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Wolbachia is a vertically transmitted endosymbiont whose radiative success is mainly
related to various host reproductive manipulations that led to consider this symbiont
as a conflictual reproductive parasite. However, lately, some Wolbachia have been
shown to act as beneficial symbionts by protecting hosts against a broad range of
parasites. Still, this protection has been mostly demonstrated in artificial Wolbachia-host
associations between partners that did not co-evolved together. Here, we tested in two
terrestrial isopod species Armadillidium vulgare and Porcellio dilatatus whether resident
Wolbachia (native or non-native) could confer protection during infections with Listeria
ivanovii and Salmonella typhimurium and also during a transinfection with a Wolbachia
strain that kills the recipient host (i.e., wVulC in P. dilatatus). Survival analyses showed
that (i) A. vulgare lines hosting their native Wolbachia (wVulC) always exhibited higher
survival than asymbiotic ones when infected with pathogenic bacteria (ii) P. dilatatus
lines hosting their native wDil Wolbachia strain survived the S. typhimurium infection
better, while lines hosting non-native wCon Wolbachia strain survived the L. ivanovii and
also the transinfection with wVulC from A. vulgare better. By studying L. ivanovii and
S. typhimurium loads in the hemolymph of the different host-Wolbachia systems, we
showed that (i) the difference in survival between lines after L. ivanovii infections were not
linked to the difference between their pathogenic bacterial loads, and (ii) the difference
in survival after S. typhimurium infections corresponds to lower loads of pathogenic
bacteria. Overall, our results demonstrate a beneficial effect of Wolbachia on survival of
terrestrial isopods when infected with pathogenic intracellular bacteria. This protective
effect may rely on different mechanisms depending on the resident symbiont and the
invasive bacteria interacting together within the hosts.

Keywords: Wolbachia, infection, immunocompetence, Listeria, Salmonella, terrestrial isopods, Armadillidium
vulgare, Porcellio dilatatus
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INTRODUCTION

Symbioses, defined as intimate interactions between two or
more species, can range from mutualism, where both partners
benefit from the relationship, to parasitism where one of the
partners exploits the other. In order to be maintained and
become widespread in the host population, vertically transmitted
symbionts adopt some strategies to manipulate their host’s
reproduction and/or to provide their host with fitness benefits
(Haine, 2008). The advantages of beneficial symbiotic relations
can generally be categorized into twomain functions: nutrition or
protection (Douglas, 2011). In the case of vertically transmitted
primary symbionts (i.e., via oocyte), this benefit is usually
nutritional, through which the symbiont improves the specialized
diet of the host, providing essential nutrients such as amino acids
or vitamins (Gross et al., 2009). There is also clear evidence
that symbionts can be involved in protection against predators
and pathogens (Scarborough et al., 2005; Hedges and Johnson,
2008; Jaenike et al., 2010; Xie et al., 2010). This protection
might be achieved with a direct interference with the pathogens
or predators by the production of toxic compounds (Davidson
et al., 2001; Jaenike and Perlman, 2002). Alternatively this
protection can be caused indirectly by the competition between
the symbiont and the pathogens for limited resources (Caragata
et al., 2013) or by the modulation of host physiology including
immune system (de Souza et al., 2009; Kaiser et al., 2010; Weiss
et al., 2011). Although the underlying mechanisms of protective
symbiosis are not yet unraveled (Douglas, 2011), the existence
of protection against pathogens mediated by the presence of a
vertically transmitted symbiont is supported by many studies
(Haine, 2008; Brownlie and Johnson, 2009).

Even though symbiotic relationships are abundant in both
vertebrates and invertebrates, an outstanding diversity of
vertically transmitted symbionts has been shown only in the
latter (Yen and Barr, 1971; Hurst et al., 1999; Stouthamer et al.,
1999; Dunn and Smith, 2001; von der Schulenburg et al., 2001).
Being one of the most common vertically transmitted symbiotic
bacteria among Cuticulata, Wolbachia are found widespread in
arthropods and may infect up to 50% of the arthropod species
(Weinert et al., 2015). The success of their vertical transmission
mainly relies on the manipulation of the reproduction of their
hosts in different ways. For example, feminization induced
by Wolbachia forces infected genetic males to develop in
functional females, thus becoming able to transmit Wolbachia,
resulting in a female bias in the population (Bouchon et al.,
2008). Another example of a host reproduction manipulation
strategy of Wolbachia is the cytoplasmic incompatibility (CI)
that gives a fitness advantage to infected females by causing
mortality of the embryos when uninfected females copulate
with infected males (Serbus et al., 2008). In addition to the
ability of the Wolbachia to manipulate their hosts reproduction,
some interactions have been reported to be detrimental on
various host life history traits, including body size (Hoffmann
and Turelli, 1988), fecundity (Hoffmann et al., 1990; Fleury
et al., 2000), survival (Fleury et al., 2000; Tagami et al., 2001),
larval competitiveness (Huigens et al., 2004), mating choice
(Rigaud and Moreau, 2004) as well as the hosts’ immunity

(Fytrou et al., 2006; Braquart-Varnier et al., 2008; Sicard et al.,
2010).

Recent studies showed thatWolbachia is not always conflictual
and may also act as a mutualist with its hosts by being protective
(i.e., increasing their host’s survival during a pathogenic
challenge; Teixeira et al., 2008; Gross et al., 2009; Bian et al.,
2010; Glaser and Meola, 2010; Zélé et al., 2012; Eleftherianos
et al., 2013) or improving nutrition (Hosokawa et al., 2010).
The first protective mutualistic effect of the presence of a
native Wolbachia (wMel) against several viruses has been
demonstrated in Drosophila melanogaster (Hedges et al., 2008;
Teixeira et al., 2008). However, this protection seems limited
to viruses (Rottschaefer and Lazzaro, 2012; Ye et al., 2013).
On the other hand, in mosquitoes, in addition to the reports
of a protective effect against viruses (i.e., Dengue, Chikugunya,
in Aedes aegypti and Aedes albopictus; Moreira et al., 2009),
protection against protozoans (Moreira et al., 2009), filarial
nematodes (Kambris et al., 2009), as well as two bacteria species
(i.e., Erwinia carotovora and Salmonella typhimurium; Kambris
et al., 2009; Ye et al., 2013) have been linked to the presence
of Wolbachia. However, all these observations were made using
mosquitoes artificially transinfected with wMel and wMelpop
from Drosophila (but see Zélé et al., 2012). Though interesting,
these situations do not represent natural symbiotic systems where
Wolbachia would have evolved toward being mutualistic by
conferring protection to their host against pathogens.

TheWolbachia–isopod symbiotic systems constitute tractable
experimental models for transinfection experiments and
therefore to study the effects of native and non-nativeWolbachia
on the phenotype of their hosts (Moret et al., 2001; Le Clec’h
et al., 2013). Besides, previous studies have been conducted
to understand the effects of the Wolbachia on the hosts’
immune parameters. These studies have pointed out an
immunodepressing effect of the presence of Wolbachia during
ageing of the terrestrial isopod Armadillidium vulgare: 2-years-
old females exhibited lower phenoloxidase (PO) activity (Sicard
et al., 2010), lower hemocyte density and sometimes even
bacteremia in their hemolymph (Braquart-Varnier et al., 2008).
The reported presence, in some individuals, of bacteria from the
environment suggests that those micro-organisms may constitute
a threat in some cases, especially in older animals and/or when
the isopod’s immune parameters are low (Braquart-Varnier et al.,
2008). However, in younger individuals (i.e., 1-year-old animals)
of two isopod species (A. vulgare and Porcellio dilatatus), no
such negative effects of Wolbachia on immune parameters
were observed suggesting that Wolbachia would only cause
immunodepression in older animals (Sicard et al., 2010; Pigeault
et al., 2014).

Considering the contrasted influence ofWolbachia on isopods’
(i) immune parameters (i.e., PO activity, hemocyte density,
phagocytosis, proportion of hemocyte types; Braquart-Varnier
et al., 2008; Sicard et al., 2010; Pigeault et al., 2014) and (ii)
immune gene expression (Chevalier et al., 2012), the impact of
the presence of Wolbachia on their host immunocompetence
when facing a pathogen had to be directly assessed. As
some environmental bacteria were detected, in some cases,
in the isopod hemolymph, it appeared pertinent to study the
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TABLE 1 | Isopod lines used in this study and their main characteristics: gender of studied animals, their origins, their symbiotic condition [asymbiotic,
symbiotic (naturally or experimentally infected)], the Wolbachia strain that they harbor.

Species Line Gender Origin Wolbachia
status

Resident
Wolbachia strain

Pathogen injections

Armadillidium
vulgare

WXa ♀ Denmark Asymbiotic — Salmonella typhimurium and
Listeria ivanovii

WXw ♀ Denmark Symbiotic wVulCWX S. typhimurium and L. ivanovii

BF ♀ France Asymbiotic — S. typhimurium and L. ivanovii

BFwVulC ♀ BF line Experimentally
infected

wVulCZN S. typhimurium and L. ivanovii

ZN ♀ France Symbiotic wVulCZN S. typhimurium and L. ivanovii

Porcellio dilatatus dilatatus A ♀ and ♂ France Asymbiotic — wVulCWX, S. typhimurium and
L. ivanovii

dilatatus A- wDil ♀ and ♂ dilatatus A
line

Experimentally
infected

wDil wVulCWX, S. typhimurium and
L. ivanovii

dilatatus A- wCon ♀ and ♂ dilatatus A
line

Experimentally
infected

wCon wVulCWX, S. typhimurium and
L. ivanovii

impact of resident Wolbachia on the survival of terrestrial
isopods against bacterial pathogens by injecting them directly
into the hemolymph. Despite comprehensive investigations, no
specific cultivable bacterial pathogens of terrestrial isopod have
been described to date (Braquart-Varnier and Sicard, personal
observation). Thus, we chose to investigate this question with two
intracellular bacterial pathogens ecologically relevant and already
demonstrated to be pathogenic toward arthropods: the Gram-
positive Listeria ivanovii and the Gram-negative S. typhimurium,
which were both detected in soil samples (Jacobsen and Bech,
2012; Sauders et al., 2012). In parallel with our investigation on
‘conventional’ bacterial pathogens, we also studied the impact of
a resident vertically transmitted Wolbachia on the detrimental
effect caused by the transinfection of the wVulC strain from
A. vulgare to P. dilatatus (Le Clec’h et al., 2012). Indeed such
transinfection has led to the death of all asymbiotic individuals
(i.e., without Wolbachia; Le Clec’h et al., 2012). Resident
Wolbachia (either native or non-native) might affect the host
survival in case of such multiple infections (i.e., the resident
Wolbachia strain and the invasive strain) in two main ways: (i)
causing a decrease in wVulC induced mortality due to negative
interference between the two Wolbachia strains, (ii) or causing
an increase in wVulC induced mortality due to the additive costs
that can result from multiple infections (López-Villavicencio
et al., 2011). All the three “pathogens” used in this study are
considered to share a similar intracellular niche with the resident
Wolbachia and thus can potentially compete with the resident
symbiont for resources (Caragata et al., 2013; Sicard et al., 2014b).
Such competition could in return decrease the success of the
pathogens (Loker et al., 2004). Wolbachia could also interfere
with pathogenic bacteria directly via the production of toxic
compounds or in a more indirect way, by modulating the host
physiology (Kaiser et al., 2010), particularly the host immune
system (Kambris et al., 2009).

The present study aimed to test whether resident Wolbachia
(either native or not) can modulate the survival of the terrestrial
isopods when infected with the pathogenic intracellular bacteria
L. ivanovii and S. typhimurium as well as after the transinfection
with Wolbachia (wVulC). We showed in both A. vulgare and

P. dilatatus that the presence of a native Wolbachia can increase
their ability to survive pathogenic bacterial infections. We thus
reveal a ‘mutualistic side’ of Wolbachia–isopod interactions,
which were considered until now as quite conflictual ones.

MATERIALS AND METHODS

Biological Material
Isopod Lines
We studied the impact of resident Wolbachia on their host
survival when infected with intracellular pathogenic bacteria with
lines of two terrestrial isopod host species. These two host species
were chosen because each of them allowed to test the effect
of different parameters: (i) the model A. vulgare allowed us to
test the impact of the feminizing Wolbachia wVulC but also of
their different host’s population of origin while (ii) the model
P. dilatatus allowed us to test the effect of two CI-inducing
Wolbachia genotypes (native versus non-native) on the same host
genetic background. In A. vulgare lines, the impact ofWolbachia
on the survival when injected with the pathogenic bacteria could
not be tested in males as no males of this species were infected
with Wolbachia due to the feminization process. However, for
P. dilatatus, it was possible to test the effect of gender as they
host CI-inducing strains,wDil andwCon, which infect both sexes
(Sicard et al., 2014a).

In a previous study, Le Clec’h et al. (2013), had introduced
by injection the native Wolbachia strain (wDil) isolated from a
P. dilatatus symbiotic line (Sicard et al., 2014a), and a non-native
CI Wolbachia strain (wCon) isolated from Cylisticus convexus
(Moret et al., 2001) in recipient individuals from the asymbiotic
P. dilatatus line (dilatatus A line; Table 1; Sicard et al., 2014a).
Both Wolbachia are since then stably transmitted from injected
mothers to further generations resulting in two independent lines
maintained in the laboratory so called ‘dilatatus A-wCon’ and
‘dilatatus A-wDil’ (Table 1).

We used twoA. vulgare asymbiotic lines (WXa fromHelsingor
and BF from Nice; Table 1) and two A. vulgare symbiotic lines
infected with wVulC (ZN from Celles-Sur-Belles and WXw from
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Helsingor; Table 1). We also created the BFwVulC line to have
BF individuals infected with Wolbachia wVulC with the same
genetic background as BF asymbiotic population. This line was
generated by injection of Wolbachia from ZN females in BF
recipient females following the procedure described in Le Clec’h
et al. (2013). Recipient females were then crossed with BFmales to
create this new line. Then, females and males from the BFwVulC
line are crossed together at each generation to maintain the line.
Animals from the BFwVulC line are infected with Wolbachia
wVulC but have the ‘genetic background’ of BF asymbiotic line.
The sex-ratio deviance due to Wolbachia infection in BFwVulC
line was similar to the one observed in ZN line (data not shown).
All the individuals from the different lines were grown at 20◦C, in
plastic breeding boxes, on humid soil and fed with dead lime-tree
leaves. All animals used in this study were 1-year-old.

Pathogenic Intracellular Bacteria
Two phylogenetically distant intracellular pathogenic bacteria
species, L. ivanovii (Phylum: Firmicutes) and S. typhimurium
(Phylum: Proteobacteria), were injected into A. vulgare and
P. dilatatus individuals from the different lines. L. ivanovii
are Gram-positive intracellular bacteria, which are facultative
anaerobe, non-spore forming rods (Vázquez-Boland et al., 2001).
L. ivanovii has been shown to establish an intracellular infection
causing moderate mortality in D. melanogaster (Rottschaefer and
Lazzaro, 2012). The Gram-negative bacteria from the serotype
Salmonella enterica serotype Typhimurium are facultative aerobe
non-spore forming bacilli (Velge et al., 2012). S. typhimurium is
considered as having a broad host range since they are able to
infect the cells of many vertebrates (Velge et al., 2012) as well as
invertebrates, such asD. melanogaster (Rottschaefer and Lazzaro,
2012). The strain used in this study expressed constitutively GFP.

Salmonella and Listeria Injections
Bacterial Cultures
For S. typhimurium and L. ivanovii injections, bacteria from
glycerol stocks were cultured overnight at 37◦C in liquid LB
medium (Luria Bertani Broth Base, Invitrogen) or in BHI
medium (Brain-Heart Infusion, BD) respectively. These cultures
were then used to grow bacterial colonies on LB plates or BHI
plates at 37◦C (LB or BHI with 15 g/L agar) until colonies reached
a 5 mm diameter. Before each injection experiment, one colony
of either S. typhimurium or L. ivanovii from solid cultures was
added to 5 mL of LB or BHI liquid medium and incubated
overnight at 37◦C. One hundred microliter of the overnight
culture was added to 5 mL of LB or BHI and incubated at 37◦C to
reach a 0.7 optical density (OD) at 600 nm. One milliliter of the
0.7 OD culture was then centrifuged (at 13000 g, 4◦C, 2min). The
supernatant was disposed and the pellet was resuspended in 1mL
of fresh LB or BHI medium. The resulting suspension contained
around 105 bacteria/μL for S. typhimurium and 106 bacteria/μL
for L. ivanovii. The S. typhimurium suspension was then diluted
by 10 in order to obtain a 104 bacteria/μL suspension used
for challenging both the A. vulgare and P. dilatatus individuals.
Regarding the L. ivanovii, the initial 106 bacteria/μL suspension
was used to challenge theA. vulgare individuals. Due to the higher
susceptibility of P. dilatatus to L. ivanovii (data not shown), the

L. ivanovii suspension was diluted by 10 to reach 105 bacteria/μL
to challenge P. dilatatus.

For each independent replicate (for both survival and
pathogen multiplication experiments), all the bacterial cultures
were prepared separately. Additionally, to check the actual
number of injected bacteria, serial dilutions were made to obtain
around 1 bacteria/μL, and 100 μL of this dilution was streaked
on solid LB plates or BHI plates depending on the bacteria.

Survival Assays
AHamilton syringe with fine glass needle was used to inject 1 μL
of the bacterial suspension (S. typhimurium or L. ivanovii) or
1 μL of the control solution (LB or BHI sterile liquid medium
respectively) into the general cavity. All batches comprised
six individuals of each line (WXa, WXw, BF, BFwVulC, ZN,
dilatatus A, dilatatus A-wCon, and dilatatus A-wDil) and were
independently replicated five times (n = 30). For each replicate,
three individuals from each line received the control treatment
(n = 15 per line). After the injections of L. ivanovii or
S. typhimurium, the animals from the same replicate were kept in
a plastic box with moist paper and checked every 4 h to record the
mortality during 144 h for S. typhimurium challenged individuals
or 200 h for L. ivanovii challenged individuals (as the mortality
appeared later for L. ivanovii injected isopods).

Pathogen Multiplication in Asymbiotic versus
Symbiotic Animals
In order to compare the L. ivanovii and S. typhimurium loads
between symbiotic (BFwVulC, dilatatus A-wDil) and asymbiotic
(BF, dilatatus A) lines, animals were injected in three independent
replicates with S. typhimurium (BFwVulC n = 20, BF n = 20;
dilatatus A n = 32, dilatatus A-wDil = 24) or with L. ivanovii
(BFwVulC n= 30; BF n= 30; dilatatus A n= 15; dilatatus A-wDil
n = 15). Five microliters of hemolymph of each injected animals
were sampled 24 h post-injection (PI). Sampled hemolymph
from S. typhimurium infected isopods was diluted by 106 in LB
to reach a countable number of S. typhimurium colonies and
100 μL of these dilutions were streaked on two independent LB
plates. All colonies grown on the plates were morphologically
similar. However, to check whether the colonies on the plates
were actually S. typhimurium, we spread them on a slide and
checked under epifluorescence microscope (Olympus IX81) at
λ = 411 nm for GFP expression. Sampled hemolymph from
L. ivanovii infected isopods were added to 95 μL of BHI and
directly streaked on BHI plates (no further dilution needed due
to the low amount of L. ivanovii in hemolymph). The plates
were then incubated overnight and the CFUs were counted the
next day. To check whether the colonies showing the proper
morphology all belonged to L. ivanovii, we sequenced randomly
some of them on 16S rDNA.

Transinfection of P. dilatatus with wVulC
from A. vulgare: Consequences on
Survival and Mobility
Asymbiotic dilatatus A along with symbiotic dilatatus A-wCon
and dilatatus A-wDil males (Table 1) were injected either
with the wVulC suspension (obtained from crushed ovaries
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of infected females) or with the control suspension (obtained
from crushed ovaries of uninfected females). To do so, a
Hamilton syringe with a fine glass needle was used to inject
2 μL of filtered ovaries suspension from WXw or WXa
females (Table 1) prepared as described in Le Clec’h et al.
(2013) into the general cavity of the animals, through a
small hole pierced at the posterior part of the animal. For
each treatment, three independent replicates were conducted
(n = 21 received wVulC injection for dilatatus A, dilatatus
A-wCon, and dilatatus A-wDil while n = 27 received the control
treatment).

After injection of wVulC into dilatatus A, dilatatus A-wCon,
and dilatatus A-wDil individuals, injected animals from each
replicate were kept at 20◦C in a plastic rearing box on humid
soil and fed with dried lime-tree leaves soil. The survival was
recorded every 15 days starting at day 1 until day 112. In addition,
a mobility test was performed on the survivors every 15 days,
starting from day 60 until the day 105, by measuring the time the
animals move in a Petri dish during a period of 180 s (Le Clec’h
et al., 2012).

Detection and Density of Wolbachia
We quantified the density of Wolbachia by qPCR, both in
the suspensions injected to P. dilatatus (i.e., when wVulC is
injected as the invasive pathogen) and in the animals that
received pathogenic bacterial injections (i.e., quantification of
the resident Wolbachia: wCon, wDil in P. dilatatus and wVulC
in A. vulgare) using either ovary or leg samples. The latter
can be sampled without killing the animals allowing us to use
the same animal both to measure the quantity of Wolbachia
and to inject pathogens. Total DNA was extracted using the
protocol described by Kocher et al. (1989) and the Nanodrop
1000 spectrophotometer was used to estimate the total DNA
concentration and quality (ratios OD 260/280 nm). Reactions
of qPCR were performed, as previously described in Le Clec’h
et al. (2012), using Roche LightCycler 480 to measure the copy
number of the Wolbachia surface protein (wsp) gene. In short,
each 10 μL reaction contained 5 μL of SYBRGreen Master
Mix (Roche), 0.5 μL of 10 μM specific primers wsp208f (5′-
TGG-TGC-AGC-ATT-TAC-TCCAG-3′) and wsp413r (5′-TCG-
CTT-GATAAG-CAA-AAC-CA-3′), 3 μL of sterile water and
1 μL of DNA (corresponding to a range of 5–50 ng). The
thermal cycle starts with a 10 min initial denaturation at 95◦C
followed by 45 cycles of 10 s of denaturation at 95◦C, 10 s of
annealing at 60◦C and 20 s of elongation at 72◦C. The specificity
of the PCR product was verified with a melting curve (65–
97◦C) that was recorded at the end of the each reaction. The
wsp copy number was estimated with the help of the standard
curve plotted using a dilution of the wsp purified PCR product
(2.63 × 103 wsp.copies μL−1). The wsp copy number was
then divided by the total DNA amount of the sample in ng
in order to obtain normalized values for comparison between
samples. For each sample two independent technical replicates
were made.

Statistical Analyses
R 3.2.2 was used for all of the statistical analysis.

Wolbachia Titer
Shapiro-Wilk and Levene’s tests were conducted to check
normality and homoscedasticity of the number of wsp copy/ng
of total DNA. A t-test with Bonferroni correction for multiple
testing was used when the data followed a normal distribution
and variances of the samples were homogenous. A Wilcoxon-
rank test was performed when the data was not normally
distributed.

Isopod Survival After L. ivanovii and S. typhimurium
Injections
A global mixed effects Cox proportional hazards model
was fitted using the “coxme” R package. Bacterial injection
(i.e., control/Salmonella or Listeria), Wolbachia status
(presence/absence for A. vulgare; presence of different
Wolbachia strains/absence of Wolbachia for P. dilatatus) as
well as gender (for P. dilatatus) and population of origin (for
A. vulgare) were included in the models as fixed effects. As
the experiments were performed on different independent
groups of individuals, a block effect was included as a random
effect in the models. The latter analysis showed a low variance
between independent groups (i.e., blocks) indicating the
repeatability of the experiments. Each model was also fitted
without control groups. This allowed us to compare the survival
of the different asymbiotic and symbiotic lines when infected
with the pathogenic bacteria. Survival of the different lines was
compared pairwise to assess the difference between their survival
times using the log-rank test.

Consequences of wVulC Transinfection on
P. dilatatus Life History Traits
Models were fitted for the days 60, 75, and 105 PI in order to
test differences in survival during the course of the infection
of P. dilatatus by wVulC. Survival was modeled using a mixed
effects Cox proportional hazards model as described above.
For the analysis of the mobility, the ‘nlme’ package (version
3.1-120) was used to fit a mixed effect linear model with a
random block effect. In both analyses, first a global model
including all of the three lines (i.e., dilatatus A, dilatatus A wCon,
and dilatatus A wDil) was performed. Then, further analysis
was made to clarify the effect of the presence of each of the
Wolbachia strains (i.e., wDil, wCon) on mobility and survival,
when the host was infected with wVulC. Additionally, the log-
rank test was used to compare the survival times of each lineage
pairwise.

RESULTS

Wolbachia Density in Symbiotic
A. vulgare and P. dilatatus
Females of symbiotic A. vulgare lines were found infected with
Wolbachia as expected (using leg samples; Figure 1A). The
Wolbachia density did not differ significantly between the lines
that are naturally (ZN, WXw) or experimentally (BFwVulC)
infected with wVulC (t-test with Bonferroni correction; ZN and
BFwVulC: t = 0.133, df = 17, p = 1.00; WXw and BFwVulC:
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FIGURE 1 | Wolbachia density in Armadillidium vulgare (A) and Porcellio dilatatus (B). The qPCR quantifications of wsp copy number/DNA ng in BFwVulC,
ZN and WXw lineages and dilatatus A- wCon, dilatatus A- wDil lineages were made, using leg and ovary samples respectively. NS, not significant.

TABLE 2 | Survival analyses of the different A. vulgare and P. dilatatus lines when injected with S. typhimurium or L. ivanovii.

S. typhimurium injections L. ivanovii injections

df Deviance p df Deviance p

P. dilatatus

With control

Bacterial injection 1 77.193 <0.001 1 35.156 <0.001

Wolbachia status 2 22.244 <0.001 2 0.877 0.645

Gender 1 6.191 <0.001 1 7.863 0.005

Without control

Wolbachia status 2 22.244 <0.001 2 0.739 0.691

Gender 1 6.191 0.013 1 10.396 0.001

A. vulgare

With control

Bacterial injection 1 20.141 <0.001 1 6.322 0.012

Wolbachia status 1 5.737 0.017 1 24.630 <0.001

Population of origin 2 6.860 0.032 2 10.606 0.005

Without control

Wolbachia status 1 7.943 0.001 1 15.302 <0.001

Population of origin 2 7.568 0.023 2 31.630 <0.001

Isopods were injected either with S. typhimurium or L. ivanovii and their survival was recorded. A mixed effect Cox proportional hazards model was fitted with and without
the controls using the survival data of the lineages to estimate the effects of the treatment, the presence of Wolbachia, the different Wolbachia strains, the gender (only in
P. dilatatus), the population of origin (only in A. vulgare) on the survival and the replicate blocks as a random effect. In bold, statistically significant values (p < 0.05).

t = 1.903, df = 17, p = 0.19; ZN and WXw: t = 2.228, df = 16,
p = 0.16; Figure 1A).

The symbiotic P. dilatatus individuals from the lines dilatatus
A-wCon and dilatatus A-wDil were also proved to be all infected
with Wolbachia using ovary samples (Figure 1B). The density
of Wolbachia in both lines was similar as already reported
in Pigeault et al. (2014) (Wilcoxon-rank sum test, W = 361,
p = 0.866).

The number of wsp copies in the wVulC bacterial suspensions
injected for transinfection of P. dilatatus was around of 1 × 106
wsp copy/μL.

The Impact of Wolbachia on the Survival
of Terrestrial Isopods Infected with
L. ivanovii and S. typhimurium
Global Survival Analysis
For both isopod species, the global survival models including
all treatment groups (controls without injection of pathogens
included), showed that L. ivanovii and S. typhimurium injections
always significantly reduced the survival of terrestrial isopods
(Table 2): both L. ivanovii and S. typhimurium were pathogenic
for both isopod host species. The presence or absence of
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FIGURE 2 | Survival of the different A. vulgare lines when infected with S. typhimurium. A Cox proportional hazards model has been fitted using the survival
data compared symbiotic and asymbiotic survival (A) BFwVulC and ZN/BF and (B) WXw/WXa A. vulgare lines after being injected with pathogenic bacteria
S. typhimurium. Control groups were injected with liquid medium (LB). Different letters indicate significant differences between the survival curves of different lineages
based on log-rank test p < 0.05.

FIGURE 3 | Survival of the different P. dilatatus lines when infected with S. typhimurium. A Cox proportional hazards model was fitted using the survival
data of symbiotic (dilatatus A-wCon, dilatatus A-wDil) and asymbiotic (dilatatus A) P. dilatatus lines after being injected with pathogenic bacteria S. typhimurium.
Control groups were injected with liquid medium (LB). Results for females (A) and for males (B) are presented separately. Different letters indicate significant
differences between the survival curves of different lineages based on log-rank test p < 0.05.

pathogenic bacteria in the injection explained an important
part of the deviance between treatments. However, this was
not the only significant explanatory factor. In the global model
indeed, the symbiotic status (i.e., individual infected or not with

Wolbachia) of the host also explained an important part of the
deviance, with the exception of P. dilatatus individuals injected
with L. ivanovii for which Wolbachia presence did not influence
the survival (Table 2).
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FIGURE 4 | Salmonella typhimurium (A,B) and Listeria ivanovii (C,D) CFUs in A. vulgare and P. dilatatus. CFUs of S. typhimurium from A. vulgare
hemolymph (A), from P. dilatatus hemolymph (B), CFUs of L. ivanovii from A. vulgare hemolymph (C) and CFUs of L. ivanovii from P. dilatatus hemolymph (D).
∗p < 0.05, ∗∗p < 0.01. NS, not significant.

Other explanatory factors were specific to each of the isopod
species. In A. vulgare, the effect of the population of origin
showed that this factor also significantly explained a part of the
deviance (Table 2; Figures 2 and 5). In P. dilatatus, the global
model showed that the survival depended significantly on the
gender when injected with L. ivanovii or S. typhimurium: females
survived better than males (Table 2; Figures 3 and 6).

Impact of Wolbachia on S. typhimurium
Infections
Survival
A reduced submodel was fitted after excluding the control
groups (i.e., injection of sterile culture media) to evaluate which
parameter (gender, population of origin, Wolbachia status) still
explained significantly the deviance in the survival of animals
infected with S. typhimurium.

In A. vulgare, the presence of Wolbachia explained an
important part of deviance in survival: symbiotic lines survived
the S. typhimurium infection better than asymbiotic ones
(Table 2). Originating from the same line and only differing in
their symbiotic condition, BFwVulC individuals survived better
than BF ones (log-rank test: χ2 = 7.2, df = 1, p = 0.007,
Figure 2A). On the other hand, BFwVulC showed a very similar
survival pattern to the other symbiotic lineage ZN (log-rank test:

χ2 = 0.7, df = 1, p = 0.405, Figure 2A), even though they
did not come from the same line but have the same Wolbachia
strain. Similarly, the symbiotic lineageWXw survived better than
the asymbiotic WXa originated from the same initial population
(log-rank test: χ2 = 3.8, df = 1, p = 0.049, Figure 2B).

In P. dilatatus, the reduced submodel showed that both the
Wolbachia status and at a lower extent the gender, explained
significantly a part of the deviance (Table 2). The survival of
P. dilatatus when injected with S. typhimurium differed not only
between symbiotic and asymbiotic animals, but also depending
on the resident Wolbachia strain present (i.e., native wDil and
non-native wCon). Pairwise comparison of survival data with
log-rank test showed that dilatatus A-wDil animals infected with
native Wolbachia survived better than both dilatatus A-wCon
and asymbiotic dilatatus A ones. This pattern was observed
for females and males (for females, dilatatus A and dilatatus
A-wDil: log-rank test, χ2 = 9.4, df = 1, p = 0.002; dilatatus
A-wCon and dilatatus A-wDil: log-rank test, χ2 = 7.7, df = 1,
p = 0.006, Figure 3A; for males, dilatatus A and dilatatus
A-wDil: log-rank test, χ2 = 25.3, df = 1, p < 0.001, dilatatus
A-wCon and dilatatus A-wDil: log-rank test, χ2 = 22.1, df = 1,
p < 0.001, Figure 3B). However, the survival of asymbiotic
dilatatus A and symbiotic dilatatus A-wCon was not significantly
different (females: dilatatus A and dilatatus A-wCon: log-rank
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FIGURE 5 | Survival of the different A. vulgare lines when infected with L. ivanovii. A Cox proportional hazards model has been fitted using the survival data
compared symbiotic and asymbiotic survival (A) BFwVulC and ZN/BF and (B) WXw/WXa. A. vulgare lines after being injected with pathogenic bacteria L. ivanovii.
Control groups were injected with liquid medium (BHI). Different letters indicate significant differences between the survival curves of different lineages based on
log-rank test p < 0.05.

FIGURE 6 | Survival of the different P. dilatatus lines when infected with L. ivanovii. A Cox proportional hazards model was fitted using the survival data of
symbiotic (dilatatus A-wCon, dilatatus A-wDil) and asymbiotic (dilatatus A) individuals after being injected with pathogenic bacteria L. ivanovii. Results for females (A)
and for males (B) are presented separately. Control groups were injected with liquid medium (BHI). Different letters indicate significant differences between the
survival curves of different lineages based on log-rank test. p < 0.05.

test, χ2 = 0.2, df = 1, p = 0.683, Figure 3A; males: dilatatus
A and dilatatus A-wCon: log-rank test, χ2 = 0.6, df = 1,
p = 0.435, Figure 3B). These results showed that only P. dilatatus
individuals harboring the native Wolbachia strain wDil survived
better than the other lines when infected with S. typhimurium.

Pathogen Load
Twenty-four hours PI, hemolymph samples were taken from
animals injected with S. typhimurium to compare the pathogen
load (i.e., CFUs) between asymbiotic (BF, dilatatus A) and
symbiotic (BFwVulC, dilatatus A-wCon, dilatatus A-wDil)
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FIGURE 7 | Influence of resident Wolbachia on the survival of
P. dilatatus infected with wVulC. Porcellio dilatatus males were injected
with invasive wVulC Wolbachia strain and their survival was recorded every
15 days. A Cox proportional hazards model was fitted. Different letters
indicate significant differences between the survival curves of different lineages
based on log-rank test. p < 0.05.

animals. In both A. vulgare and P. dilatatus, the pathogen load
in the hemolymph was higher than the amount that was initially
injected (at least 400 times higher). Moreover, in both A. vulgare
and P. dilatatus, CFUs from S. typhimurium was significantly
higher in asymbiotic animals compared to the symbiotic ones
(BF/BFwVulC: W = 274, p = 0.043, Figure 4A; dilatatus
A/dilatatus A-wDilW = 631.5, p = 0.006, Figure 4B).

Impact of Wolbachia on L. ivanovii
Infections
Survival
In A. vulgare, similar to the global model, the reduced submodel
showed that both the Wolbachia status and the origin of
the population explained significantly a part of the deviance
(Table 2). Pairwise comparison of survival data showed that
symbiotic BFwVulC females survived significantly better than
asymbiotic BF ones (log-rank test, χ2 = 4.7, df = 1, p = 0.029,
Figure 5A) while survival of BFwVulC andZN did not differ from
each other (log-rank test, χ2 = 3.2, df= 1, p= 0.075, Figure 5A).
In addition, symbiotic WXw females survived significantly better
than asymbiotic WXa when injected with L. ivanovii (log-rank
test, χ2 = 16.7, df = 1, p < 0,001, Figure 5B).

In P. dilatatus, a significant part of the deviance in survival was
explained in the reduced submodel by the factor ‘gender’: females
surviving better than males (Table 2). In this case, theWolbachia
status did not significantly affect the survival in the model
(p = 0.691; Table 2). However, pairwise comparison of survival
data showed a weak effect ofWolbachia status; there was actually

no significant difference between the survival of asymbiotic and
symbiotic females infected with L. ivanovii (dilatatus A and
dilatatus A-wCon: log-rank test, χ2 = 0.3, df = 1, p = 0.579;
dilatatus A and dilatatus A-wDil: log-rank test, χ2 = 1.8, df = 1,
p= 0.180; Figure 6A). However, there was a significant difference
in survival between females infected with different Wolbachia:
dilatatus A-wCon females survived better than dilatatus A-wDil
ones (log-rank test, χ2 = 4, df = 1, p = 0.046; Figure 6B). This
pattern was not confirmed in males for which no difference due
to the presence of any of the Wolbachia strains was detected
(log-rank test: χ2 = 0.4, df = 2, p = 0.813; Figure 6B).

Pathogen Load
Twenty-four hours PI, hemolymph was sampled from L. ivanovii
injected animals to compare the pathogen loads between
asymbiotic (BF, dilatatus A) and symbiotic (BFwVulC, dilatatus
A-wCon, dilatatus A-wDil) animals. The mean of the pathogen
load in the hemolymph was more than 60 times lower than the
initially injected L. ivanovii amount. No significant difference
between asymbiotic and symbiotic animals was detected in any
of the isopod models (for A. vulgare: W = 425.5, p = 0.723,
Figure 4C; for P. dilatatus:W = 90, p = 1, Figure 4D).

Influence of Resident Wolbachia on
Invasive Wolbachia
Survival
The negative effect of the wVulC infection on the survival of
the animals was detected from day 90 PI (Figure 7; Table 3).
Pairwise comparisons of survival data with log-rank test showed
that the differential effect of the Wolbachia status (asymbiotic,
dilatatus A-wDil, or dilatatus A-wCon) became apparent at day
105 PI (Table 3): globally, dilatatus A-wCon survived significantly
longer than dilatatus A individuals and dilatatus A-wDil ones
(log-rank test, dilatatus A-wDil and dilatatus A-wCon: χ2 = 12.2,
df = 1, p < 0.001; dilatatus A and dilatatus A-wCon: χ2 = 5.8,
df = 1, p = 0.015; Figure 7).

Mobility
Leg tremors and seizures caused by the wVulC infection were
observed during the course of experiment for all lines. The
mobility of the animals injected with wVulC decreased compared
to the control group, starting from the day 60 PI (Table 3). This
decrease continued until the last days of the infection monitoring
in all lines. However, the decrease of mobility due to wVulC was
lower for symbiotic dilatatus A-wCon individuals compared to
the other symbiotic lineage dilatatus A-wDil at both days 75 and
105 PI (Table 3; Figure 8).

DISCUSSION

The potential mutualistic nature of Wolbachia as a protective
symbiont was revealed few years ago by the interactions between
Wolbachia and RNA viruses in Drosophila (Hedges et al., 2008;
Teixeira et al., 2008). Since then, the protection conferred by the
presence of Wolbachia has been reported against various natural
enemies. However, this has mainly been observed in artificially
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TABLE 3 | Influence of resident Wolbachia on the survival and mobility of P. dilatatus infected with wVulC.

Day 60 PI Day 75 PI Day 105 PI

df Deviance p df Deviance p df Deviance p

Comparisons between dilatatus A, dilatatus A-wCon, and dilatatus A-wDil

Mobility

Bacterial injection 1 15.245 <0.001 1 26.701 <0.001 1 18.135 <0.001

Wolbachia status 2 3.535 0.171 2 6.635 0.036 2 6.080 0.048

Survival

Bacterial injection 1 0.604 0.436 1 1.285 0.257 1 42.591 <0.001

Wolbachia status 2 0.993 0.608 2 1.576 0.448 2 9.218 0.01

Comparisons between dilatatus A-wCon and dilatatus A-wDil

Mobility

Bacterial injection 1 11.681 0.001 1 20.181 <0.001 1 18.138 <0.001

Wolbachia status 1 1.612 0.204 1 5.724 0.017 1 6.080 0.014

Survival

Bacterial injection 1 0.214 0.643 1 3.413 0.064 1 32.185 <0.001

Wolbachia status 1 2.078 0.149 1 0.149 0.245 1 8.475 0.004

Porcellio dilatatus males were injected with invasive wVulC Wolbachia strain and their survival as well as their mobility was recorded on the days 60, 75, and 105 PI.
A mixed effects linear model with random block effect was used to analyze mobility data. A mixed effects Cox proportional hazards model was fitted using the survival data
of the lineages to estimate the effects of the treatment and the Wolbachia status. For both models, first a global model with all of the lineages (symbiotic dilatatus A-wCon,
dilatatus A-wDil and asymbiotic dilatatus A) was fitted, then further analysis was made to clarify the differences between symbiotic dilatatus A-wCon and dilatatus A-wDil
lineages with help of a sub-model. In bold, statistically significant values (p < 0.05).

established host-Wolbachia associations either when a naturally
naive host was transinfected with Wolbachia (Kambris et al.,
2009; Ye et al., 2013), or when a non-naive host (i.e., host species
for which some individuals are infected by another Wolbachia
strain) was transinfected with a new Wolbachia strain (Blagrove
et al., 2012). The aim of our study was to find out whether a
resident Wolbachia has a protective effect against intracellular
bacterial pathogens in terrestrial isopods.

In A. vulgare, we showed that lines harboring the feminizing
Wolbachia wVulC (BFwVulC, ZN, WXw) survived both
L. ivanovii and S. typhimurium injections better than their
asymbiotic counterparts (BF, WXa). This demonstrates that
wVulC behaves as a protective symbiont for A. vulgare.
Moreover, even if our analyses of the different lines coming
from different populations of origins showed an influence
of ‘host-background’ in the protection phenotype, the major
source of variation in survival to pathogenic bacteria is clearly
the absence or presence of Wolbachia wVulC. A prevailing
effect of Wolbachia on A. vulgare physiology was already
demonstrated by studying several immune parameters (Braquart-
Varnier et al., 2008; Sicard et al., 2010). In 1-year-old A. vulgare,
the same age as the animals used in the present study,
the presence of wVulC influences both PO activities (Sicard
et al., 2010) and hemocyte type proportions (i.e., increase in
hyaline and semi-granular hemocyte, and decrease in granular
hemocyte percentage; Chevalier et al., 2011). Besides native
wVulC Wolbachia presence leads to a down regulation of some
immune genes in the whole body of A. vulgare, including genes
involved in stress response, detoxification, autophagy, AMP
synthesis (including two Gram-positive AMPs: armadillidin
and crustin), pathogen recognition and proteolytic cascades in
ovaries (Chevalier et al., 2012), while most of these genes tend,

on the contrary, to be up-regulated in the immune tissues
of Wolbachia infected animals (Chevalier et al., 2012). The
previously described immunodepressive effects of Wolbachia
presence might be somehow compensated by the general up-
regulation of immune genes specifically in the immune tissues
hence causing the observed protective effect. However, the
global picture of Wolbachia influence on A. vulgare immune
system is not yet unraveled and the protection against bacterial
pathogens demonstrated here cannot be linked to any previously
demonstrated effect ofWolbachia presence. Besides any immune
system stimulation, such protection effect of the presence of
Wolbachia could also be the result of negative interferences
between resident symbiont and invasive bacteria in diverse
possible ways.

In P. dilatatus, the two CI-inducing Wolbachia strains (non-
native wCon and native wDil) both conferred protection of both
females and males against pathogenic bacteria. However, each
resident Wolbachia increased survival against different invasive
pathogenic bacteria: the native wDil conferred better resistance
to S. typhimurium infection while wCon conferred a slightly
higher resistance against L. ivanovii. Previous assessments of
the influence of both Wolbachia strains on some P. dilatatus
immune parameters (PO, hemocyte load and phagocytosis rate)
indicated that the two Wolbachia strains influence the immune
system differently: the non-native wCon is overall more immuno-
stimulating than the native wDil (Pigeault et al., 2014). wCon
as a non-native Wolbachia strain of P. dilatatus might trigger
more general immune pathways than the native wDil strain
does, suggesting an immune stimulation due to the presence of
the foreign Wolbachia. However, an alternative hypothesis not
implying mediation via immunity may also explain such patterns
of protection: wDil could interact harder with Salmonella and
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FIGURE 8 | Influence of resident Wolbachia on the mobility of
P. dilatatus infected with wVulC. P. dilatatus males were injected with
pathogenic wVulC Wolbachia strain and their mobility was recorded every
15 days. The mobility test was performed measuring the time the animals
move in a Petri dish during a period of 180 s. Data points indicate the mean
(±SEM).

counteracts its multiplication while wCon would interact harder
with Listeria. For P. dilatatus, we also demonstrate an effect of
gender on survival: females survived better than males when
challenged with pathogenic bacteria. This suggests that isopod
females invest more in immunity than males, as already reported
by measuring immune parameters in Pigeault et al. (2014).

Previous transinfection experiments with P. dilatatus as a
recipient host demonstrated that wVulC coming from A. vulgare
resulted in strong pathogenicity when interacting with this new
host (Le Clec’h et al., 2012, 2013, 2014). In the present work,
the wVulC strain was injected into asymbiotic (dilatatus A) but
also for the first time in symbiotic animals (i.e., dilatatus A-wCon
or dilatatus A-wDil). Our results confirmed the pathogenicity of
wVulC on P. dilatatus and we observed the previously reported
symptoms (reduced mobility, leg tremors, seizures) suggesting a
neurologic pathology (Le Clec’h et al., 2012, 2013). Nonetheless,
dilatatus A-wCon survived longer and some symptoms such as
reduced mobility were postponed compared to the other lines.
The difference in survival rates following wVulC injections was
not related to the load of resident Wolbachia. Therefore the
reason for this difference could result from difference in the
interactions between wVulC and the resident strain within the
intracellular niche.

Our results demonstrate for the first time in any model
a protection conferred by native Wolbachia strains against
pathogenic intracellular bacteria: an important proportion (up
to 70%) of the symbiotic animals survived the infection (even
several weeks after infection; personal observation) while all

the asymbiotic animals died. Such a strong benefit due to
the presence of Wolbachia has only been previously reported
for infection of extracellular E. carotovora in the naive host
A. aegypti transinfected with non-native Wolbachia strains
from Drosophila (Kambris et al., 2009; Ye et al., 2013).
Other investigations on bacterial protection conferred by
Wolbachia conducted on D. melanogaster naturally infected
with native Wolbachia showed that symbiotic animals did
not survive better than their asymbiotic counterparts when
infected with pathogenic bacteria such as L. ivanovii and
S. typhimurium as well as Burkholderia cepacia, E. carotovora,
and Mycobacterium marinum (Rottschaefer and Lazzaro, 2012;
Ye et al., 2013). Similarly, Drosophila simulans naturally infected
withWolbachia did not show any difference in terms of mortality
compared to the flies without Wolbachia, when infected with
E. carotovora, Pseudomonas aeruginosa, and Serratia marcescens
(Wong et al., 2011). Based on these studies, it was suggested
that the mechanism responsible for the protective effect against
pathogenic bacteria, only observed in artificial associations
between Wolbachia and mosquitoes, could result from an
immune stimulation triggered only by non-native transinfected
Wolbachia (Moreira et al., 2009; Bian et al., 2010; Ye et al.,
2013). As such immune priming would be unlikely to be
triggered in long-term associations betweenWolbachia and their
arthropod hosts, several authors concluded that a protective
effect of Wolbachia against intracellular bacteria in natural
symbiotic systems was not likely to be found (Rottschaefer and
Lazzaro, 2012; Ye et al., 2013). However, in isopod models, we
showed a protection against pathogenic bacteria in situations for
which immune stimulation caused by the introduction of non-
native Wolbachia in a new host cannot explain the protection
phenotype. Even though in the BFwVulC and dilatatus-wDil
lines, the Wolbachia have been artificially introduced, the
Wolbachia strainwVulC is widely distributed all over the world in
A. vulgare populations (Cordaux et al., 2004) while wDil is widely
distributed in P. dilatatus (Grève, personal communication).
Therefore, there are co-evolutionary histories between these
symbiotic partners.

By measuring the concentration of pathogenic bacteria
in the hemolymph of the injected animals, we investigated
whether the observed protection would be due to a true
resistance phenomenon which would result in reduced pathogen
load, or tolerance which would result in a similar pathogen
load but increased survival (Schneider and Ayres, 2008). In
S. typhimurium infection, symbiotic BFwVulC (A. vulgare) and
dilatatus A-wDil (P. dilatatus) lines showed lower pathogen load
in their hemolymph than asymbiotic BF (A. vulgare) and dilatatus
A (P. dilatatus) lines respectively. Therefore, the better survival
of symbiotic animals would correspond to a decrease in bacterial
load in the hemolymph (i.e., higher resistance). On the other
hand, we did not find any difference in L. ivanovii load in the
hemolymph of the isopods 24 h PI (Figure 4) or even 48 h PI
(personal observation). These results suggest that the difference
in survival between lines after Listeria injection was not linked
to difference in pathogenic bacterial loads. However, further
investigations would be required to have a firm conclusion
on the latter, since in our experiments Listeria was clearly
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pathogenic while we were not able to detect a proper infection
(i.e., multiplication) in the hemolymph.

Maternally inherited Wolbachia strains induce either
feminization or CI in terrestrial isopods. As these reproductive
manipulations and in general Wolbachia infections can have
severe costs on host fitness, they are considered as conflictual
interactions. Indeed variousWolbachia strains are linked to some
detrimental effects on their host’s fitness, such as wVulC strain
in A. vulgare causing reduced progeny and survival (Braquart-
Varnier et al., 2008; Sicard et al., 2010). Given that Wolbachia
are quite widespread in host populations despite their apparent
fitness costs, we hypothesize that the observed protection effect
could compensate for the costs, and that Wolbachia can become
a mutualist, especially if infections by environmental bacteria
constitute an important threat for terrestrial isopods. Moreover
in P. dilatatus, the native wDil strain has recently been shown
to increase the reproduction of its host (Pigeault et al., 2014).
If antibacterial protection conferred by the same Wolbachia
is paired with a reproductive benefit (Pigeault et al., 2014),
reproductive parasitism might continue to manipulate host
reproduction while being a mutualist at the same time, resulting
in a so called ‘Jekyll and Hyde’ infection, where beneficial and

conflictual traits co-exist together in the same symbiotic system
(Zug and Hammerstein, 2014).
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