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Biocontrol (BC) formulations prepared from plant-growth-promoting bacteria are
increasingly applied in sustainable agriculture. Especially inoculants prepared from
endospore-forming Bacillus strains have been proven as efficient and environmental-
friendly alternative to chemical pesticides due to their long shelf life, which is
comparable with that of agrochemicals. However, these formulations of the first
generation are sometimes hampered in their action and do not fulfill in each case the
expectations of the appliers. In this review we use the well-known plant-associated
Bacillus amyloliquefaciens type strain FZB42 as example for the successful application
of different techniques offered today by comparative, evolutionary and functional
genomics, site-directed mutagenesis and strain construction including marker removal,
for paving the way for preparing a novel generation of BC agents.

Keywords: plant growth-promotion, biocontrol, Bacillus amyloliquefaciens subsp. plantarum, mersacidin,
bacillomycin D, surfactin, bacilysin, harpin genes

INTRODUCTION

As stated by Compant et al. (2005) in their excellent review, pathogenic microorganisms affecting
plant health are a major and chronic threat to food production and ecosystem stability worldwide.
Approximately 25% of the world’s crop yield is lost every year due to plant pathogens (Lugtenberg,
2015). As agricultural production intensified over the past few decades, producers became more
and more dependent on agrochemicals as a relatively reliable method of crop protection helping
with economic stability of their operations (Schäfer and Adams, 2015).

However, due to the negative impact on environment caused by agrochemicals, disease control
by beneficial bacteria as an alternative to chemical pesticides in plant protection is steadily
increasing and begins to replace in part chemical pesticides (Qiao et al., 2014). It has been shown
that applying spore formulations of the plant-beneficial bacterium Bacillus amyloliquefaciens does
not affect the composition of rhizosphere microbial community (Chowdhury et al., 2015a). An
increasing number of farmers are recognizing the need for other avenues for pest control that are
not as damaging to the environment and the land. According to a comprehensive study of BCC
Research, global markets for biopesticides will grow from USD54.8 billion in 2013 to USD83.7
billion to 20191.

1www.bccresearch.com/market-research/chemicals/biopesticides-chm029e.html
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Thereby, biological preparations from spore-forming Bacillus
sp. are preferred, because their long-term viability facilitates the
development of commercial products (Borriss, 2015a). These
plant-associated bacteria are characterized by their simultaneous
plant-growth promoting (PGP) and biocontrol (BC) activity. It
should be mentioned here, that both features are linked with
each other and should not artificially separated by regulatory
authorities: Plant growth promoting effects strengthen plants
and made them more resistant against pathogens and vice versa
suppression of pathogens enhances plant health and reduces
harvest losses (Kamilova et al., 2015). Unfortunately, the success
of such biologicals in agriculture is still hampered by sometimes
inconsistent field performance due to insufficient knowledge
about basic mechanisms of interactions between bacilli and
plants, although some progress has been made in last decade
(Ravensberg, 2015).

Plant-associated B. amyloliquefaciens strains belonging to
subsp. plantarum (methylotrophicus) (Borriss et al., 2011; Dunlap
et al., 2015) are distinguished from other representatives of
endospore-forming B. amyloliquefaciens by their ability to
colonize plant rhizosphere, to stimulate plant growth and to
suppress competing phytopathogenic bacteria and fungi. Due
to their biofertilizer and BC properties they are becoming
increasingly important as a natural alternative to chemical
pesticides and other agrochemicals (Borriss, 2011). We have
directed our research on B. amyloliquefaciens FZB42T , the type
strain for B. amyloliquefaciens subsp. plantarum. Since its first
description (Krebs et al., 1998) more than 70 articles dealing
with FZB42 have been published2. In order to reveal the specific
genomic features linked with the properties beneficial for plant
growth and BC, we have sequenced the whole genome of FZB42
as the first example of Gram-positive plant beneficial bacteria
(Chen et al., 2007).

Comparative genome analysis, transposon mutagenesis,
transcriptome and proteome analysis of this model organism
have been proven as valuable means to analyze its plant growth
promoting and BC activities (Chowdhury et al., 2015a). Ten
giant gene clusters covering nearly 10% of the whole genome
and responsible for non-ribosomal and ribosomal synthesis
of secondary metabolites with antimicrobial and nematocidal
action were identified (Borriss, 2013). In addition, an incomplete
gene cluster directing immunity against the type B lantibiotic
mersacidin was detected (Table 1). In this review we will describe
several possibilities offered today by in vitro techniques for
enhancing the beneficial action of bioformulations based on
B. amyloliquefaciens FZB42, and its close relatives SQR9 and
NJN6, isolated by the laboratory of Qirong Shen, Nanjing
Agriculture University.

PHYLOGENOMICS OF Bacillus
amyloliquefaciens

The genus B. amyloliquefaciens harbors members of different
ecotypes (plant-associated and non-plant associated, Reva et al.,

2http://www.nordreet.de/bacillus-consulting/literatur/

2004). Our analysis based on the use of all core genes of a set of 42
genomes to maximize the sequence support for the phylogenetic
tree (Zdobnov and Bork, 2007) and used the pipeline provided
by the EDGAR software (Blom et al., 2009). According to
phylogenomic analysis B. amyloliquefaciens is clustered into
three taxonomic units which could be considered as ‘subspecies’
(Figure 1):

(1) B. amyloliquefaciens subsp. plantarum (B.methylotrophicus)
(2) B. amyloliquefaciens subsp. siamensis (B. siamensis)
(3) B. amyloliquefaciens subsp. amyloliquefaciens

Interestingly, the two available genomes of B. siamensis
formed a separate taxonomic unit within the B. amyloliquefaciens
subspecies complex suggesting that the taxonomic classification
of B. siamensis has to be reconsidered. As reported
recently (Dunlap et al., 2015), B. methylotrophicus and
B. amyloliquefaciens subsp. plantarum are not distinguishable
by their core genome sequences and form together a robust
taxonomic unit comprising all plant-associated representatives
of the genus B. amyloliquefaciens (group 1). Overall, the
B. amyloliquefaciens pan genome consists of 8652 CDS,
whilst the core genome consists of 2104 CDS with Bacillus
amyloliquefaciens FZB42 (NC_009725) used as reference.

The pan genome derived only from representatives of
B. amyloliquefaciens subsp. plantarum and B. methylotrophicus
(plant-associated group 1) comprises 7936 CDS, which is
reflecting the high flexibility in adapting to plant-associated
lifestyle. The core genome formed by the 35 B. amyloliquefaciens
subsp. plantarum and 3 B. methylotrophicus genomes consists
of 2295 CDS suggesting that 54 genes of the core genome are
unique for the subsp. plantarum (B. methylotrophicus) and do
not occur in the non-plant-associated subsp. amyloliquefaciens
and in B. siamensis (Qiao et al., 2014). Within these singletons are
the genes involved in non-ribosomal synthesis of the polyketides
difficidin (Chen et al., 2006) and macrolactin (Schneider
et al., 2007), an iturin-like compound (e.g., bacillomycin or
iturinA, Borriss et al., 2011), and several genes involved in
carbohydrate degradation and transport, such as glucuronate
isomerase (uxaC), 2-keto-3-deoxygluconokinase (kdgK), 2-keto-
3-deoxygluconate -6-isomerase-6-phosphate aldolase (kdgA),
endo-1,4-beta-glucanase (eglA), and saccharifying amylase
(amyE). Many of these genes, unique for plant-associated
B. amyloliquefaciens seem to be acquired by horizontal gene
transfer. FZB42 contains 17 genomic islands (Chen et al.,
2007). Certain DNA islands appear to be linked with the plant-
associated lifestyle. Island 7 (28,754 bp) for instance, contains
genes with striking similarity to genes involved in extracellular
arabinogalactane hydrolysis, galactose uptake by a sugar-specific
phosphotransferase system IIABC and galactose catabolism in
enterococci, lactobacilli and Erwinia carotovora (Chen et al.,
2007). It can be assumed that acquisition of this molecular
toolbox, comprising several elements derived from other soil-
and plant-associated bacteria has enhanced the ability of FZB42
to exploit plant-derived polysaccharides.

A recent comparative analysis of core genomes
from 28 B. amyloliquefaciens subsp. plantarum and 32
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TABLE 1 | Genes and gene cluster encoding for secondary metabolites in Bacillus amyloliquefaciens plantarum FZB42.

Metabolite Genes and gene cluster Size (bp) Genome position (bp) MIBiG Effect against Reference

Sfp-dependent non-ribosomal synthesis of lipopeptides (NRP)

Surfactin srfABCD 28,544 341,664-370,208 BGC0000433 virus, Mycoplasma Koumoutsi et al., 2004

Bacillomycin D bmyCBAD 39,113 c1,908,427-c1,869,309 BGC0001090 fungi Koumoutsi et al., 2004

Fengycin fenABCDE 37,669 c1,968,997-c1,931,328 BGC0001095 fungi Koumoutsi et al., 2004

Bacillibactin dhbABCDEF 11,954 c3,032,970-c3,021,016 BGC0001185 microbial competitors Chen et al., 2007

Sfp-dependent non-ribosomal synthesis of polyketides (PKS)

Macrolactin mlnABCDEFGHI 53,253 1,391,841-1,445,094 BGC0000181 bacteria Schneider et al., 2007

Bacillaene baeBCDE, acpK, baeGHIJLMNRS 72,437 1,700,345-c1,772,782 BGC0001089 bacteria Chen et al., 2006

Difficidin dfnAYXBCDEFGHIJKLM 69,523 c2,276,743-c2,346,266 BGC0000176 bacteria Chen et al., 2006

Sfp-independent non-ribosomal synthesis (NRP)

Bacilysin bacABCDE, ywfG 5,907 c3,593,877-c3,599,784 BGC0001184 bacteria Chen et al., 2009b

Ribosomal synthesis of processed and modified peptides (bacteriocins, lantibiotics, RiPPs)

Plantazolicin pznFKGHIAJC DBEL 9,891 726,457-736,348 BGC0000569 B. anthrax, nematodes Scholz et al., 2011

Amylocyclicin acnBACDEF 4,112 c3,048,678-c3,044,568 BGC0000616 related bacteria Scholz et al., 2014

Mersacidin (partial) mrsK2R2FGE 4,828 c3,774,552-c3,769,734 BGC0000527 Gram-+ bacteria Borriss, 2013

The available MIBiG entries (Medema et al., 2015) are indicated.

B. amyloliquefaciens species identified 193,952 bp of sequences
that are present within the subsp. plantarum core genome but
absent in the B. amyloliquefaciens core genome (Hossain et al.,
2015). Among these genetic loci there were 73 genes shared by
all 28 plantarum strains but were not present in any strains of
subsp. amyloliquefaciens. The putative functions of these genes
included transportation (7 genes), regulation (7 genes), signaling
(1 gene), carbon degradation (10 genes), synthesis of secondary
metabolites (19 genes), and hypothetical proteins (12 genes).
Hossain et al. (2015) hypothesized that some of these gene
products may be involved in interactions with plants.

Genes involved in ribosomal synthesis of several bacteriocins,
such as mersacidin (Borriss, 2013), plantazolicin (Scholz et al.,
2011), and amylocyclicin (Scholz et al., 2014), were detected in
several representatives of B. amyloliquefaciens subsp. plantarum,
but are not part of the plantarum core genome. We hypothesize
that most of the genes, unique in subsp. plantarum are involved
in plant-bacteria interactions and in suppressing plant pathogens.

Bacillus amyloliquefaciens subsp.
plantarum (methylotrophicus) FZB42T

We have proposed to choose FZB42T as model strain for plant-
associated PGP and BC Bacilli for the following reasons (Borriss,
2011):

(1) The strain is available for scientific research from public
strain collections (BGSC 10A6 and DSM23117), despite that
the strain is commercialized by ABiTEP GmbH Berlin and
successfully applied in agri- and horticulture3.

(2) The whole genome sequence of FZB42T has been determined
in 2007, as the first representative of gram-positive
BC bacteria. Its 3,918-kb genome, lacks extended phage
insertions, which occur ubiquitously in the related Bacillus

3http://www.abitep.de/de/produkte.html

subtilis 168 genome (Chen et al., 2007). Nearly 10% of the
genome is devoted to synthesizing antibiotics, siderophores
and bacteriocins (Chen et al., 2009a; Borriss, 2013).

(3) In contrast to most environmental Bacillus strains, FZB42 is
naturally competent and amenable to genetic transformation
using a modified one-step protocol (Idris et al., 2007).
In order to assign unknown gene functions, we generated
more than 200 mutant strains targeted in 74 different
genes involved in synthesis of secondary metabolites,
volatiles, biofilm formation, alternative sigma factors and
global transcription regulators (Figure 2). Moreover, strain
derivatives of FZB42 were labeled by stable chromosomal
integration of the green fluorescent protein (GFP+). Those
strains were found extremely useful for studying root
colonization after bacterial inoculation (Fan et al., 2011;
Chowdhury et al., 2015b). The engineeredmutant strains can
be ordered from the Nord Reet UG Greifswald, Germany4.

(4) FZB42 is closely related to other BC Bacilli with industrial
importance (FZB24, QST713, GB03, D747, MB1600, GA1,
SQR9, NAUB3, YAU B9601), which are often wrongly
assigned as being B. subtilis, but are also belonging to
the same subspecies plantarum (methylotrophicus) as FZB42
(Borriss et al., 2011). Studies performed with FZB42 and its
derivatives are therefore of general interest and valuable for
understanding the mechanisms of action in this important
group of endospore-forming plant-associated bacteria.

PGPR BACILLI ENGINEERED FOR
ENHANCED EFFICIENCY

A first step in improving efficiency of BC bacilli is identification
of target genes involved in BC and root colonization. As stated
above, the FZB42 genome harbors a rich arsenal of genes
probably involved in synthesis of antimicrobial compounds.

4http://www.nordreet.de/bacillus-consulting/research/
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FIGURE 1 | Phylogenetic tree of Bacillus amyloliquefaciens chromosomes currently available in public databases. Based on the core genome of 2104
CDS the divergence of the plant-associated bacteria (B. amyloliquefaciens subsp. plantarum) and B. siamensis and B. amyloliquefaciens subsp. amyloliquefaciens
was quantified with FZB42T employed as reference to construct the tree according to Blom et al. (2009). Every set of orthologous genes found in all genomes was
separately aligned using the multiple alignment tool MUSCLE (Edgar, 2004). The alignments were concatenated to one huge multiple alignment. A distance matrix
was calculated from this alignment and finally a phylogenetic tree was constructed based on this distance matrix using the Neighbor-Joining method. The two latter
methods are used in the PHYLIP implementations by Felsenstein (http://evolution.genetics.washington.edu/phylip.html). The Neighbor-Joining method was chosen
as it is a heuristic approach with a very good computational efficiency, making it well suited for large datasets resulting from the core genome based tree construction.

By applying a combined approach using gene knock-out
mutants and chemical mass spectroscopy as analytic tools, we
identified during last decade a total of 10 gene clusters involved
in Sfp-dependent non-ribosomal synthesis of defined cyclic
lipopeptides, c-LPs (4) and polyketides (3), Sfp-independent non-
ribosomal synthesis of bacilysin, and ribosomal synthesis of
the highly modified bacteriocins plantazolicin and amylocyclicin
(Chowdhury et al., 2015a).

Identification of Target Genes to Improve
the Efficiency of PGPR Bacilli
Biocontrol
Several case studies using site-directed mutants were performed
in order to demonstrate the antibacterial effect exerted by the
polyketide difficidin and the dipeptide bacilysin. Difficidin was

characterized as a highly unsaturated 22-membered macrocyclic
polyene lactone phosphate ester (Wilson et al., 1987), and
bacilysin, consisting of non-proteinogenic L-anticapsin and
N-terminal L-alanine, was first isolated from B. subtilis (Kenig
and Abraham, 1976). FZB42 was found efficient against the
gram-negative pathogen E. amylovora, the causative agent of
fire blight, a serious disease of orchard trees. Surprisingly, a
mutant strain blocked in the production of difficidin (CH8
�dfn) suppressed fire blight disease nearly in the same
range as wild type FZB42. Moreover, a sfp mutant strain
(CH3 �sfp) unable to synthesize non-ribosomally lipopeptides
and polyketides did still suppress growth of E. amylovora,
suggesting that besides action of polyketides another antagonistic
principle exist. In contrast, a double mutant impaired in
non-ribosomal synthesis and bacilysin (RS06 �sfp �bac) was
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FIGURE 2 | Site directed mutations introduced into the genome of FZB42. Mutants impaired in synthesis of secondary metabolites (non-ribosamal sythesis,
sfp, surfactin, srf, plantazolizin, pzn, macrolactin, mln, bacillaen, bae, bacillomycin D, bmy, fengycin, fen, difficidin, dfn, unidentified peptide, nrs, siderophore, dhb,
amylocyclicin, acn, bacilysin), volatiles (alsS, alsD, bdh), sugars (ganA, iolA), amylase (amyE), global regulators (abrB, scoC, degU, codY ), alternative sigma factors
(sigH, sigW, sigB, sigV, sig01, sigM, sigD, sigX), competence (comA), biofilm formation (srfA, tasA), oxidative stress response (nfrA), plant growth promotion
(RBAM-017410), auxotrophy (pabB), and others (yczE, ydbM, ydeH, yerO, yuiA, yusV, spaR, ywfH, rapX, yyaL).

unable to suppress E. amylovora indicating that the additional
inhibitory effect is due to production of bacilysin (Chen et al.,
2009b).

A similar study using appropriate mutant strains of FZB42was
performed recently, demonstrating that difficidin and bacilysin
are also efficient against two different Xanthomonas oryzae
pathovars, causative agents of damaging rice diseases (bacterial
blight and bacterial leaf streak). Agar diffusion tests performed
with several FZB42 mutant strains (Figure 3) revealed that the
inhibitory effect of mutant CH8 (�dfn) deficient in production
of difficidin was clearly reduced compared to wild type FZB42.
The double mutant RS06 (�sfp �bac) was completely unable
to suppress X. oryzae pv oryzae and X. oryzae pv oryzicola

suggesting that difficidin and bacilysin act as antagonists of the
pathogenic Xanthomonas strains (Wu et al., 2015a).

Among 24 strains, B. amyloliquefaciens FZB42 showed
the strongest bactericidal activity against the cyanobacterium
Microcystis aeruginosa, the causative agent of harmful algal
blooms in freshwater lakes and rivers. Surprisingly, the site-
directed sfp mutant CH03, impaired in Sfp-dependent non-
ribosomal synthesis of lipopeptides and polyketides including
difficidin, was able to inhibit growth ofM. aeruginosa in the same
magnitude as the wild type. Random transposon mutagenesis
using the mariner transposon TnYLB-1 revealed that mutant
strains bearing transposon insertions within the aroA and aroE
gene failed completely to inhibit M. aeruginosa. Products of the
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FIGURE 3 | Suppression of rice pathogens by FZB42 and its mutant strains. (Top) agar diffusion assay using Xanthomonas oryzae pv.oryzae as indicator
strain. (Bottom) agar diffusion assay using Xanthomonas oryzae pv. oryzicola as indicator strain. Bacilysin and difficidin, FZB42 and several mutant strains not
impaired in bacilysin and difficidin synthesis have a clear antaogonistic effect against both pathogens whilst mutant strains RS02 and RS06, deficient in synthesis of
bacilysin and difficidin, were unable to suppress both pathovars of X. oryzae. Mutant strains unable to synthesize difficidin but able to synthesize bacilysin (CH3,
CH8) were found clearly repressed in their antagonistic action.

aro genes are involved in synthesis of aromatic amino acids
and it is known that all aro mutants are impaired in bacilysin
synthesis. Therefore, a knock-out mutation within the bacB gene
was constructed and as expected the mutant was unable to inhibit
growth of M. aeruginosa suggesting that bacilysin is responsible
for inhibition (Wu et al., 2014).

Induced Systemic Resistance (ISR)
Plant defense triggered by surfactin, microbial volatile organic
compounds (mVOCs) and other hitherto unidentified
compounds is a main factor in suppressing plant pathogens
by plant-associated bacteria (Pieterse et al., 2014). Selected
plant-associated Bacillus strains emit mVOCs consisting of 2,3
butandiol and acetoin that can elicit plant defense (Ryu et al.,
2004). Synthesis of 2,3 butandiol from pyruvate via 2-acetolactate
and acetoin is governed by the products of the alsS, alsD, and
bdhA genes in B. subtilis (Renna et al., 1993). B. amyloliquefaciens
NJN-6 produces volatile compounds (VOCs) that inhibit the
growth and spore germination of Fusarium oxysporum f. sp.
cubense. Among the total of 36 volatile compounds detected, 11
compounds completely inhibited fungal growth. The antifungal
activity of these compounds suggested that VOCs can play
important roles over short and long distances in the suppression
of Fusarium oxysporum (Yuan et al., 2012). However, except
acetoin and 2,3 butandiol, the genes responsible for synthesis of
the volatiles are unknown.

Root Colonization
A necessary precondition for the PGP and BC action of plant
beneficial bacteria is their root colonization activity (Lugtenberg
et al., 2001). In contrast to Pseudomonas fluorescens and some
other gram-negative bacteria, bacilli are known as comparable
“weak” colonizers of plant roots, and PGP bacilli are hardly to
detect later than 3months after their application (Bais et al., 2004;
Chowdhury et al., 2013).

After identifying genes involved in root colonization and
other plant-bacteria interactions, gene targeting techniques are
useful techniques in order to generate strains with enhanced
rhizosphere competence, given that no additional resistance
genes are introduced. Enhanced root colonization and BC activity
was gained in B. amyloliquefaciens SQR9 by disruption of
the abrB gene encoding a global regulator of gene expression
in Bacillus (Weng et al., 2013). Other genes, involved in
expression of antimicrobial compounds can also be targeted.
In B. subtilis, the response regulator DegU and its cognate
kinase, DegS, constitute a two-component system that regulates
many cellular processes, including exoprotease production and
genetic competence. Phosphorylated DegU (DegU-P) activates
its own promoter and is degraded by the ClpCP protease (Ishii
et al., 2013). In plant associated FZB42 the global transcriptional
regulator gene degU was shown to control non-ribosomal
synthesis of secondary metabolites, such as the antifungal
lipopeptide bacillomycin D (Koumoutsi et al., 2007), and the
antibacterial bacilysin (Mariappan et al., 2012), in FZB42. In an
interesting study Xu et al. (2014) demonstrated that stepwise
phosphorylation of DegU in B. amyloliquefaciens SQR9 can
influence BC activity by coordinating multicellular behavior
and regulating the synthesis of lipopeptide and polyketide
antibiotics in a different manner. Results from in vitro and in situ
experiments and quantitative PCR (qPCR) studies demonstrate
that unphosphorylated DegU achieved by a knock out mutation
of the degQ kinase gene impairs complex colony architecture,
biofilm formation, colonization activities, and BC efficiency
of Fusarium wilt disease but increases the production of the
polyketides macrolactin and bacillaene. By contrast, enhanced
DegU_P production achieved by degQ and degSU overexpression
does significantly improve complex colony architecture, biofilm
formation, colonization activities, production of the antibiotics
bacillomycin D and difficidin, and efficiency of BC of Fusarium
wilt disease.
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The transcriptional levels of genes involved in biofilm
formation, yqxM and epsD, were evaluated in response to
organic acids via quantitative reverse transcriptase polymerase
chain reaction (qRT-PCR). Results suggested that root
exudates containing the OAs both induced the chemotaxis
and biofilm formation in B. amyloliquefaciens NJN-6 (Yuan
et al., 2015).

In summary, research with knock-out mutants deepens our
knowledge about molecular reasons for the strong antimicrobial
activity observed in FZB42 and might contribute to a more
efficient use, however, our final goal, developing of biopesticides
with constant and enhanced efficiency against plant pathogens
needs further, more direct, efforts.

PGPR BACILLI ENGINEERED FOR
ENHANCED EFFICIENCY IN
BIOCONTROL

It is generally assumed that suppression of plant pathogens
by PGP Bacilli is based on two features: (1) production
of antimicrobial secondary metabolites and siderophores
(‘direct antibiosis’), and (2) stimulation of induced systemic
resistance (ISR), which activates the plant defense system
against harmful microbes and viruses. According to latest
results, it is likely that ISR is more important than direct
antibiosis in suppressing plant pathogens under conditions
of plant rhizosphere. It is very unlikely that concentration of
antibiotics within the plant rhizosphere reach levels sufficient
for direct antibiosis (Nihorimbere et al., 2012; Chowdhury
et al., 2015a,b). Stimulation of ISR is a multifactorial process
probably dependent on the presence of several compounds
produced by the rhizobacteria, such as the c-LP surfactin and
volatiles (Raaijmakers et al., 2010). A strong correlation between
the amount of surfactin produced and the ability to elicit ISR
was demonstrated (Cawoy et al., 2014). In order to combine
both suppressive mechanisms (SR and direct antibiosis), it
might be necessary that improved bioformulations contain
living Bacillus spores and concentrated culture supernatants
with antimicrobial metabolites. Besides the number of living
spores, also concentration of the main antagonistic metabolite
(e.g., bacillomycin D) should be indicated in such formulations
(Borriss, 2015b).

It has been proposed early (Compant et al., 2005) to create
transgenic PGPB strains that combine multiple mechanisms
of action (Timms-Wilson et al., 2000; Chin-A-Woeng et al.,
2001; Huang et al., 2004). For example, transforming the 1-
aminocyclopropane-1-carboxylic acid deaminase gene, which
directly stimulates plant growth by cleaving the immediate
precursor of plant ethylene (Glick et al., 1998) into P. fluorescens
CHAO, not only increases plant growth but can also increase BC
properties of PGPB (Wang et al., 2000).

Some studies have demonstrated that the production of
cLPs in Bacillus, for example, mycosubtilin and iturinA,
representatives of the iturin family with antifungal action, and
surfactin could be improved by applying promoter exchange
strategies.

Promoter Modulation to Promote
Antibiotic Production and ISR
Enhancement of mycosubtilin production in B. subtilis strain
ATCC 6633 was obtained by replacement of the native
promoter of the mycosubtilin operon by a constitutive promoter
originating from the replication gene repU of the Staphylococcus
aureus plasmid pUB110. The recombinant strain, designated
BBG100, produced up to 15-fold more mycosubtilin than the
wild type produced. When tested for its BC potential, wild type
strain ATCC 6633 was almost ineffective for reducing a Pythium
infection of tomato seedlings. However, treatment of seeds with
the BBG100 overproducing strain resulted in a marked increase
in the germination rate of seeds. This protective effect afforded
by mycosubtilin overproduction was also visualized by the
significantly greater fresh weight of emerging seedlings treated
with BBG100 compared to controls or seedlings inoculated with
the wild type strain (Leclère et al., 2005). Enhanced mycosubtilin
production (880 mg L−1) was also obtained by introducing the
tightly regulated xylA promoter in front of the myc operon of
B. subtilis ATCC 6633 (Fickers et al., 2009). The PrepU promoter
was previously reported to enhance the biosynthesis of iturin A,
by about threefold in B. subtilis RB14 (Tsuge et al., 2001).

The biosurfactant surfactin, a cyclic heptapetide containing
four leucine moieties, is known as elicitor of the plant response
against pathogens and for its antiviral and antimycoplasmic
action (Jacques, 2011). The inducible promoter Pspac was used
to enhance production of surfactin in B. subtilis. After IPTG
induction the recombinant B. subtilis fmbR-1 produced about
10-fold more than the wild type strain (Sun et al., 2009). In a
more sophisticated approach it was found recently, that comQ
null mutant strains of B. subtilis impaired in a social process
called quorum sensing (QS), were able to overproduce surfactin.
However, overproduction of the secondary metabolite led to
reduced fitness of the mutant strains (Oslizlo et al., 2014).

The volatile 2,3-butanediol is known to stimulate ISR
in plants (see above). Enhanced production of the volatile
in B. subtilis was recently demonstrated (de Oliveira and
Nicholson, 2015). The genes alsS, alsD, and bdhA encoding
acetolactate synthase, acetolactate decarboxylase, and butanediol
dehydrogenase, respectively were engineered into a single
tricistronic operon under control of the isopropyl β-D-1-
thiogalactopyranoside (IPTG)-inducible Pspac promoter.

Modifying Precursor Production
Coutte et al. (2010) hypothesized that precursors supply is one
of the main parameters to optimize surfactin production. In fact,
overproduction of surfactin was obtained by replacing the native
promoter of the surfactin operon (srfA) by a constitutive one
and disrupting the plipastatin (fengycin) operon (ppsA) to save
the precursor availability. In order to enhance production of
the surfactin precursor leucine, six knockouts were introduced
in B. subtilis leucine metabolism to verify their effects on
surfactin production. For all generated mutants, the specific
surfactin production was found increased from 1.6- to 20.9-
fold during the exponential growth phase, depending on the
medium composition (Coutte et al., 2015). The highest increase
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in surfactin production was obtained in codY mutant strains.
This is feasible, since the expression of the ilv-leu operon is
regulated by CodY in the presence of branched chain amino acids
(Ratnayake-Lecamwasam et al., 2001).

RECONSTITUTION OF PRODUCT
PRODUCTION

The lanthionine containing bacteriocin mersacidin is not
synthesized in FZB42, but an incomplete mrs gene cluster
presumably directing immunity against the bacteriocin was
detected in the genome (Table 1). By contrast, the mersacidin
producer strain B. amyloliquefaciens subsp. plantarum HILY
harbors the complete mrs gene cluster including the genes for
synthesis, modification and regulation. In a first step in order
to achieve mersacidin production in FZB42, genomic DNA
of Bacillus HILY mutant strain Rec1 was used to transform
competent FZB42 cells. The resulting FZB42 mrs1 strain
contained the complete mrs gene cluster except the essential
genes mrsA and mrsR1. The completion of the mersacidin
gene cluster in FZB42 was achieved in trans by transformation
with the plasmid pPAR1, carrying the structural gene mrsA
and mrsR1, yielding B. amyloliquefaciens mrs1 pPAR1. This
surrogate FZB42 derivative was shown to produce active and fully
modified mersacidin suggesting that FZB42 can be exploited as
an appropriate in vivo expression system for the construction and
expression of mersacidin analogs (Herzner et al., 2011).

MODIFICATION OF GLOBAL
REGULATOR

In the following we describe examples for obtaining more
powerful strains by applying genetic engineering techniques
in the plant-growth-promoting strain FZB42. This work has
been performed in the laboratory of Xuewen Gao, Nanjing
Agriculture University, China. We have to acknowledge, that
at present, use of such engineered PGPR strains under field
conditions is refused by the public, at least in Europe. However
in light of a steadily increasing world’s population growing
from 7 billion now to 8.3 billion in 2025 (Lugtenberg et al.,
2013), innovative approaches for getting higher harvest yields
without using increasing amounts of agrochemicals should not
longer be excluded, given that their use is safe and without
harmful consequences for human beings and nature. Careful
environmental studies are a precondition before releasing genetic
engineered bacteria into the environment (Broer, 2015).

We showed that bacilysin production is strictly controlled by
the global regulator DegU (Mariappan et al., 2012). Although
bacilysin has potential applications (see above), its use is
restricted by low productivity of the producer strains including
FZB42. To date, there have been some attempts to increase
bacilysin production. However, most experimental approaches
were primarily focused on optimizing culture conditions and did
not affect basic genetic structures. Ozcengiz et al. (1990) reported
that the nitrogen source controls bacilysin biosynthesis, and

aspartate was better than glutamate as the sole nitrogen source.
Inaoka and Ochi (2011) showed that addition of scandium to
the growth medium stimulated the production of bacilysin at the
transcriptional level.

In order to improve the production of bacilysin by genetic
engineering, Wu et al. (2015b) developed a fast and accurate
approach by combining the Cre/lox site-specific recombination
system with PCR for replacement of the native bacilysin
operon promoter with constitutive promoters PrepB and Pspac
from plasmids pMK3 and pLOSS, respectively. In this system,
cre-mediated recombination leads to excision of any DNA
(e.g., an antibiotic resistance cassette) in between two distant
intramolecular lox sites with a collinear orientation, leaving only
one lox site behind and reinstating the antibiotic sensitivity of
the respective strain. The engineered markerless strains FZBREP
and FZBSPA, expressing the bac cassette under the control of
the constitutive promoters PrepB and Pspac, significantly increased
expression of the bac genes, as shown by RT-PCR and qRT-PCR.
HPLC confirmed that FZBREP and FZBSPA strains produced up
to 170.4 and 315.6 % more bacilysin than wild type, respectively.
At 4 days after the M. aeruginosa culture had been treated with
FZBREP and FZBSPA culture filtrates, the bactericidal activity
was >95%, while that of FZB42 was just 56.9% (Figure 4).
Bacilysin overproduction was also accompanied by enhancement
of the antagonistic activities against S. aureus (an indicator of
bacilysin) and Clavibacter michiganense subsp. sepedonicum (the
causative agent of potato ring rot) (Wu et al., 2015b).

FOREIGN PROTEIN EXPRESSION IN
B. amyloliquefaciens FZB42

The harpin protein group, which is secreted by many plant
pathogenic bacteria during infection, elicits multiple plant
responses, resulting in multiple beneficial effects on crop
improvement. The hrp (“harp”) genes encode type III secretory
proteins enabling many phytopathogenic bacteria to elicit a
hypersensitive response (HR) on non-host or resistant host plants
and induce pathogenesis on susceptible hosts. The HR is a rapid
localized death of the host cells that occurs upon pathogen
infection and, together with the expression of a complex array
of defense-related genes, is a component of plant resistance.
The plant genes create a cascade of effects which promote
a Systemic Acquired Resistance (SAR) throughout the plant.
Beneficial effects on plant growth and health have been reported
(Alfano and Collmer, 2004). The protein HrpNEa produced
in E. amylovora was the first found and identified in bacteria
(Wei et al., 1992). Another hrp gene product, HpaGXooc, from
rice pathogenic bacterium X. oryzae pv. oryzicola, contains
two glycine-rich motifs and one cysteine residue (Wu et al.,
2009). Despite there are some differences in the sequence and
component of amino acids, it exhibits similar biological functions
as HrpNEa protein (Qiao et al., 2014).

The gene hpa1Xooc encoding protein HpaGXooc had been
cloned onto the expression plasmid pM43HF in B. subtilis
OKB105, a derivative of B. subtilis 168 which is able to produce
surfactin and to colonize plant roots (Wu et al., 2009). The
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FIGURE 4 | Suppression of Microcystis aeruginosa by transgenic strains FZBREP and FZBSPA. (A) The antagonistic effect of B. amyloliquefaciens strains
against a liquid M. aeruginosa culture after 4 and 7 days. (B) The bactericidal activity of B. amyloliquefaciens strains FZB42, FZBREP and FZBSPA. Note that
suppressive effect of FZBREP and FZBSPA is enhanced compared to wild type FZB42.

engineered strain OKBHF expressing HpaGXooc protein caused
plants to have less severe disease symptoms after inoculation
with Ralstonia solanacearum, suggesting that HpaGXooc improves
BC efficiency of B. subtilis (Gao et al., 2013). However, after
100 generations, the HpaGXooC expression plasmid pM43HF is
segregationally unstable in B. subtilis under the non-selective
condition, thus affecting the continuing expression of HpaGXooC
and finally fails to secrete the protein. Transgenic tobacco plants
expressing the hpa1Xooc gene were constructed, but were found
unable to induce hypersensitive cell death (HCD) (Peng et al.,
2004).

In order to overcome these difficulties, we decided to use
FZB42 as the host strain (Qiao et al., 2013). Two copies of the
hpa1Xooc genes were introduced into the two main extracellular
protease genes apr and npr located on the FZB42 chromosome for
avoiding proteolytic destruction of the recombinant harpin gene
product (Figure 5). RT-PCR analysis showed that the hpa1Xooc
was transcribed. Supernatant of the resulting recombinant strain
FZBHarpin caused a hypersensitive response (HR) reaction
on tobacco leaf, suggesting biological active Harpin protein is
secreted into the medium. The in vivo effect of FZBHarpin on
plant growth was tested by soaking rice and tobacoo seeds in
the suspensions. A significant increase in shoot fresh weight and
root length was observed compared to the untreated control
and FZB42. Moreover, greenhouse experiments revealed that
the control efficacy of FZB42Harpin against rice bacterial blight
was 56.9%, showing significant improvement in resistance to
X. oryzae pv. oryzicola relative to FZB42. In addition, a PGP
effect by FZB42Harpin exceeding that of FZB42 was also detected

(Qiao et al., 2014). However, before applying the recombinant
FZB42Harpin strain in field trials, removal of the two resistance
markers flanked by the cre lox recombinase recognition sites via
site-directed recombination has to be performed.

MARKER REMOVAL STRATEGIES IN
Bacillus

Classical chromosomal modification is connected with the
insertion of a selectable marker, usually a drug resistance
gene, into the chromosome of a bacterial strain. Using this
strategy, a second selective marker gene is required to introduce
another chromosomal modification, so the number of available
selection genes limits the feasibility of multiple chromosomal
modifications. Moreover, the selectable gene should be removed
by single-crossover recombination if the strain is used for further
genetic manipulation. In addition, the chance of obtaining
a positive strain is relatively low, and the selection process
is laborious. To overcome these problems, methods that can
eliminate marker cassettes in the primary transformants are
needed (Dong and Zhang, 2014). More important, in order to
obtain a higher acceptance for genetic engineered strains in
agriculture using markerless transgenic strains is a conditio sine
qua non. Construction of a bacilysin overproducing FZB42 strain
described above is an example for successful application of this
technique in plant-associated Bacillus strains.

Today there are several methods for marker removal
available. Site-specific recombination (SSR) systems are capable
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FIGURE 5 | Strain construction and enhanced root development of tobacco plants by FZBHarpin. (A) Root development of tobacco seedlings is enhanced
after treatment with FZB42 and FZBHarpin. From left to right: control, FZB42, FZBHarpin. (B) Integration of two copies of the hpa1 gene (shown in red) into the
chromosome of FZB42 via homologous recombination leads to disruption of the genes encoding alkaline (top) and neutral (bottom) protease. The selectable genes,
shown in green, are the resistance genes for spectinomycin (spec) and kanamycin (km). White regions represent recognition sites of site-specific recombinases, and
blue regions represent sequences homologous between the genome and the integration cassette. Removal of the selectable marker genes is performed with site
specific Cre recombinase at the SSR recognition sites.

of eliminating antibiotic resistance markers, if they are flanked
by recombinase recognition sites. SSR systems that are used in
B. subtilis are Cre/loxP from bacteriophage P1, and Xis/attP from
bacteriophage λ.

In a previous study (Leibig et al., 2008), a Cre-lox setting was
established that allowed the efficient removal of resistance genes
from the genomes of S. carnosus and S. aureus. Two cassettes
conferring resistance to erythromycin or kanamycin were flanked
with wild type or mutant lox sites, respectively, and used to delete
single genes and an entire operon. After transformation of the
cells with a newly constructed cre expression plasmid, genomic
eviction of the resistance genes was observed in approximately
one out of ten candidates analyzed and subsequently verified
by PCR. Due to its thermo-sensitive origin of replication, the
plasmid can be eliminated at non-permissive temperatures and
marker-less deletion mutants can be obtained.

Although Cre-mediated recombination and excision of the
chromosomal sequence between two lox sites is efficient, it
does not occur in all cells. To address this, Wang et al.
(2012) developed a simple and efficient B. subtilis genome
editing method in which targeted gene(s) could be inactivated
by single-stranded PCR product(s) flanked by short homology
regions and in-frame deletion could be achieved by incubating
the transformants at 42◦C. In this process, homologous
recombination was promoted by the lambda beta protein
synthesized under the control of promoter PRM in the lambda
cI857 PRM–PR promoter system on a temperature sensitive
plasmid pWY121. The hen egg white lysozyme gene is placed
after promoter PR, which is effective in B. subtilis, and is precisely
regulated by the CI857 repressor protein (Breitling et al., 1990).
The efficiency of inframe deletion using this method can reach

100%. As hen egg white lysozyme is active againstBacillus species,
and its encoding gene is distantly related to Bacillus genes, it
could also be effective in other Bacillus species.

CONCLUSION

Due to increasing environmental problems caused by the
exaggerated use of chemicals in agriculture, further improvement
of BC agents is a timely task. Possibilities for developing more
efficient bioagents include comparative genomic analysis in order
to detect specific features unique for plant-associated bacteria and
their improvement by applying genetic methods. Due to their
ability to produce durable endospores plant-beneficial Bacillus
strains offer perfect possibilities for stable bioformulations, which
are competitive to the widely used agrochemicals. In order to
enhance progress in getting highly efficient bioformulations, we
have proposed to focus further research about plant-bacteria
interactions on the model bacterium B. amyloliquefaciens FZB42,
which is genetic amenable, widely used in practice, and in which
a huge knowledge base already exists.

In this review we present examples for engineering several
features, important for suppression of plant pathogens by direct
antibiosis and ISR. Strategies applied include (1) modulation
of promoter activity, (2) modification of precursor production,
(3) reconstitution of product production, (4) control of
metabolite production by global regulators, and (5) expression
of foreign proteins. Although examples for applying such genetic
engineering strategies in spore-forming Bacilli are relatively
scarce, it is to expect that they will become in future a powerful
tool for further improvement of biopesticides and biofertilizer,
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given that the public will change their behavior against use of
engineered environmental bacteria.

OUTLOOK

Today, applying and release of genetic engineered bacteria
directly in the environment is not accepted by the public and
governmental regulations are contradictory for use of such
microorganisms in enhancing crop yield. One reason is the
presence of resistance genes in transgenic strains, which have
been introduced in the bacteria during the allelic replacement
process, and methods avoiding use of such marker genes are
therefore highly desirable.

Of course, marker removal is not the only precondition
for improved acceptance of genetically engineered strains
when released into the environment. As stated above, careful
case studies demonstrating that no harmful effects caused by
genetic engineered strains are urgently needed. In applying
genetic engineered plant growth promoting bacteria we have to
distinguish two different levels:

(1) Engineered strains without foreign genes but containing
useful mutations in genes affecting the beneficial effect of
the bacterium in terms of plant growth-promotion and BC
of pathogens. Given that no resistance marker has been
introduced, it might be unimportant whether the useful
mutation has been introduced by a targeted allele exchange or
has been evolved after applying a natural selection procedure.
We believe, that such strains will be accepted in future when
their improved action has been convincingly demonstrated.

(2) Engineered strains containing genes from other bacteria.
Such bacteria will be considered as “recombinant,” also when
the donor bacteria occur in the same natural environment.
This was the case in the example described here. Ironically,
the harpin gene isolated from a pathogen bacterium was
shown to act beneficial when cloned and expressed in FZB42.
However, long-term environmental studies are necessary to
demonstrate that such recombinant bacteria do not harm
environment by novel recombination events with other
microorganisms occurring in the same environment.

In summary, genomic analysis is already an important
tool in characterizing of beneficial microbes. Moreover, we
believe on the prospect of genetic engineering for obtaining
improved bioformulations in future. This development should
contribute to a more sustainable agriculture, and enabling us to
save considerable amounts of agrochemicals, such as chemical
fertilizers and chemical pesticides.
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