell/(nmol
photons/m), and in organic carbon content per cell (Fang et al.,
2012).

The future trends in Rubisco engineering should consider
integrating the advances achieved in both RbcS and RbcL in
the same microalgae strain. Future mutational studies should be
performed in both genes simultaneously in order to capture co-
variations that further enhance functionality. Additionally, there
are two wide fields that have not been exploited in eukaryotic
microalgae: the engineering of Rubisco activase and the carbon
concentrating mechanisms.

TROPHIC CONVERSION

Growing microalgae under heterotrophic or photoheterotrophic
(mixotrophic) conditions has several advantages over
autotrophic growth. Fermentation systems have been widely
studied and successfully applied in industry for several years.
The culture conditions are highly controlled and reproducible.
Moreover, heterotrophic cultures of microalgae achieve higher
cell densities, thus resulting in lower harvesting costs. In waste
water treatment applications, trophic conversion allows to
diversify the nutrients that can be degraded by algae (Chen
and Chen, 2006; Chen et al., 2011). In addition, the yield of
some metabolites can sometimes increase depending on the
rerouting of the metabolic networks involved, as it has been
shown for lipid accumulation (Miao and Wu, 2006). However,
many microalgae species are strict autotrophs or are highly
selective for their organic carbon source (e.g., acetate for
C. reinhardtii). Trophic conversion has been achieved, allowing
heterotophy in previously obligate phototrophic species as a
proof of concept for simple metabolic engineering. V. carteri
has been transformed with a hexose transporter from C. kessleri
(HUPI, monosaccharide-H+ symporter), resulting in a strain
that can survive on glucose under dark conditions (Hallmann
and Sumper, 1996). P. tricornutum, Cylindrotheca fusiformis

(diatoms) and C. reinhardtii have also been successfully
transformed with HUPI, resulting in glucose transport into the
cells (Fischer et al., 1999; Zaslavskaia et al., 2001; Doebbe et al.,
2007). The human glutl transporter gene (erythrocyte glucose
transporter 1) has also been transformed into P. tricornutum,
which could also perform glucose uptake into the cell (Apt et al.,
2011). It is worth noting that despite glucose incorporation, the
extent of conversion to full heterotrophy is variable between
these four algae.

Trophic conversion is a good proof of concept for
microalgae metabolic engineering, but despite the advantages
of heterotrophic culture, it might not to be optimal for the
production of low-value metabolites (e.g., biodiesel). Additional
costs for adding a carbon source and the requirement for
enclosed bioreactors (given the higher risk of contamination)
are major drawbacks compared to phototrophic systems.
Furthermore, some metabolites accumulate upon the presence of
high-light (e.g., carotenoids), excluding the possibility of saving
costs associated with illumination.

PHOTOCHEMISTRY OPTIMIZATION

Microalgae have evolved large light-harvesting complexes (LHC)
for maximizing light absorption in low-light environments,
where they naturally occur. Under artificial culture conditions
(saturating light) excess energy is dissipated through heat and
fluorescence quenching in the LHC. Excess energy that cannot
be dissipated usually results in direct photodamage and the
production of reactive oxygen species (photoinhibition). The
large size of the LHC also limits light penetration into the culture
medium, therefore lowering the maximum cell density that can
be achieved in large scale facilities (Ort et al., 2011; Wobbe
and Remacle, 2015). In the first genetic engineering attempt
to overcome this, a single RNAi construct was effectively used
for silencing all twenty LHC protein isoforms of C. reinhardtii.
These cells have lower mRNA (0.1-26% relative to the control)
and protein accumulation for all LHC genes and 68% less
chlorophyll than the parental strain, resulting in 290% higher
light transmittance in the culture. Furthermore, they present
less dissipation energy through fluorescence quenching, which
leads to an increase in photosynthetic quantum yield. Under
high-light conditions, transformed cells were less susceptible to
photoinhibition and grew at a 65% faster rate; however, they did
not reach a higher cell density (Mussgnug et al., 2007). Later, the
same research group achieved similar results by downregulating
LHC expression at the translational level. NABI is a translation
repressor of the LHCBM family (LHCII; Mussgnug et al., 2005),
and its activation is redox dependent (Wobbe et al, 2009).
A constitutively activated version of NABI (two amino acid
mutations) was overexpressed in C. reinhardtii, resulting in a
similar phenotype to the one obtained through RNAi. However,
the effects were less dramatic, having a chlorophyll/cell reduction
of 20% compared to that of 68% using RNAi, and a growth
rate increase of 53% compared to the previous 65% (Beckmann
et al.,, 2009). Even so, overexpression of a single repressor would
be easier to reproduce in the future than silencing twenty
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LHC isoforms at the same time. Another group has worked
with the TLAI gene (truncated light-harvesting antenna 1) of
C. reinhardtii. Overexpression and silencing (RNAi) of tlal
resulted in 13% increase and 70% reduction of chlorophyll/cell,
respectively. This confirms that tlal is an attractive target for
modifying phototrophic growth performance of algae (Mitra
et al., 2012). As previously mentioned in the biohydrogen
section of this review, the three major proteins of C. reinhardtii
LHCII (LHCMBI, 2, and 3) have been knocked-down with
three co-transformed RNAIi constructs (each one specific for a
single gene). This resulted in 50% reduction of chlorophyll/cell,
and four times more light penetration at equal cell density.
Additionally, the transformed strain grew 85% faster at a 5 mm
culture depth under 450 WE m~2 s~ ! light intensity (Oey et al,,
2013).

One of the main bottlenecks for photosynthetic growth under
suboptimal conditions is PSII, the multi-protein complex that
performs the light-driven oxidation of water. Degradation of
the D1 sub-unit of PSII seems to be predominantly increased
when light is in excess or under various abiotic stresses
(photoinhibition; Kreslavski et al., 2007; Keren and Krieger-
Liszkay, 2011). Rea et al. (2011) have mutated and selected
versions of the C. reinhardtii D1 protein that can evolve up
to ~4.5-fold more oxygen in vivo under high-light conditions
(50% midday sunlight) compared to the control. This has
been achieved by transforming error-prone PCR-amplified D1
coding sequences followed by selection under ionizing radiation.
Unfortunately the mutant strains perform slightly worse under
laboratory light conditions (10% midday sunlight), suggesting
that this strategy may not translate to increased biomass
yield for commercial biofuel production. The cyanobacteria
Synechoccocus sp. PCC 7942 contains two isoforms of the
D1 protein which are differentially expressed under low-light
and high-light conditions. These two proteins were expressed
independently in C. reinhardtii resulting in reconstitution
of the low-light and high-light phenotypes associated with
each D1 isoform. Interestingly, C. reinhardtii expressing the
cyanobacterial low-light isoform yielded 11% more dry weight
biomass than the strains expressing the high-light isoform or the
endogenous D1 protein, which is a highly desirable for reducing
harvesting costs (Vinyard et al., 2013). Using C. reinhardtii as
a transformation host, the same authors determined the precise
amino acids that confer the characteristic phenotypes to these two
D1 isoforms. The latter will prove very important for designing
strategies to optimize D1 and PSII function under specific growth
conditions (Vinyard et al., 2014).

In coming years, engineering of the photosynthetic machinery
should take into account the adverse environmental conditions
that can take place in outdoor ponds, such as high and
low irradiance, and very high temperatures, which can all
decrease photosynthetic rates (Kreslavski et al., 2007; Keren
and Krieger-Liszkay, 2011). Tuning photosystems and light
harvesting antennas to perform under specific environmental
conditions, or even better, generating regulated systems that can
adapt to environmental changes, would be major breakthroughs
for large-scale algae cultivation. Furthermore, these advances
could potentially be translated to commercial crops. In order
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FIGURE 4 | Contribution of microalgal genetic tools to enhance the
production of secondary metabolites and biomass.

to achieve this, researchers will have to consider that the
photosynthetic machinery is composed of large complexes
of highly interacting proteins. Any major advancement will
likely require the engineering of several of these proteins
simultaneously, in order to maintain the interactions that have
been conserved through the extended evolutionary history of
photosynthetic systems.

FUTURE PERSPECTIVES

Highly predictive metabolic models will be required in order
to step-up metabolic engineering of microalgae (Veyel et al.,
2014). At least eleven genome-wide metabolic network models
are available for microalgae, but most of them correspond to
C. reinhardtii, even though there are more than 30 sequenced
species (Reijnders et al., 2014; Baroukh et al., 2015). Given the
great metabolic diversity of microalgae, it is clear that models
for at least each phylum will be required in order to give
meaningful predictions for the corresponding species within that
group (Hildebrand et al., 2013). It is also worth mentioning that
metabolic engineering of algae doesn’t have to be circumscribed
to metabolites that already exist in these organisms. For example
C. reinhardtii has been engineered to produce the five-carbon
sugar-alcohol xylitol, an artificial sweetener that doesn’t naturally
occur in the alga. Xylose reductase (XR) from the filamentous
fungus Neurospora crassa was codon-optimized and expressed
in the plastid genome resulting in up to 0.38 g/L xylitol
accumulation (Pourmir et al., 2013).

Novel genetic tools will also be a major driving force for
metabolic engineering in eukaryotic microalgae (Figure 4).
Nuclear genome editing would allow for precise gene
deletion and gene integration, therefore enabling to
reroute metabolic networks and to obtain predictable
expression levels of transgenes (Jinkerson and Jonikas,
2015).  Unfortunately, homologous recombination rates
in C. reinhardtii are very low, but there are ongoing
efforts to circumvent this through zinc-fingers technology
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(Sizova et al., 2013), and by using the CRISPR/Cas9 system (Jiang
et al., 2014). On the other hand, some microalgae appear to
have a highly efficient homologous recombination machinery
in the nucleus, like for example Nannochloropsis sp. strain
W2J3B (Kilian et al., 2011). Targeted induction or constitutive
activation of endogenous genes is another valuable tool for
modifying metabolic profiles. Activation of endogenous genes
through transcription activator-like effectors (TALE) has been
achieved in C. reinhardtii for the nuclear genes coding for
arylsulfatase (ARS, endogenous colorimetric reporter), and the
inorganic carbon membrane transporter HLA3 (Gao et al,
2014, 2015). Chloroplast metabolic engineering could take
great advantage of a “shuttle” chloroplast genome that can
replicate in C. reinhardtii, S. cerevisiae, and E. coli (O’Neill
et al., 2012). Replication in S. cerevisiae allows for extensive
DNA manipulations through gene replacement which would be
required for simultaneous engineering of multiple enzymes in
a metabolic pathway. E. coli replication serves for generating
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