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The population genome of an uncultured bacterium assigned to the Campylobacterale
(Epsilonproteobacteria) was reconstructed from a metagenome dataset obtaine
by whole-genome shotgun pyrosequencing. Genomic DNA was extracted from
sulfate-reducing, m-xylene-mineralizing enrichment culture isolated from groundwat
of a benzene-contaminated sulfidic aquifer. The identical epsilonproteobacteri
phylotype has previously been detected in toluene- or benzene-mineralizing, sulfat
reducing consortia enriched from the same site. Previous stable isotope probing (SI
experiments with 13C6-labeled benzene suggested that this phylotype assimilate
benzene-derived carbon in a syntrophic benzene-mineralizing consortium that use
sulfate as terminal electron acceptor. However, the type of energy metabolism and th
ecophysiological function of this epsilonproteobacterium within aromatic hydrocarbo
degrading consortia and in the sulfidic aquifer are poorly understood. Annotation of th
epsilonproteobacterial population genome suggests that the bacterium plays a key rol
in sulfur cycling as indicated by the presence of an sqr gene encoding a sulfide quinon
oxidoreductase and psr genes encoding a polysulfide reductase. It may gain energ
by using sulfide or hydrogen/formate as electron donors. Polysulfide, fumarate, as w
as oxygen are potential electron acceptors. Auto- or mixotrophic carbon metabolis
seems plausible since a complete reductive citric acid cycle was detected. Thus th
bacterium can thrive in pristine groundwater as well as in hydrocarbon-contaminate
aquifers. In hydrocarbon-contaminated sulfidic habitats, the epsilonproteobacteriu
may generate energy by coupling the oxidation of hydrogen or formate and highl
abundant sulfide with the reduction of fumarate and/or polysulfide, accompanied b
efficient assimilation of acetate produced during fermentation or incomplete oxidatio
of hydrocarbons. The highly efficient assimilation of acetate was recently demonstrate
by a pulsed 13C2-acetate protein SIP experiment. The capability of nitrogen fixation a
indicated by the presence of nif genes may provide a selective advantage in nitroge
depleted habitats. Based on this metabolic reconstruction, we propose acetate captur
and sulfur cycling as key functions of Epsilonproteobacteria within the intermediar
ecosystem metabolism of hydrocarbon-rich sulfidic sediments.
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INTRODUCTION

Representatives of the Epsilonproteobacteria inhabit a broad
spectrum of environments like mammalian digestive systems
(Wolin et al., 1961; Engberg et al., 2000), brackish water (Brettar
et al., 2006), hydrothermal sediments (Inagaki et al., 2003),
or subsurface systems (Watanabe et al., 2000; Gittel et al.,
2012; Hubert et al., 2012; Handley et al., 2013). Previously
obtained isolates have been described as chemolithoautotrophs
(Takai et al., 2006; Sievert et al., 2008) fixing carbon via the
reductive tricarboxylic acid (rTCA) cycle (Hügler et al., 2005).
Notably, they are recognized as key players in sulfidic habitats
(Campbell et al., 2006) capable of oxidizing sulfide, sulfur or
thiosulfate, or using elemental sulfur/polysulfide as terminal
electron acceptors. Furthermore, oxygen, nitrate, and fumarate
can be electron acceptors (Campbell et al., 2006; Miller et al.,
2007). Besides reduced inorganic sulfur compounds, hydrogen,
or organic substances such as malate and formate were shown to
be electron donors (Campbell et al., 2006). The broad spectrum of
habitats where Epsilonproteobacteria can be found is underlined
by their capability to grow under aerobic, microaerobic, or
anoxic conditions. A model organism representing the metabolic
versatility of this proteobacterial class isWolinella succinogenes. It
couples anaerobic fumarate or nitrate respiration with hydrogen,
sulfide, or formate oxidation (Kröger et al., 2002; Kern and
Simon, 2009) but can also grow under limited oxic conditions
(Wolin et al., 1961). During the last decade, research focused
on Epsilonproteobacteria thriving in marine systems such as
hydrothermal vents (Miroshnichenko et al., 2004; Nakagawa
et al., 2007; Schauer et al., 2011; Stokke et al., 2015) or pelagic
oxic-anoxic interfaces (Grote et al., 2012) as well as in terrestrial
sulfidic caves and springs (Engel et al., 2004; Porter and Engel,
2008; Jones et al., 2010; Rossmassler et al., 2012; Hamilton et al.,
2015), or mud volcanos (Green-Saxena et al., 2012) where they
are thought to be mainly involved in the oxidation or reduction
of sulfur compounds.

Recently, Epsilonproteobacteria were also found to be
abundant in anoxic hydrocarbon-rich habitats like oil reservoirs
(Hubert et al., 2012), phenol-degrading methanogenic sludge
(Zhangh et al., 2005), petroleum-contaminated soil (Kasai et al.,
2005), and hydrocarbon-degrading sulfate-reducing enrichment
cultures (Kleinsteuber et al., 2008; Müller et al., 2009; Jehmlich
et al., 2010; Pilloni et al., 2011; Bozinovski et al., 2012; Kuppardt
et al., 2014). The metabolism of Epsilonproteobacteria in anoxic
hydrocarbon-contaminated subsurface systems and especially
in sulfate-reducing consortia is poorly understood as they are
neither known to perform dissimilatory sulfate reduction nor to
degrade aromatic or aliphatic hydrocarbons. However, they seem
to be stimulated by acetate amendment in anaerobic sediments
(Handley et al., 2013) or even assimilate acetate as shown by DNA
stable isotope probing (SIP) with 13C2-labeled acetate (Webster
et al., 2010).

In this study, we investigated a member of the
epsilonproteobacterial order Campylobacterales originating
from a sulfidic, hydrocarbon-contaminated aquifer at an
industrial site near Zeitz, Germany (Schirmer et al., 2006; Vogt
et al., 2007; Herrmann et al., 2008). It was originally enriched

under sulfate-reducing conditions in a syntrophic, benzene-
mineralizing consortium and was shown to be distantly related
to the genus Sulfurovum (Kleinsteuber et al., 2008; Herrmann
et al., 2010). An identical phylotype (in the following named
as Zeitz epsilonproteobacterium) was consistently detected
in various toluene-degrading (Müller et al., 2009; Jehmlich
et al., 2010; Kuppardt et al., 2014) and m-xylene-degrading
(Bozinovski et al., 2012) sulfate-reducing enrichment cultures
from the same site and remained abundant after prolonged
incubation. The closest relatives of this phylotype based on 16S
rRNA gene sequences were found in pristine sulfidic springs and
caves (Porter and Engel, 2008; Jones et al., 2010). A DNA-SIP
experiment with 13C6-benzene revealed significant labeling of
the Zeitz epsilonproteobacterium, besides the putative initial
benzene degrader, a clostridial phylotype assigned to the genus
Pelotomaculum (Herrmann et al., 2010).

However, the respective protein-SIP experiment did not
confirm labeling of the Zeitz epsilonproteobacterium whereas
benzene assimilation by the initial degrader Pelotomaculum
sp. was verified (Taubert et al., 2012). Likewise, protein-SIP
with methyl-labeled m-xylene (1,3-dimethyl-13C2-benzene) did
not lead to a labeling of epsilonproteobacterial peptides within
the m-xylene-degrading enrichment culture (Bozinovski et al.,
2012, 2014). Thus, the Zeitz epsilonproteobacterium seems
to be not primarily involved in hydrocarbon degradation,
despite being consistently present in the respective consortia
in varying relative abundances. We hypothesize that it uses
metabolites from hydrocarbon degradation under sulfate-
reducing conditions, but the type of energy metabolism and its
specific ecophysiological role in the consortia have remained
unknown so far. To shed light on the ecological niche and
metabolic function of Epsilonproteobacteria in hydrocarbon-rich
sulfidic environments, we aimed at a metabolic reconstruction
of the Zeitz epsilonproteobacterium based on genome-centric
metagenomics.

MATERIALS AND METHODS

DNA Isolation and Whole Genome
Amplification
Cells originated from a batch culture used as a control in a growth
experiment with an m-xylene-degrading, sulfate-reducing batch
culture (Herrmann et al., 2009; Bozinovski et al., 2012, 2014).
The medium in the control culture did not contain any
organic carbon source. During the experiment, phylogenetic
composition was determined by terminal restriction fragment
length polymorphism (T-RFLP) analysis using the restriction
enzymes BstUI and RsaI according to methods described
previously (Ziganshin et al., 2011). It revealed an exceptionally
high proportion of the epsilonproteobacterial terminal restriction
fragment (T-RF) in the control culture. Cells from 20 mL of
this control culture were harvested by centrifugation. DNA
was extracted using the NucleoSpin Tissue Kit (Macherey-
Nagel) according to the manufacturer’s support protocol for
bacteria. Multiple displacement amplification (MDA) of the
extracted DNA was performed with the illustra GenomiPhi
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V2 Amplification Kit (GE Healthcare Life Sciences). Five
parallel MDA reactions were carried out according to the
manufacturer’s instructions, using a reaction time of 2 h.
Phylogenetic composition of each MDA product was determined
by T-RFLP analysis as stated above. The relative abundance
of the epsilonproteobacterial T-RF was estimated to be 85.5–
87.6% (BstUI) and 92.9–94.7% (RsaI), respectively. The reaction
products were purified using the Amicon Ultra-0.5 Centrifugal
Filter Device (Millipore). DNA quantity and quality was
checked photometrically using a NanoDrop ND-1000 UV/Vis
spectral photometer (PeqLab, Germany) and by agarose gel
electrophoresis. The products of the five MDA reactions were
then pooled and used for whole genome sequencing.

Whole Genome Shotgun Sequencing and
Sequence Analysis
Amplified DNA was sequenced in two separate runs with 200
cycles on the Roche 454 FLX platform using Titanium chemistry.
The average read length of the first run (310 Mbp) was 391 bp.
The second run (235 Mbp) was a mate-pair library with 3 kbp
inserts and had an average read length of 389 bp. All sequencing
was performed at the SciLifeLab SNP/SEQ sequencing facility at
Uppsala University. Contigs from both runs were assembled with
Newbler using a minimal overlap of 40 bp and 90% identity.

Phylogenetic binning of the contigs ≥1 kb was performed
with PhylopythiaS1 (Patil et al., 2012) using the sample-
specific model type. Additionally, contigs containing rRNA
genes were identified by RNAmmer 1.22 (Lagesen et al., 2007).
The detected rRNA genes were phylogenetically assigned using
the RDP Classifier (Wang et al., 2007). All contigs assigned
to the Epsilonproteobacteria were reordered with the Mauve
Aligner (Rissman et al., 2009) using the genome of Sulfurovum
sp. NBC37-1 (Nakagawa et al., 2007) as scaffold (acc. no.
NC_009663).

Genome Annotation and Pathway
Analysis
Reordered contigs were uploaded to the Micro Scope platform
(v. 2.5.4, May 2014; Vallenet et al., 2013) and automatically
annotated. Automatic annotation was manually edited using
the microbial annotation system Magnifying Genome (MaGe;
Vallenet et al., 2006) that includes PsortB, SwissProt, TrEMBL,
and COGnitor. Metabolic pathways were predicted using the
integrated pathway tools of MaGe that are based on the KEGG
and MicroCyc databases. Genome completeness was estimated
based on the MaGe Minimal Gene Set comprising 205 essential
genes (Gil et al., 2004) and using the set of 139 conserved single
copy genes (CSCGs) which occur only once in at least 90% of all
bacterial genomes (Rinke et al., 2013).

The annotated contigs have been submitted to the European
Nucleotide Archive (ENA) under the study accession no.
PRJEB116323.

1http://binning.bioinf.mpi-inf.mpg.de/
2http://www.cbs.dtu.dk/services/RNAmmer/
3www.ebi.ac.uk/ena/data/view/PRJEB11632

RESULTS

Genome Overview and Phylogenetic
Assignment
Overall, the reconstructed population genome has a sequence
length of around 1.6 Mb with a GC content of about 33%.Within
105 contigs, 1832 genomic objects with an average sequence
length of about 850 bp were identified, comprising 30 tRNA
genes, two not further specified RNA genes, and 1797 protein
coding sequences (CDS). A 16S rRNA gene was detected showing
94% similarity to that of Sulfurovum sp. NCBI-37 and a 23S rRNA
gene with 93% similarity to the same next relative. Additionally,
a 5S rRNA gene was detected on the contig harboring the 23S
rRNA gene. 1384 of the CDS belonged to at least one cluster
of orthologous groups (COGs). Table 1 summarizes the COG
assignment. The genome completeness based on the Minimal
Gene Set is 93% as 15 of the 205 genes are missing. Based on the
CSCG set, the completeness is 97% (four genes of the 139 CSCG

TABLE 1 | Number of coding DNA sequences (CDS) assigned to cluster of
orthologous groups (COGs).

Process Class ID Description CDS

Cellular processes
and signaling

D Cell cycle control, cell division,
chromosome partitioning

28

M Cell wall/membrane/envelope
biogenesis

118

N Cell motility 23

O Post-translational modification,
protein turnover, chaperones

88

T Signal transduction
mechanisms

51

U Intracellular trafficking,
secretion, and vesicular
transport

52

V Defense mechanisms 18

Information storage
and processing

J Translation, ribosomal
structure, and biogenesis

144

K Transcription 68

L Replication, recombination, and
repair

91

Metabolism C Energy production and
conversion

129

E Amino acid transport and
metabolism

131

F Nucleotide transport and
metabolism

52

G Carbohydrate transport and
metabolism

54

H Coenzyme transport and
metabolism

82

I Lipid transport and metabolism 37

P Inorganic ion transport and
metabolism

88

Q Secondary metabolites
biosynthesis, transport, and
catabolism

21

Poorly characterized R General function prediction only 221

S Function unknown 121
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TABLE 2 | General features of the reconstructed population genome.

Feature

Genome length 1,625,596 bp

GC content 33%

Genome completeness 93–97%

No. of contigs 105

Average CDS length 850 bp

Protein coding density 89%

Genomic objects 1832

No. of CDS 1797

tRNA genes 30

rRNA genes 3

Other RNA genes 2

are missing). An overview of general genome characteristics is
given in Table 2. The phylogenetic assignment of the population
genome was analyzed based on Maximum Likelihood trees
calculated from 16S rRNA gene sequences (only from cultured
species) and DNA gyrase subunit A (encoded by gyrA) sequences
of representative members of the class Epsilonproteobacteria
(Supplementary Figure S1). Both trees show that the Zeitz
epsilonproteobacterium forms a clade with members of the genus
Sulfurovum. Based on the gyrA phylogeny, the next relative
is Sulfurovum sp. AS07-7 which represents a Sulfurovum-like
population genome retrieved from Acquasanta Terme (Hamilton
et al., 2015).

Carbon Metabolism
The genome contains all genes necessary for a complete rTCA
cycle, indicating that the Zeitz epsilonproteobacterium can fix
CO2 to build up biomass (Figure 1). All genes encoding the
three key enzymes of the rTCA cycle were detected: alcBA
encoding the ATP citrate lyase (EC 2.3.3.8), korABC encoding
the 2-oxoglutarate ferredoxin oxidoreductase (EC 1.2.7.3), and
porCDAB encoding the pyruvate ferredoxin oxidoreductase
(EC 1.2.7.1). In this process, two CO2 molecules are fixed to
synthesize one molecule of acetyl-CoA. A second source for
acetyl-CoA is potentially the direct uptake of acetate and further
processing to acetyl-CoA. The genes encoding the appropriate
and unique enzyme acetyl-CoA synthetase AcsA (EC 6.2.1.1)
and the acetate permease ActP were found in the genome. In
a subsequent reaction, acetyl-CoA is converted to pyruvate by
addition of a further CO2 molecule via the third key enzyme
of the rTCA cycle, pyruvate ferredoxin oxidoreductase. A gene
for the next step catalyzing the conversion of pyruvate to
phosphoenolpyruvate (PEP) was not found. The gene pckA
encoding a phosphoenolpyruvate carboxykinase (EC 4.1.1.49)
was detected. PEP or pyruvate either regenerate the intermediates
of the rTCA cycle or can be used for gluconeogenesis. Enzymes
involved in the rTCA cycle participate also in other cell processes,
such as the fumarate reductase/succinate dehydrogenase (EC
1.3.5.1) which can also function in fumarate respiration. In the
genome, two fumarate reductases/succinate dehydrogenases are
encoded on two different contigs (see next section).

Energy Metabolism
An overview on the predicted pathways involved in energy
metabolism and the corresponding electron donors and acceptors
is shown in Figure 2. Genome analysis showed that hydrogen
may function as electron donor. Two Ni-Fe containing
hydrogenases are encoded in the genome, namely the uptake
hydrogenase HupSL (EC 1.12.99.6) and the quinone-reactive
hydrogenase HydABC (EC 1.12.5.1), both associated with the
periplasmic membrane (Yates, 1988; Gross et al., 1998). The
former is expressed under nitrogen-fixing conditions when
hydrogen is generated and converted to minimize energy loss
during fixation catalysis. Electrons released in this process are
transferred to the ubiquinone pool. The oxidation of hydrogen
via HydABC is coupled to the reduction of NAD+ and
ferredoxin, establishing a proton gradient for ATP generation
(Tsygankov, 2007). In addition, the gene sqr encoding a sulfide
quinone oxidoreductase (EC 1.8.5.4) was found. This membrane-
bound enzyme catalyzes the initial step in dissimilatory sulfide
oxidation, the conversion of hydrogen sulfide to polysulfides
(Schütz et al., 1999; Griesbeck et al., 2002). Genes for the complete
oxidation of reduced sulfur species to sulfate via the Sox system
were not detected. Furthermore, formate could serve to provide
electrons. The gene fdhA encoding one of the three subunits
of formate dehydrogenase (FDH) was identified (Bokranz et al.,
1991). FDH oxidizes formate to carbon dioxide coupled with the
reduction of NAD+ to NADH.

The Zeitz epsilonproteobacterium is a facultative anaerobe but
has a strictly respiratory type of energy metabolism. The genome
contains all genes necessary for oxidative phosphorylation with
oxygen, including genes for an NADH-quinone oxidoreductase
(EC 1.6.5.11), a succinate dehydrogenase/fumarate reductase
(EC 1.3.5.1), a ubiquinol-cytochrome c reductase (EC
1.10.2.2), a cytochrome c oxidase cbb3-type (EC 1.9.3.1), an
F-type ATPase (EC 3.6.3.14), and both ATPase-supporting
enzymes polyphosphate kinase (ppk; EC 2.7.4.1) and inorganic
pyrophosphatase (ppa; EC 3.6.1.1). In organisms exposed to
oxygen, a mechanism to cope with oxygen-generated radicals
would be expected. The sodB gene encoding a superoxide
dismutase subunit (EC 1.15.1.1) was annotated, but the gene for
the second subunit sodA is missing. A second oxygen protection
mechanism is based on alkyl hydroperoxide reductase (EC
1.11.1.15). The respective gene ahpC was annotated. Under
anoxic conditions, nitrate, polysulfide, or fumarate can serve as
terminal electron acceptor for oxidative phosphorylation. For
the reduction of nitrate to nitrite, narG and narH encoding
a membrane-bound nitrate reductase were found (Bertero
et al., 2003). The gene narI is putatively encoded in the CDS
downstream of narH. No gene narK for the nitrate/nitrite
transporter was found. Three genes are necessary for polysulfide
reduction: psrA encoding the catalytic subunit PsrA, psrB
encoding the electron-transferring subunit PsrB, and psrC
encoding the membrane anchor PsrC (Jormakka et al., 2008).
Complete psrB and psrC were found, but only a fragment of psrA
was identified. In Epsilonproteobacteria, the fumarate reductase
involved in fumarate respiration consists of three subunits
FrdABC. FrdA is the catalytic subunit, FrdB contains iron-sulfur
clusters, and FrdC the cytochrome transferring the electrons to
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FIGURE 1 | Predicted pathways of biomass buildup from CO2 or from acetate. The reconstructed population genome encodes two different mechanisms of
carbon assimilation: either by importing acetate from the surrounding environment and activation via the acetyl-CoA synthetase AcsA (EC 6.2.1.1) or by CO2 fixation
via the reductive citric acid (rTCA) cycle. Involved enzymes are: ATP-citrate lyase (EC 2.3.3.8), malate dehydrogenase (EC 1.1.1.37), fumarate hydratase (EC 4.2.1.2),
fumarate reductase (EC 1.3.5.1), succinyl-CoA synthetase (EC 6.2.1.5), 2-oxoglutarate ferredoxin oxidoreductase (EC 1.2.7.3), NADP-dependent isocitrate
dehydrogenase (EC 1.1.1.42) and citrate lyase (EC 4.2.1.3). The corresponding genes are denoted below the EC numbers. The two oxygen-sensitive
ferredoxin-dependent CO2-fixation reactions are labeled in green boxes. Unique enzymes either part of the rTCA or involved in acetate processing are labeled in blue
boxes. Activated acetyl-CoA is further processed to pyruvate and phosphoenolpyruvate (PEP) for the regeneration of rTCA intermediates or for biomass buildup. The
enzymes pyruvate ferredoxin oxidoreductase (EC 1.2.7.1) and phosphoenolpyruvate carboxykinase (EC 4.1.1.49) are involved in this step. No enzyme catalyzing the
reaction of pyruvate to PEP was detected in the population genome.

carriers and anchoring the enzyme in the membrane (Kröger
et al., 2002). As mentioned above, two copies of succinate
dehydrogenase/fumarate reductase are encoded in the genome
of the Zeitz epsilonproteobacterium. One copy comprises only
the genes for FrdA and FrdB, whereas the other copy contains
the genes for all three subunits.

Sulfur and Nitrogen Assimilation
No sulfate uptake system was detected, except for yvdB encoding
a subunit of a sulfate transporter-like protein. Furthermore,
the genome harbors the sat gene for sulfate adenylyltransferase
(EC 2.7.7.4) which is responsible for the activation of sulfate
to adenylyl sulfate (APS). Alternatively, sulfide rather than
sulfate could be assimilated. Both enzymes necessary for sulfur
assimilation from sulfide, serineO-acetyltransferase (EC 2.3.1.30)
and cysteine synthase A (EC 2.5.1.47), are encoded in the
population genome.

Genes encoding nitrogen fixation and ammonium uptake
were identified. A dinitrogenase responsible for nitrogen fixation
is encoded by nifHDK (EC 1.18.6.1). The MoFe-protein NifDK
is the site for nitrogen reduction and the Fe-protein NifH
transfers electrons (Raymond et al., 2004). As a result of this
catalytic process, ammonia is synthesized and fed into metabolic
pathways. For an active dinitrogenase complex, further nif genes
are required. Distributed over the genome, eighteen genes were
assigned as related to nitrogen fixation (Table 3). The nifEN
gene products act as scaffolding agents for cofactors, NifWZ
is related to catalytic stability, and NifVB, NifQ as well as
NifT are involved in the biosynthesis of dinitrogenase subunits
(Böhme, 1998). Regulators of gene expression are encoded
by nifA, nifX, nifU (Dixon et al., 1980; Gosink et al., 1990;
Fu et al., 1994). Furthermore, amtB encoding an ammonia
importer was detected. Ammonia, imported or produced via
nitrogen fixation, is subsequently funneled into the amino
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FIGURE 2 | Schematic overview about the predicted metabolic pathways. The capability to fix nitrogen as alternative to ammonium uptake and to fix CO2 as
alternative to acetate assimilation as well as the versatility regarding electron donors and acceptors might provide a selective advantage of the Zeitz
epsilonproteobacterium in groundwater systems. Electron donors and acceptors are shown as redox couples as described in the literature. It is supposed that
specifically the high affinity to acetate generated as intermediate of hydrocarbon degradation and a higher tolerance to sulfide accumulating due to sulfate reduction
by Deltaproteobacteria define its ecological niche in the Zeitz aquifer.

TABLE 3 | Genes involved in nitrogen assimilation.

Gene Function Reference

nifT Maturation Simon et al., 1996

nifH Fe dinitrogenase reductase Steenhoudt and Vanderleyden, 2000

nifD FeMo dinitrogenase Steenhoudt and Vanderleyden, 2000

nifK FeMo dinitrogenase Steenhoudt and Vanderleyden, 2000

nifE Scaffold for FeMo-cofactor Raymond et al., 2004

nifN Scaffold for FeMo-cofactor Raymond et al., 2004

nifB Biosynthesis of FeMo-cofactor Temme et al., 2012

glnB N-signal transmitter protein PII Steenhoudt and Vanderleyden, 2000

nifU Biosynthesis FeMo-cofactor Böhme, 1998

nifX Negative regulator Gosink et al., 1990

nifA Transcriptional activator Steenhoudt and Vanderleyden, 2000

nifW Catalytic stability Böhme, 1998

nifZ Catalytic stability Böhme, 1998

nifQ Biosynthesis of FeMo-cofactor Temme et al., 2012

nifV FeMo-cofactor Böhme, 1998

acid metabolism via glutamine synthetase (EC 6.3.1.2) and
glutamate synthase (EC 1.4.1.13), or glutamate dehydrogenase
(EC 1.4.1.4). All of the respective genes are present in the
genome.

Transport Systems
Over 30 genes were assigned as related to ABC transporters. The
specificity in annotation of these genes varied making it difficult

to assign a (clear) function to all encoded transporters specifically.
Those with definite assignment comprise the molybdenum
transporter encoded by modABCDE, the energy-consuming
TonB transport system consisting of tonB, exbB and exbD, the
specific phosphate transporter Pst encoded by pstSCAB and the
corresponding regulators phoU and phoB. Furthermore, uptake
complexes for potassium (ktrAB), ferrous iron (feoAB with the
corresponding regulator gene fur), and zinc (znuBCA) were
detected. The export of large organic molecules from the cell may
be accomplished using the type II secretion system together with
the translocation pathways Tat and Sec-SRP. Almost all genes
for both translocation pathways are present in the genome. The
secM gene of the Sec SRP pathway and some subunits of the
membrane crossing type II transporter are missing. Additionally,
ffh encoding a signal recognition particle and targeting proteins
for relocation was identified.

DISCUSSION

Genome Size and Completeness
The typical genome sizes of Epsilonproteobacteria from
comparable habitats range from 2.1 to 3.0 Mb (Baar et al., 2003;
Miller et al., 2007; Sievert et al., 2008; Grote et al., 2012; Handley
et al., 2014). The G+C content of epsilonproteobacterial genomes
varies between 32 and 48% (Baar et al., 2003; Miroshnichenko
et al., 2004). With 33% G+C content and a size of 1.6 Mb,
the Zeitz epsilonproteobacterial population genome seems to
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be within the lower range within this group. However, the
reconstructed population genome is incomplete as shown
by the completeness estimation based on the Minimal Gene
Set and the CSCG set. Moreover, only 30 tRNA genes were
detected compared to up to 47 tRNA genes in Sulfurimonas
gotlandica str. GD1 (Grote et al., 2012) and just one copy of
16S rRNA and 23S+5S rRNA genes was identified, whereas
typically around three copies of rRNA operons are found
in epsilonproteobacterial genomes (Sievert et al., 2008).
Consequently, the present annotation likely does not cover
the complete metabolic capabilities, resulting potentially in
pathway gaps and missing essential metabolic functions. Thus,
the annotation results need to be interpreted with caution, at
least regarding the absence of metabolic functions. Nevertheless,
the present annotated genes provide important insights into
the metabolic versatility of the Zeitz epsilonproteobacterium as
discussed below.

Metabolic Versatility in Carbon Source
and Energy Supply
Epsilonproteobacteria are known to possess the capability
of carbon fixation establishing them as important primary
producers in oligotrophic environments and underscoring their
ability to adapt to carbon-limited habitats (Hügler et al., 2005;
Grote et al., 2012; Stokke et al., 2015). Overall, six pathways
for autotrophic carbon fixation have been described: the Calvin-
Benson reductive pentose phosphate cycle, the rTCA cycle,
the reductive acetyl coenzyme A (Wood-Ljungdahl) pathway,
the 3-hydroxypropionate bi-cycle, the 3-hydroxypropionate/4-
hydroxybutyrate cycle, and the dicarboxylate/4-hydroxybutyrate
cycle (Berg, 2011). The rTCA cycle has been described only
for a few bacterial groups such as green sulfur bacteria and
Deltaproteobacteria, but it seems to be widely distributed among
Epsilonproteobacteria (Hügler et al., 2005; Campbell et al., 2006;
Sievert et al., 2008; Handley et al., 2014). Correspondingly, the
Zeitz epsilonproteobacterium genome encodes a complete rTCA
cycle, including the genes for the key enzymes ATP citrate
lyase, pyruvate ferredoxin oxidoreductase and 2-oxoglutarate
ferredoxin oxidoreductase (Evans et al., 1966). The fumarate
reductase/succinate dehydrogenase is also part of the rTCA cycle
and two copies of this enzyme are present in the genome with
three and two subunits, respectively. A similar observation was
reported by Sievert et al. (2008). They suggested the two-subunit
fumarate reductase/succinate dehydrogenase to be cytoplasmic
and involved in the rTCA cycle.

As an alternative to an inorganic carbon source, the potential
for direct acetate assimilation is given which requires the
expression of actP acting as acetate import system and the acetyl-
CoA synthetase gene acsA responsible for acetate activation
(Berg, 1956; Gimenez et al., 2003). Considering the presence of a
complete rTCA cycle and the alternative of direct acetate import
and assimilation, the organism is equipped for a mixotrophic
lifestyle, which was proposed for other Epsilonproteobacteria as
well (Campbell et al., 2006). Recently, a time-resolved protein-
SIP experiment with 13C2 acetate, daily spiked at a concentration
of 10μM to the benzene-degrading consortium, revealed that the
Zeitz epsilonproteobacterium exhibited the fastest and highest

incorporation of labeled carbon from acetate compared to other
acetate utilizers, indicating its role as a primary and highly
efficient acetate scavenger within the syntrophic consortium
(Starke et al., in revision). Mixotrophy which can be inferred from
the genome and the capability of highly efficient acetate capture
as demonstrated by Starke et al. (in revision) are metabolic
traits which can confer selective advantages in groundwater
habitats and in particular in hydrocarbon-contaminated aquifers,
where acetate is formed as metabolite of syntrophic hydrocarbon
degradation or is leaked out in small concentrations from the
anaerobic degradation of organic compounds (Rakoczy et al.,
2011).

Different combinations of organic and inorganic
electron donors and acceptors have been described for
Epsilonproteobacteria (Campbell et al., 2006; Kern and Simon,
2009). An overview of the potential electron donors and acceptors
according to the genome annotation is given in Table 4. Since
the Zeitz epsilonproteobacterium was enriched from a sulfidic
environment and under sulfate-reducing conditions, the most
obvious electron donor would be sulfide. The oxidation of
reduced S-species to sulfate via the Sox system has frequently
been observed in marine Epsilonproteobacteria (Nakagawa et al.,
2007; Sievert et al., 2008; Grote et al., 2012). However, genes
for the Sox system were not found in the present (incomplete)
genome. Sulfide oxidation to polysulfide using sulfide quinone
oxidoreductase (SQR) was suggested for the betaproteobacterium
Thiobacillus denitrificans which additionally contains also parts
of the Sox pathway and may oxidize sulfide simultaneously by
SQR and Sox under nitrate-reducing conditions (Beller et al.,
2006a,b). This oxidation could be coupled via menaquinone
with the polysulfide reductase PsrABC which has the capability
to reduce polysulfides. The respective psr operon was found
in the genomes of other Epsilonproteobacteria as well, and Psr
activity was detected (Yamamoto et al., 2010; Grote et al., 2012).
Such coupling generates only limited energy, but might serve
for other purposes like an internal sulfur cycle. Alternatively,
polysulfide reduction may be linked to hydrogen or formate
oxidation with menaquinone again acting as electron carrier
(Hedderich et al., 1999; Takai et al., 2005; Yamamoto et al., 2010).
However, only the subunit gene fdhA of the FDH was explicitly
annotated whereas all genes for the respective hydrogenase
(hydABC) were found. Hydrogen and formate oxidation might
be also coupled to fumarate reduction, a respiration type which
is well-investigated for Epsilonproteobacteria such as Wolinella

TABLE 4 | Potential electron acceptors and donors and their redox
potentials.

Electron acceptor �E (mV) Reference

NO3
− → NO2

− +433 Thauer et al., 1977

[Sn]2− → HS− +260 Dietrich and Klimmek, 2002

Fumarate → Succinate +30 Kröger et al., 1992

Electron donor � E (mV) Reference

H2 → H+ −414 Dietrich and Klimmek, 2002

Formate → CO2 −432 Thauer et al., 1977

HS− → [S] −275 Dietrich and Klimmek, 2002
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(Kröger et al., 1992). Electrons released via hydrogen/formate
oxidation to build up the proton gradient are transferred via
menaquinone to fumarate reductase. Fumarate reduction in
terms of energy metabolism is a membrane-bound process
(Kröger et al., 1992). Hence, the second copy of a fumarate
reductase/succinate dehydrogenase annotated in the genome
with three subunits could be the appropriate enzyme for this
reaction. Sources for fumarate could be degraded carbohydrates
or proteins whereby it is unclear if the degradation is an inner
cell process or fumarate is taken up from the surrounding
medium (Kröger et al., 1992). Specific dicarboxylate transporters
(DcuAB) for fumarate uptake (Ullmann et al., 2000) were not
identified in the present genome, but non-specifically annotated
transporter genes could encode an appropriate uptake system
(Baar et al., 2003). Theoretically, if rTCA cycle and acetate
assimilation work in parallel, fumarate could be internally
generated by diverting PEP into the rTCA cycle (see Figure 1).
However, the respiration of internally produced fumarate with
hydrogen/formate or sulfide as electron donor would probably
not generate net ATP allowing growth. The conversion of acetate
to fumarate costs at least 1 mol ATP per mol acetate (Figure 1),
whereas fumarate reduction with hydrogen/formate or sulfide
probably produces less than 1 mol ATP per fumarate (Kröger
et al., 2002).

Similar to enzymes of the rTCA cycle, the hydrogenase
HydABC is a ferredoxin-dependent enzyme coupling hydrogen
oxidation with the reduction of NAD+ and ferredoxin (Wang
et al., 2013). Thus, this enzyme is oxygen-sensitive showing
that the Zeitz epsilonproteobacterium is adapted to anoxic
or microoxic conditions. However, the genetic capability to
utilize low levels of oxygen exists as all genes necessary for
aerobic respiration are present in the genome. This circumstance
was also described for Candidatus Sulfuricurvum sp. in a
previous study (Handley et al., 2014). Another study proved
growth of Sulfuricurvum kujiense under microaerobic conditions
(Kodama and Watanabe, 2004). Similar results were obtained
with Sulfurovum sp. NBC37-1 which is the next cultured relative
of the Zeitz epsilonproteobacterium and was found to grow
with various combinations of electron donors and acceptors, e.g.,
hydrogen and oxygen (Yamamoto et al., 2010).

Another common electron acceptor for Epsilonproteobacteria
is nitrate (Miroshnichenko et al., 2004; Brettar et al., 2006;
Nakagawa et al., 2007). The genome studied here encodes
the nitrate reductase NarGHI. Growth tests in the studies of
Yamamoto et al. (2010) and Handley et al. (2014) showed
positive results for various combinations including coupling
with hydrogen or sulfide as electron donor. Although no
nitrate importer gene was detected in the present genome,
nitrate reduction could be a viable option since the redox
potential of nitrate to nitrite is relatively positive compared
to other anaerobic terminal electron acceptor processes (see
Table 4). Regarding the ecological niche in contaminated
groundwater, nitrate can be relevant and Epsilonproteobacteria
are known to be involved in nitrate-dependent reoxidation
of reduced sulfur compounds (Yamamoto and Takai, 2011).
However, the capability of nitrate respiration does not explain
the ecophysiology of the Zeitz epsilonproteobacterium in our

enrichment cultures as the growth media did not contain any
nitrate.

Pathways for Sulfur and Nitrogen
Assimilation
Besides its role as an electron donor, sulfide plays a role as a
nutrient in bacterial cells. Based on the metagenome data, the
Zeitz epsilonproteobacterium cannot assimilate sulfate; genes
for an appropriate sulfate import system are missing as well as
genes involved in the sulfate activation pathway except of the
sat gene which encodes ATP sulfurylase catalyzing the formation
of adenosine 5′-phosphosulfate (Kreddich, 1996). Although it
cannot be rules out that the enzymes for assimilatory sulfate
reduction are encoded in the missing parts of the genome,
the direct assimilation of sulfide by the cysteine synthase
saves energy and is thus plausible in sulfidic environments.
Notably, other Epsilonproteobacteria have been described to
be capable of assimilating sulfate (Baar et al., 2003). It is
conspicuous that the Zeitz epsilonproteobacterium harbors
a sat gene but possibly no other genes for assimilatory
sulfate reduction. One could speculate that this capability
was lost during adaptation to sulfidic environments with a
shift toward a specialization in sulfide as energy and sulfur
source.

For nitrogen assimilation, ammonium can be directly used
due to the presence of amtB. AmtB is a membrane uptake
protein importing ammonium into the cell at low concentrations
(Khademi et al., 2004; Zheng et al., 2004). In analogy to the
use of sulfide as sulfur source, the direct use of ammonia
as nitrogen source might be an adaptation to an anaerobic
lifestyle as the energy-consuming reduction of oxidized N species
is avoided. Notably, dinitrogen fixation is not common in
Epsilonproteobacteria and was so far only described forWolinella
succinogenes (Baar et al., 2003) and Arcobacter nitrofigilis
(McClung et al., 1983). Nitrogen fixation provides a selective
advantage in nitrogen-limited habitats even though this process
is very energy-demanding. The nitrogen fixation is linked to
hydrogen formation. Hence, recovery of energy via hydrogen
oxidation minimizes the loss of energy during the nitrogen
fixation process. The subunits for the appropriate hydrogenase
(HupSL) are encoded in the genome. Combining N-fixation
with hydrogen oxidation to save energy has been described for
Cyanobacteria (Tamagnini et al., 2000; Schütz et al., 2004) but
also mentioned for other Proteobacteria such as Allochromatium
(Weissgerber et al., 2011) and Rhodospirillum (Kern et al.,
1994).

Oxygen-sensitive Enzymes and Oxygen
Tolerance
Enzymes specific for the rTCA cycle are dependent on the
interaction with ferredoxin, an extremely oxygen-sensitive
electron carrier (Bruschi and Guerlesquin, 1988). Both
oxidoreductases (2-oxoglutarate ferredoxin oxidoreductase
and pyruvate ferredoxin oxidoreductase) are ferredoxin-
dependent enzymes and thus highly sensitive to oxygen
(Evans et al., 1966). Other ferredoxin-dependent enzymes
are directly inhibited in the presence of oxygen such as the
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nitrogen-fixing nitrogenase (Fay, 1992). Simultaneously, the
genome encodes the complete oxidative phosphorylation
pathway to generate energy via oxygen reduction. Taking both
circumstances into account, the Zeitz epsilonproteobacterium
could potentially tolerate oxygen and grow under microoxic
conditions as described for other representatives of this
class (Miller et al., 2007; Sievert et al., 2008; Bronowski
et al., 2014; Handley et al., 2014). To handle excess oxygen
which may form radicals within the cell and interfere with
fundamental pathways such as carbon fixation, two mechanisms
for radical scavenging are likely. Indeed, only sodB encoding the
superoxide dismutase subunit converting superoxide radicals
into hydrogen peroxide and water (Störz et al., 1990) was
found in the genome. The sodA gene is missing as well as the
gene for the subsequent catalase, a circumstance which was
previously described for Epsilonproteobacteria (Bronowski
et al., 2014). This limitation might be overcome by the alkyl
hydroperoxide reductase AhpC, which alternatively scavenges
hydrogen peroxides (Seaver and Imlay, 2001; Cosgrove et al.,
2007).

Transport Systems
Several uptake transporters and exporting pathways are encoded
in the genome and are crucial for the organism. Themolybdenum
transporter ModABC is essential for nitrogen-fixing organisms
since the nitrogenase depends on molybdenum (Chan et al.,
1993; Allen et al., 1994). Furthermore, the specific phosphate
transporter PstSCAB for environments with low phosphate
concentrations was detected (Ames, 1986). For its induction,
regulators are needed which both were found adjacent to the
pst operon. Thereby, the function of PhoU is not completely
understood, but it is likely involved in an interaction of the
two-component signal system PhoRB (Steed and Wanner, 1993;
Wanner et al., 1996) and transporter subunit PstB (Gardner
et al., 2014). Other nutrient uptake systems such as a potassium
transporter with the subunit genes ktrB and krtC (Holtmann
et al., 2003) or the zinc transporter ZnuBCA (Patzer and Hantke,
1998) are also encoded. The genome analysis suggests that
the Zeitz epsilonproteobacterium might have different strategies
to gather iron from the environment. Ferric iron is insoluble
under pH neutral conditions and Gram-negative bacteria use
the energy-consuming TonB transporter to import ferric iron by
binding the ion to chelating siderophores (Moeck and Coulton,
1998). The gene tonB encodes the protein to transduce energy
derived from a proton motive force for the energy-consuming
translocation, and exbB and exbD encode proteins responsible
for restoring the conformational structure of TonB. Since
the Zeitz epsilonproteobacterium originates from an anaerobic
environment, the major form of iron is ferrous iron. Under these
conditions, the encoded ferrous iron uptake complex FeoAB acts
as supply system for iron (Kammler et al., 1993; Kim et al.,
2012).

Besides import pathways, the export of proteins or toxic
metabolites from the cytoplasm to the extracellular space is of
similar importance. The function of protein secretion is likely
carried out by the type II secretion system which is common
among Gram-negative bacteria (Korotkov et al., 2012). The

genes for several subunits of the type II secretion apparatus
are missing but the presence of genes for Sec- and Tat-
dependent translocation can be seen as a clear hint for its use.
Both the Sec and Tat systems for the translocation across the
inner membrane interact with the type II secretion pathway to
transport proteins from the periplasm out of the cell (Voulhoux
et al., 2001).

Ecological Niche of the Zeitz
Epsilonproteobacterium
The Zeitz epsilonproteobacterium shares some metabolic
features with other members of this class, such as the capabilities
to fix CO2 via the rTCA cycle (Takai et al., 2006), to utilize
hydrogen as energy source (Takai et al., 2003, 2006), to use
sulfur compounds as electron acceptors and donors (Takai et al.,
2003; Yamamoto and Takai, 2011; Handley et al., 2014), and to
tolerate oxygen on microoxic levels (Kodama and Watanabe,
2004; Nakagawa et al., 2007). A feature not described for other
Epsilonproteobacteria is the genomic capability to gather carbon
via both, acetate assimilation and carbon dioxide fixation,
which means in consequence a potentially mixotrophic lifestyle.
Acetate assimilation is a rare feature for Epsilonproteobacteria
(Kodama et al., 2007; Sievert et al., 2008). Also the capability
to fix dinitrogen is rarely described for representatives of this
group (McClung et al., 1983; Baar et al., 2003). Nevertheless,
there are still gaps in the annotated genome potentially
hiding many genomic properties which cannot be considered
so far.

The Zeitz epsilonproteobacterium originates from a
sulfidic benzene-contaminated aquifer and was enriched
as member of a syntrophic community. The key player, a
Pelotomaculum sp. initially attacks benzene and shares carbon
and electrons from benzene degradation with other community
members belonging to several Deltaproteobacteria and the
epsilonproteobacterium. The whole degradation is coupled
to sulfate reduction as terminal electron acceptor process
(Kleinsteuber et al., 2008; Herrmann et al., 2010). It was unclear
why the Zeitz epsilonproteobacterium persisted in this enriched
consortium or even increased in its abundance, considering
that Epsilonproteobacteria are not known to use sulfate
as electron acceptor, and the involved Deltaproteobacteria
are potentially capable to consume and mineralize all
intermediates from syntrophic benzene degradation such as
acetate, hydrogen, or formate. In DNA-SIP experiments with
13C6-labeled benzene, the epsilonproteobacterium was shown
to incorporate 13C over time. It was supposed that acetate as
a putative intermediate of syntrophic benzene degradation
may serve as carbon source for the epsilonproteobacterium
(Herrmann et al., 2010). This hypothesis was not supported
by the respective protein-SIP experiment with 13C6-labeled
benzene (Taubert et al., 2012), probably due to the low
abundance of Epsilonproteobacteria in those cultures and
the low coverage of epsilonproteobacterial genes in the
metagenome dataset applied for peptide identification.
However, the recently performed protein-SIP experiment
spiking fully 13C2-labeled acetate in addition to the ongoing
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mineralization of unlabeled benzene (Starke et al., in revision)
as well as the presence of genes for an acetate importer and
for acetate activation confirm the hypothesis that the Zeitz
epsilonproteobacterium is a key acetate scavenger within the
consortium.

The capability to use various electron donors such as
hydrogen, formate and sulfide, and various electron acceptors
such as oxygen, nitrate, polysulfide, and fumarate provides
the metabolic versatility to colonize different groundwater
environments. Although nitrate and oxygen may be present in
upper groundwater levels at the fringe of the contamination
plume of the Zeitz aquifer, they were neither relevant in central
and lower parts of the plume where the samples for enrichment
cultures were taken from, nor present in the sulfate-reducing
enrichment cultures. The Zeitz site has been contaminated with
hydrocarbons since 70 years or longer (Schirmer et al., 2006).
Hence, strictly anoxic, sulfidic conditions may have persisted
for decades. Thus, fumarate and polysulfide are assumed to
be relevant electron acceptors, whereas hydrogen, formate, and
sulfide are the likely electron donors. Except for the redox
couple polysulfide – sulfide, each combination is theoretically
feasible (see Table 4). Hydrogen or formate is formed during
syntrophic benzene degradation and sulfide is generated during
growth of the sulfate-reducing Deltaproteobacteria (Kleinsteuber
et al., 2008). It can be assumed that the hydrogenotrophic
Deltaproteobacteria outcompete the epsilonproteobacterium for
hydrogen as electron donor due to a proposed higher affinity
to hydrogen (Cord-Ruwisch et al., 1988; Rakoczy et al., 2011).
However, at higher sulfide levels which are toxic to other bacteria,
the epsilonproteobacterium might get a selective advantage due
to a higher sulfide tolerance, rendering hydrogen oxidation
feasible. For instance, benzene degradation by a sulfate-reducing
consortium was inhibited at sulfide concentrations above 1.5 mM
(Taubert et al., 2012) whereas Epsilonproteobacteria oxidizing
sulfide with nitrate as electron acceptor have been described
to tolerate sulfide levels of 2 mM (Poser et al., 2014) or
even 3 mM (Gevertz et al., 2000). This is in accordance
with the observation that the Zeitz epsilonproteobacterium
increases in abundance in aromatics-degrading batch cultures
which contain high sulfide levels (Bozinovski et al., 2012).
Besides hydrogen or formate, sulfide is a common electron
donor for Epsilonproteobacteria (Campbell et al., 2006). The
generation of polysulfide might be a result of sulfide oxidation,
potentially leading to the formation of elemental sulfur which
reacts spontaneously to polysulfide (Streudel, 1996). Elemental
sulfur/polysulfide could serve in reverse as electron acceptor.
Alternatively, electrons are transferred to fumarate as part
of the rTCA cycle. Potential sources of fumarate could be
an internal process of a combined rTCA cycle and acetate
assimilation, or fumarate released by other bacteria in the
community.

The capability to assimilate nitrogen by direct import of
ammonium via AmtB is characteristic for the adaptation to
groundwater systems in which ammonium is the major nitrogen
source. Ammonium was also provided as nitrogen source in the
enrichment cultures. The capability to fix dinitrogen might be
a selective advantage in habitats generally depleted in nutrients,

such as aquifers impacted by massive hydrocarbon input and
biodegradation.

Summarizing the genomic features of the Zeitz
epsilonproteobacterium, this organism is well-adapted to
pristine and hydrocarbon-contaminated sulfidic aquifers
considering the mixotrophic lifestyle, the type of energy
metabolism, and the mechanisms of nitrogen and sulfur
assimilation. It can potentially adapt to changing environmental
conditions (microoxic, altered redox conditions or carbon
and nitrogen sources). The most striking features defining its
ecophysiological role in the hydrocarbon-degrading, sulfate
reducing consortia are the high affinity to acetate and the
high tolerance to sulfide which can simultaneously be used
for assimilatory and dissimilatory purposes. Thus, the Zeitz
epsilonproteobacterium may occupy a specific ecological niche
in the intermediary ecosystem metabolism of hydrocarbon-
contaminated sulfidic subsurface habitats by metabolizing the
key intermediate acetate and recycling sulfide which cannot
be consumed by other community members. The latter might
be the reason for the co-occurrence or even mutualistic
relationship with sulfate-reducing Deltaproteobacteria. However,
the hypothesized role needs to be proven in cultivation
experiments. The annotated population genome provides
clues on the possible enrichment strategies for isolating the
Zeitz epsilonproteobacterium which will be applied in future
experiments.
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