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Severe diabetic foot ulcers (DFUs) patients visiting Sir Sunderlal Hospital, Banaras

Hindu University, Varanasi, were selected for this study. Bacteria were isolated from

swab and deep tissue of 42 patients, for examining their prevalence and antibiotic

sensitivity. DFUs of majority of the patients were found infected with Enterococcus

spp. (47.61%), Escherichia coli (35.71%), Staphylococcus spp. (33.33%), Alcaligenes

spp. (30.95%), Pseudomonas spp. (30.95%), and Stenotrophomonas spp. (30.95%).

Antibiotic susceptibility assay of 142 bacteria with 16 antibiotics belonging to eight

classes showed the presence of 38 (26.76%) isolates with multidrug resistance

(MDR) phenotypes. MDR character appeared to be governed by integrons as class

1 integrons were detected in 26 (68.42%) isolates. Altogether six different arrays of

genes (aadA1, aadB, aadAV, dhfrV, dhfrXII, and dhfrXVII) were found within class 1

integron. Gene cassette dhfrAXVII-aadAV (1.6 kb) was present in 12 (3 Gram positive

and 9 Gram negative) isolates and was conserved across all the isolates as evident

from RFLP analysis. In addition to the presence of class 1 integron, six β-lactamase

resistance encoding genes namely blaTEM, blaSHV, blaOXA, blaCTX−M−gp1, blaCTX−M−gp2,

and blaCTX−M−gp9 and two methicillin resistance genes namely mecA and femA and

vancomycin resistance encoding genes (vanA and vanB) were identified in different

isolates. Majority of the MDR isolates were positive for blaTEM (89.47%), blaOXA (52.63%),

and blaCTX−M−gp1 (34.21%). To our knowledge, this is the first report of molecular

characterization of antibiotic resistance in bacteria isolated fromDFUs fromNorth India. In

conclusion, findings of this study suggest that class-1 integrons and β-lactamase genes

contributed to the MDR in above bacteria.

Keywords: diabetic foot ulcer, antibiotic resistance, PCR, class 1 integron, β-lactamase, multidrug resistance

INTRODUCTION

Diabetic foot infections (DFIs) constitute a major clinical and financial burden to the diabetic
patients (Bakker et al., 2005; Singh et al., 2005; Turhan et al., 2015). DFIs are one of the most feared
complications of diabetes that can progress rapidly to irreversible septic gangrene necessitating
amputation of the foot. Patients with diabetes are 25 times more likely to lose a leg than those
without diabetes, and up to 70% of all leg amputations occur in people with diabetes (Singh et al.,
2005). The specific organisms found in DFIs differ not only from patient to patient, but also from
one part of the country to another (Ozer et al., 2010). Individuals with diabetes have higher rates
of hospitalization for soft-tissue and bone infections of the foot than patients without diabetes
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(Sotto et al., 2012). Microbiological studies have indicated
polymicrobial nature of DFIs, the most frequently identified
isolates being aerobes including Staphylococcus aureus,
Staphylococcus epidermidis, coagulase-negative Staphylococcus
spp., Enterococcus spp., Escherichia coli, Pseudomonas
aeruginosa, Proteus mirabilis, and Klebsiella pneumoniae
(Turhan et al., 2015). The most common anaerobic isolates are
Peptostreptococcus spp, Bacteroides fragilis, and Clostridium spp.
(Dowd et al., 2008).

Antibiotic resistance is considered to be a major threat
in the treatment of DFIs (Lipsky, 2007). Carriage of MDR
microorganisms is mostly due to inappropriate antibiotic
treatment, reduced antibiotic concentration in the tissue, chronic
course of the wound, reduced effect of antibiotics in the
wound environment and frequent hospital admission of DFU
patients, where they are likely to be exposed to MDR organisms
(Hartemann-Heurtier et al., 2004; Ozer et al., 2010). Available
reports suggest that inadequate selection and abuse of antibiotics
may lead to the development of resistance in various other
bacteria and may make the treatment of bacterial infections
more difficult (Kolár et al., 2001; Sáenz et al., 2004; Lipsky,
2007; Qing et al., 2012; Falcone et al., 2015). The exchange of
resistance genes between bacterial chromosome and the plasmid
(s) and their integration into particular genetic elements, called
integrons, play a major role in acquisition and dissemination of
resistance genes (Stokes and Hall, 1989). Additionally, natural
transformation has the potential to promote exchange of DNA
among taxonomically diverse bacteria (Ochman et al., 2000).
Integron is found either as part of transposons or independently
on several groups of broad-host-range plasmids. Different classes
of integrons are distinguished by their highly conserved class-
specific integrase genes and their overall genetic structure (Hall
et al., 1999; Mazel, 2006). Till date, five classes of integrons
(classes 1, 2, 3, 4, 5) with different Int genes have been reported
(Mazel, 2006). Gene cassettes integrated into class 1 integrons
in clinically important bacteria most commonly carry antibiotic
resistance genes, and correlate with host bacterial resistance (El-
Sokkary and Abdelmegeed, 2015). The high prevalence of class 1
integrons is known in clinically significant bacterial isolates viz.
Escherichia (Sáenz et al., 2004), Klebsiella (Girlich et al., 2000),
Salmonella (Gebreyes and Altier, 2002), and Serratia species
(Centrón and Roy, 2002). PCR amplification of highly conserved
5′ and 3′ sequences of integrons has proved very useful target in
epidemiological surveys of bacterial antibiotic resistance (White
et al., 2001; Chang et al., 2009).

β-lactamase-producing bacteria (including those producing
extended-spectrum β-lactamases), vancomycin-resistant
enterococci (VRE), and methicillin-resistant S. aureus (MRSA)
are important nosocomial pathogens in India and other parts
of the world (Mehrotra et al., 2000; Jia et al., 2014; Mobarak-
Qamsari et al., 2014). As such the presence of β-lactamase,
ESBL-producing, VRE, and MRSA in DFUs seems crucial
(Bradford, 2001; Sáenz et al., 2004). Several researchers have
reported antibiotics resistant bacteria from DFUs but there is
a paucity of ESBL, VRE, and MRSA data particularly in India
(Shankar et al., 2005; Gadepalli et al., 2006; Shakil and Khan,
2010). β-lactamases are remarkably diversified due to their

continuous mutation (Dallenne et al., 2010). Different types
of β-lactamases have been described during the 1990s, TEM-
and SHV-type ESBLs were dominant (Bradford, 2001). During
the past decade, rapid and massive spread of CTX-M-type of
ESBLs have been reported (Sana et al., 2011). These enzymes are
now the most prevalent ESBLs in Enterobacteriaceae and also
in Pseudomonas spp. and Acinetobacter baumannii (Bradford,
2001; Paterson and Bonomo, 2005) in Europe and other parts of
the world (Coque et al., 2008).

Incidence of antibiotics resistance is becoming a serious
problem in India, especially with the DFUs patients where no
systematic study has been made to unravel the occurrence of
MDR bacteria and/or the genetic basis of resistance in these
bacteria. Infection in DFUs with MDR bacteria is known to
increase the duration of hospital stay, cost of management as
well as morbidity and mortality. Henceforth, early diagnosis
of microbial infections and appropriate antibiotic therapy are
needed to avoid further complications. In the present study, an
attempt was made to determine the bacterial prevalence and
reveal the genetic basis of MDR in bacteria isolated from DFUs.

MATERIALS AND METHODS

Patients and Sample Collection
This study was conducted in the School of Biotechnology
in collaboration with the Departments of Endocrinology and
Metabolism, and General Surgery, Sir Sunderlal Hospital,
Institute of Medical Sciences, Banaras Hindu University,
Varanasi. In total, 116 DFUs patients visiting Sir Sunderlal
Hospital between January 2010 and October 2011 were examined
and 42 patients suffering from severe DFUs (grades III to V)
were included in the study. The grading of foot ulcers was done
according to Wagner (1981) (grade 0- hyperkeratosis; grade I
-superficial ulcers; grade- II deep ulcers; grade- III tendonitis,
osteomyelitis, cellulites, or abscess; grade- IV gangrene of a toe
or forefoot; and grade -V massive gangrene of the whole foot).
The study was approved by the Institutional Ethics Committee
(Ref. No. Dean/2009-10/555 dated July 11, 2009).

For sample collection, each DFU was cleaned with sterile
saline and thereafter superficial swab sample was collected from
the center of ulcer by applying a sterile cotton-tipped applicator.
Deep tissue samples were obtained from the ulcer using a
sterilized punch biopsy needle (6mm) under local anesthesia
after washing the wound with sterile physiological saline. Of two
swab and tissue samples collected from DFU of each patient, one
was used for detecting aerobic and anaerobic bacteria through
in vitro culture, the second tissue samples were used for detecting
anaerobes (Bacteroides spp., Peptostreptococcus productus and
Clostridium spp.) by PCR in a culture-independent approach.
Briefly, total genomic DNA of tissue samples was extracted
employing a Fast Tissue PCR Kit following the instructions of
the manufacturer (MBI Fermentas, USA). Genus specific primers
of 16S rRNA gene (Table 1) corresponding to Bacteroides, P.
productus, and Clostridium were used for the amplification of
desired amplicon in PCR assay (Rekha et al., 2006). For in vitro
culture all the specimens were transported by sterile containers.
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TABLE 1 | Primers used for amplification of different genes.

Genes Primer sequence (5′
→ 3′) Amplicon size (bp) References

Class 1 integron F CS: GGCATCCAAGCAGCAAG

R CS: AAGCAGACTTGACCTGA

Variable Lévesque et al., 1995

aadA1 F: GCACGACGACATCATTCCG

R: ACCAAATGCGGGACAACG

300 Drum, 2003

aadB F: ACGCAGGTCACATTGATAC

R: CGGCATAGTAAGAGTAATCC

400

dhfrV F: CGATGTTTGATGTTATGG

R: TGTTTCTCTGTAAATCTCCC

400

dhfrXII F: CGAACCGTCACACATTGG

R: GCATAAACGGAGTGGGTG

300

blaTEM F: CATTTCCGTGTCGCCCTTATTC

R: CGTTCATCCATAGTTGCCTGAC

800 Dallenne et al., 2010

blaSHV F: AGCCGCTTGAGCAAATTAAAC

R: ATCCCGCAGATAAATCACCAC

713

blaOXA F: GGCACCAGATTCAACTTTCAAG

R: GACCCCAAGTTTCCTGTAAGTG

564

blaCTX−M−gp1 F: TTAGGAARTGTGCCGCTGYA

R: CGATATCGTTGGTGGTRCCAT

688

blaCTX−M−gp2 F: CGTTAACGGCACGATGAC

R: CGATATCGTTGGTGGTRCCAT

404

blaCTX−M−gp9 F: TCAAGCCTGCCGATCTGGT

R: TGATTCTCGCCGCTGAAG

561

vanA F: GGGAAAACGACAATTGC

R: GTACAATGCGGCCGTTA

732 Jia et al., 2014

vanB F: CATCGCCGTCCCCGAATTTCAAA

R: GATGCGGAAGATACCGTGGCT

297

mecA F: CCAACTGTCGTAGTCGAAACC

R: CTAAGGCACGTCAAAAATGGT

145 Mehrotra et al., 2000

femA F: AAAAAAGCACATAACAAGCG

R: GATAAAGAAGAAACCAGCAG

173

16S rRNA (Bacteroides spp.) F: GGG GTT CTG AGA GGA AG

R: ACCCCCCATTGTACCAC

950 Rekha et al., 2006

16S rRNA (Peptostreptococcus productus) F: GGTGCCGCAGTAAACACAATAGT

R: AAGGCCCGGGAACGTATTCA

539

16S rRNA (Clostridium spp.) F: CTCAACTTGGGTGCTGCATTT

R: ATTGTAGTACGTGTGTAGCCC

619

16S rRNA F: AGAGTT TGA TYM TGG CTC AG

R: CTACGGCTACCTTGTTACGA

1500 Singh et al., 2009

F, Forward; R, Reverse.

Written consent of all the patients was taken before the collection
of swab/tissue.

Isolation and Identification of
Aerobic/Anaerobic Bacteria
Initially, samples were gently macerated and fixed for Gram
staining. Samples were quickly examined for the types of
bacteria (Gram positive/Gram negative) for empirical therapy.
For isolation, a direct smear was made from each sample
(swab and biopsy) and plated directly onto appropriate aerobic
and anaerobic planting media such as blood agar, MacConkey
agar, Chocolate agar, and Columbia blood agar. The plates
were immediately transferred to an aerobic or anaerobic jar
and incubated at 35◦C for 24 and 48 h, respectively. The
plates were examined after 24–48 h of incubation and distinct

colonies appearing on each plate were picked up and restreaked
on respective media. Isolates with distinct morphotypes from
each plate were selected for further characterization. Tentative
identification of different aerobic isolates was made on the
basis of Gram’s staining and morphological characters as well
as biochemical tests namely, catalase, urease, Simmons citrate
utilization andmethyl red as per the standardmethod (Kimberley
and Elsa, 2003). For the detection of anaerobic bacteria culture-
independent approach was employed as described above.

Antibiotic Susceptibility Testing
Antibiotic susceptibility test of different strains was done by
the disc diffusion using the Kirby-Bauer method (Bauer et al.,
1966). Eighteen antibiotics belonging to nine different classes
i.e., (a) cephalosporins: cefazolin 30µg (1st generation),
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cefoxitin 30µg (2nd generation), cefoperazone 75µg
(3rd generation) and cefepime 30µg (4th generation), (b)
aminoglycosides: gentamicin 10µg, amikacin 30µg, kanamycin
30µg, streptomycin 20µg, and spectinomycin 100µg, (c)
penicillins: methicillin 30µg, piperacillin/tazobactam 100/10µg,
and ampicillin 10µg, (d) lincosamide: clindamycin 2µg, (e)
tetracycline: tetracycline 30µg, (f) carbapenem: meropenem
10µg, (g) dihydrofolate reductase inhibitor: trimethoprim
20µg, and (h) folate pathway inhibitor: co-trimoxazole 25µg,
(i) glycopeptide: vancomycin 30µg were selected according
to published recommendations and their widespread use in
the treatment of various diseases (Gadepalli et al., 2006). The
antibiotic disc was purchased from HiMedia Laboratories
(Mumbai, India) and susceptibility profile (intermediate
or susceptible) against antibiotics was deduced from the
manual supplied by the manufacturer. Unless otherwise stated
intermediate susceptible isolates were counted as resistant to
all the agents tested. Interpretation of result is based according
to the Clinical and Laboratory Standards Institute (CLSI)1

guidelines 2010. Herein, MDR was defined for an isolate showing
resistance to antibiotics belonging to three or more classes.

Amplification and Sequencing Of 16S rDNA
Genomic DNA was extracted employing DNEasy extraction
kit (Qiagen, Germany) according to the instructions of
manufacturer. 16S rDNA (1.5 kb) was amplified using universal
primers (Table 1). The PCR reaction mix (50µl) included; 1.5
U of Taq DNA polymerase (Bangalore Genei, India), 1 X PCR
assay buffer with 1.5mM MgCl2, 50 pmol of each forward and
reverse primers (Integrated DNATechnologies, USA), 125µMof
each dNTPs (Bangalore Genei, India) and 50 ng template DNA.
Thermal cycle was set as described earlier (Singh et al., 2009).
Sequencing of amplified product was done on commercial basis
from Chromous Biotech Pvt. Ltd. (Bangalore, India). All the
sequences were matched against nucleotide sequences present in
GenBank using the BLASTn program to identify the most similar
16S rDNA (Altschul et al., 1997; www.ncbi.nlm.nih.gov/blast).
The 16S rDNA sequences of 38 bacterial strains have been
deposited in the GenBank data base and accession numbers have
been obtained.

Phylogenetic Analysis
16S rDNA sequences of 37 isolates of this study and 109
sequences of strains reported from different parts of the world
were used to construct phylogenetic trees. Multiple alignments of
sequenced nucleotides were carried out using ClustalW2 (version
2.0.10). Neighbor joining tree was constructed in MEGA 5.0
(Tamura et al., 2011) using bootstrapping at 1000 bootstrap trials
with the two-parameter model of Kimura.

Amplification of Class 1 Integron and
Associated Gene Cassettes
The variable region of class 1 integron was amplified using
forward primer 5′-GGC ATC CAA GCA GCA AG-3,′ and the

1Clinical Laboratory Standard Institute (2010). Performance Standards for

Antimicrobial Susceptibility Testing. CLSI Approved Standards M100-S20. Wayne,

PA: CLSI.

reverse primer 5′-AAG CAG ACT TGA CCT GA-3′ as described
earlier (Lévesque et al., 1995). Purified genomic DNA of the
bacteria was used as template. Five microliters of the amplified
PCR product was electrophoresed on a 1% agarose gel in TAE
buffer (40mM Tris/acetate (pH 8.0), 1mM EDTA) containing
ethidium bromide (0.5µg ml−1). Similarly, other genes namely
aadA1, aadB, dhfrV, and dhfrXII within class 1 integron were
amplified using specific primers (Table 1).

Restriction Digestion of Amplified Class 1
Integron
Amplified product of variable region of class 1 integron
(1.6 kb) from Pseudomonas spp. DF5TC, Cronobacter spp.
DF52TC, Alcaligenes spp. DF19TB, Stenotrophomonas spp.
DF3SA, K. pneumoniae DF12SA, E. coli DF30TA, Providencia
spp. DF1SB, Alcaligenes spp. DF43SB, S. flexneri DF1TA, S.
aureus DF8TA, Enterococcus spp. DF5SB, and Enterococcus
spp. DF16SA was purified and digested with AluI and RsaI
following the instructions of the manufacturer (New England
BioLabs). Restriction digestion was done in a final volume of
25µl containing 1 x restriction enzyme buffer, 0.30µl (3.0 U)
restriction enzyme and 15µl PCR product. After mixing, samples
were incubated for 6 h in a water bath preset at 37◦C. Reaction
was terminated by heat inactivation of restriction enzymes at
70◦C for 20min. The digested products were run in a 3% agarose
gel at 100V in TAE buffer for 4–5 h. Cluster analysis of restriction
fragment length polymorphism (RFLP) types was performed by
the unweighted pair-group method with arithmetic means using
Quantity One 1-D Analysis Software, version 4.4 (BioRad).

Sequencing of Class 1 Integron
Variable region of class 1 integron (1.6 kb) amplified from K.
pneumoniae DF12SA was purified by Invitrogen kit (Invitrogen
Corpn, USA) following the instructions of the manufacturer.
Purified products were sequenced on commercial basis from
Chromous Biotech Pvt. Ltd. (Bangalore, India). The sequence
was matched against nucleotide sequences present in GenBank
using the BLASTn program (Altschul et al., 1997) at website
www.ncbi.nlm.nih.gov/blast. Variable region of class 1 integron
sequence of K. pneumoniae DF12SA was submitted to NCBI and
accession number was obtained (HQ114261).

Multiplex PCR
Multiplex PCR for blaTEM, blaSHV, blaOXA, and blaCTX−M−gp1,
blaCTX−M−gp2, and blaCTX−M−gp9 genes was performed by
multiplexing of primers (Table 1) of respective genes. Thermal
cycles for the amplification were set as: initial denaturation for
10min at 94◦C, 30 cycles of 40 s at 94◦C, 40 s at 60◦C, and 1min
at 72◦C and final extension for 7min at 72◦C (Dallenne et al.,
2010). E. coliATCC strain 25922 andK. pneumoniaeATCC strain
700603 (HiMedia, Mumbai, India) were used as negative and
positive controls respectively for the amplification of ESBL genes.

S. aureus, S. haemolyticus, and Enterococcus strains were
screened for the presence of mecA (oxacillin resistance), femA
(methicillin resistance), vanA, and vanB (vancomycin resistance)
genes using respective primers (Table 1) as described in previous
studies (Arakere et al., 2005; Jia et al., 2014).
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RESULTS

Isolation and Initial Characterization of
Bacteria
Altogether 142 aerobic bacteria (69 from swabs and 73 from
tissues) belonging to 17 genera were successfully isolated from
swab and deep tissue of DFUs (Wagner’s grade III to V)
of 42 diabetic patients. Tentative identification of all the 142
aerobic isolates was made on the basis of growth features on
specific media, morphological characters, Gram’s staining and
biochemical tests. Of these, 53 (37.32%) belonged to Gram-
positive, and 89 (62.67%) to Gram-negative group. It was noted
that bacteria such as Enterococcus spp., E. coli, Staphylococcus
spp., Alcaligenes spp., Pseudomonas spp. and Stenotrophomonas
spp. were the most common in DFUs, the percentage distribution
being 47.61, 35.71, 33.33, 30.95, 30.95, and 30.95, respectively.
However, bacteria such as Cronobacter spp. and Achromobacter
xylosoxidans were present in 2.38% of DFUs (Table 2).

Cultivation-independent approach mainly based on the
amplification of genus-specific 16S rRNA gene showed
amplification of the 16S rDNA fragment specific to Bacteriodes
spp., P. productus, and Clostridium spp. in DFUs of 29 (69.04%)

TABLE 2 | Tentative identification of aerobic bacteria isolated from swab

and tissue samples of DFUs.

Bacteria Swab Tissue No patients (%)

GRAM-POSITIVE AEROBES

Enterococcus spp. 10 7 20* (47.61)

Enterococcus faecalis 1 3

Enterococcus raffinosus 2 2

Enterococcus gilvus 1 0

Staphylococcus aureus 7 4 14* (33.33)

Staphylococcus haemolyticus 2 4

Corynebacterium spp. 3 1 4 (9.52)

Paenibacillus spp. 1 2 3 (7.14)

Exiguobacterium mexicanum 0 3 3 (7.14)

GRAM-NEGATIVE AEROBES

Escherichia coli 7 9 15* (35.71)

Alcaligenes spp. 8 6 13* (30.95)

Alcaligenes faecalis 0 2

Stenotrophomonas spp. 7 6 13 (30.95)

Pseudomonas spp. 5 2 13*(30.95)

Pseudomonas fluorescens 1 5

Pseudomonas stutzeri 1 1

Klebsiella pneumonia 3 5 8 (19.04)

Providencia spp. 3 5 7* (16.66)

Shigella flexneri 4 2 6 (14.28)

Serratia spp. 1 2 3 (7.14)

Psychrobacter faecalis 1 1 2 (4.76)

Cronobacter spp. 0 1 1 (2.38)

Achromobacter xylosoxidans 1 0 1 (2.38)

69 73

*Certain bacteria present both in swab and tissue. Value in parenthesis represents

percentage.

patients (Table 3, Figures 1A–C). Of the 29 DFUs, 18 had
only one of the above three isolates but 11 contained two or
three isolates (Table 3). On the other hand, routine culture
method showed the presence of anaerobes in DFUs of 12
(28.57%) patients (Table 3). Furthermore, majority of DFUs
showed the presence of only one type of anaerobe contrary
to culture-independent method where three genera namely
Clostridium spp. P. productus, and Bacteriodes spp. were detected
in DFU of four patients (Table 3). Among all the anaerobes
detected by PCR, the prevalence of Clostridium was maximum,
being present in DFUs of 19 subjects (45.23%) followed by P.
productus in 13 (30.95%) and Bacteroides in 12 (28.57%). Further
analysis of bacterial prevalence showed as high as eight species
of bacteria (6 aerobic and 2 anaerobic) in DFU of one patient
(DF43). Average 3.38 bacteria were detected from the DFU of
each patient.

Antibiotic Susceptibility Test, Identification
of MDR Isolates Using 16S rRNA Gene
Sequencing and Phylogenetic Analysis
Antibiotic susceptibility test of 142 aerobic bacteria revealed that
38 (26.76%) were resistant to antibiotics belonging to three or
more classes. Henceforth, these 38 isolates were designated as
MDR bacteria. Prevalence of resistance to different antibiotics
among the isolates was; cefazolin (65.78%), cefoxitin (73.68%),
cefoperazone (34.21%), cefepime (68.42%), gentamycin
(94.73%), amikacin (50%), kanamycin (92.10%), streptomycin
(65.78%), spectinomycin (73.52%), piperacillin/tazobactam
(26.31%), ampicillin (89%), clindamycin (34.21%), tetracycline
(60.52%), meropenem (76.31%), trimethoprime (63.15%), and
co-trimoxazole (76.31%). 71.4% of Enterococcus spp. were
resistant to vancomycin whereas all the Staphylococcus spp.
were resistant to methicillin. Among all the MDR isolates, K.
pneumoniae strain DF12SA showed resistance to as many as 15
antibiotics and E. coli strain DF39TA and E. faecalis DF43SA to
14 antibiotics.

As 38 isolates exhibited MDR property, their identification
was confirmed by 16S rDNA sequencing. These isolates belonged
to different species/strains of Enterococcus, Staphylococcus,
Corynebacterium, Paenibacillus, Exiguobacterium, Escherichia,
Alcaligenes, Stenotrophomonas, Pseudomonas, Klebsiella,
Providencia, Shigella, Serratia, Psychrobacter, Cronobacter, and
Achromobacter (Table 4). The nucleotide sequences of the 16S
rDNA of all the isolates were submitted to NCBI and accession
numbers were obtained (Table 4).

Phylogenetic analysis based on 16S rDNA sequences of all
the identified isolates of this study and 110 sequences from
the isolates of different parts of the world showed separate
clustering of our isolates. Additionally, significant diversity
was evident among these isolates. It is evident from the tree
(Figure 2) that all the isolates could be grouped in seven clusters.
Clusters A, B, C, D, E, F, and G included 28, 12, 6, 6, 6, 8,
and 81 isolates, respectively. Furthermore, phylogenetic analysis
suggested a high degree of relatedness between certain isolates of
this study with strains of bacteria reported from different parts
of the world.
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TABLE 3 | Anaerobic bacteria detected by culture-dependent/independent approach from deep tissue of DFU patients.

Anaerobic bacteria Detection of anaerobes

by culture- dependent

approach

No of patients Detection of anaerobes

using culture-

independent approach

No of patients (%)

GRAM-NEGATIVE ANAEROBES

Bacteroides spp. DF20, DF24, DF43 3 (7.14)* DF8, DF18, DF38 3 (7.14)

GRAM-POSITIVE ANAEROBES

Peptostreptococcus productus DF1, DF13, DF36 3 (7.14) DF6, DF11, DF15 3 (7.14)

Clostridium spp. DF4, DF14, DF29, DF32,

DF40

5 (11.90) DF3, DF7, DF9, DF12,

DF14, DF19, DF23, DF29,

DF32, DF34, DF39, DF44

12 (28.57)

ANAEROBES COMBINATION IN DFUs TISSUE

Clostridium spp. 0 0 DF20 1 (2.38)

Bacteroides spp.

Clostridium spp. Peptostreptococcus productus DF27 1 (2.38) DF1, DF36, 2 (4.76)

Bacteroides spp. Peptostreptococcus productus 0 0 DF5, DF13, DF22, DF43 4 (9.52)

All above three isolates 0 0 DF4, DF24, DF27, DF40 4 (9.52)

12 29

*Value in parenthesis represents percentage.

DF, diabetic foot. Number represents serial number of patients.

FIGURE 1 | Amplification of genus specific amplicon of anaerobic bacteria by PCR. (A) Amplified amplicon of Bacteroides sp., lanes 1–8: 1-DF4, 2-DF5,

3-DF8, 4-DF13, 5-DF18, 6-DF20, 7-DF22, and 8-DF24. (B) Clostridium sp., lanes 1–8: 1-DF1, 2-DF3, 3-DF4, 4-DF7, 5-DF9, 6-DF12, 7-DF14, and 8-DF19, and (C)

Peptostreptococcus productus, Lanes1–8:1-DF1, 2-DF4, 3-DF5, 4-DF6, 5-DF11, 6-DF13, 7-DF15, and 8-DF24. M- 100 bp ladder (New England Biolabs, USA).

Occurrence of Class 1 Integrons
PCR amplification of variable regions of class 1 integrons
repeatedly showed variable sizes (0.3–4.0 kb) in different isolates.
Notably, the size of amplicon showed significant variations
among different species/strains. Among 26 integron positive
isolates, 13 types of gene cassette with size of 0.3, 0.5, 0.7,
0.85, 0.9, 1.2, 1.4, 1.6, 1.7, 2.0, 2.4, 2.5, and 4 kb were observed
(Table 4). However, 12 isolates namely Pseudomonas spp.
DF5TC, Cronobacter spp. DF52TC, Alcaligenes spp. DF19TB,
Stenotrophomonas spp. DF3SA, K. pneumoniae DF12SA, E. coli
DF30TA, Providencia spp. DF1SB, Alcaligenes spp. DF43SB, S.
flexneri DF1TA, S. aureus DF8TA, Enterococcus spp. DF5SB,
and Enterococcus spp. DF16SA showed the presence of only one
amplicon of 1.6 kb size. Sequencing of amplified variable region

of class 1 integron (1.6 kb) of K. pneumoniae DF12SA was done
and its analysis showed 99% homology with class 1 integron
sequence of K. pneumoniae (FJ876827), E. coli (HQ880272),
S. flexneri (FJ895301), Staphylococcus epidermidis (AB291061),
P. aeruginosa (DQ838665), and Stenotrophomonas maltophilia
(GQ924479) available in NCBI GenBank. Additionally, varying
region of class 1 integron of 1.6 kb size amplified from all the 12
isolates was digested with AluI and RsaI. Results of restriction
analysis revealed identical banding pattern in all the 12 isolates.

Sequencing of the 1.6 kb amplicon suggested presence of
two ORFs (Figure 3). The first ORF (ORF1) was identified
as dhfrAXVII which confers resistance to trimethoprim, and
the second (ORF2) as AadAV which confers resistance to
streptomycin and spectinomycin. Gene cassettes dhfrXVII and

Frontiers in Microbiology | www.frontiersin.org 6 January 2016 | Volume 6 | Article 1464

http://www.frontiersin.org/Microbiology
http://www.frontiersin.org
http://www.frontiersin.org/Microbiology/archive


Shahi and Kumar Multidrug Resistant Bacteria from DFUs

TABLE 4 | Occurrence of class-1 integron and β- lactamase genes in MDR bacteria.

Bacteria Accession Resistance phenotype Class 1 integron Gene cassette (s) β- lactamase genes

No* size (kb)

Enterococcus sp. DF5SB HQ163798 GEN, KAN, STR, SPX, AMP, TET,

TMP, CTZ, VAN

1.6 dhfrAXVII, aadAV blaTEM, vanA, vanB

Enterococcus sp. DF19SA HQ163796 CFP, FEP, GEN, AMK, KAN, AMP,

TET, CTZ, VAN

NA NA blaTEM, vanA, vanB

Enterococcus sp. DF16SA HQ163795 CXT, GEN, AMK, KAN, STR, SPX,

AMP, MEM, TMP, CTZ, VAN

1.6 dhfrAXVII, aadAV blaTEM,

vanA, vanB

Enterococcus faecalis

DF30TB

JN642255 CXT, FEP, GEN, KAN, AMP, TET,

MEM, CTZ, VAN

NA NA blaTEM, vanB

Enterococcus faecalis

DF43SA

JN642254 CEZ, FEP, GEN, AMK, KAN, STR,

SPX, PTZ, AMP, TET, MEM, TMP,

CTZ, VAN

4.0 and 2.5 aadB, dhfrV blaTEM, vanB

Enterococcus raffinosus

DF11TA

JN642264 CEZ, CXT, GEN, KAN, CLD, TET,

MEM, CTZ

NA NA NA

Enterococcus gilvus

DF11SD

JN642251 CXT, FEP, GEN, KAN, STR, SPX,

AMP, CLD, MEM

0.5 aadB blaTEM,

Staphylococcus aureus

DF8TA

JN642261 CXT, GEN, AMK, KAN, STR, SPX,

PTZ, AMP, TET, TMP, CTZ, MTC

1.6 dhfrAXVII, aadAV blaTEM,

mecA, femA

Staphylococcus

haemolyticus DF5TA

HQ163797 CEZ, CXT, FEP, AMP, TET, MEM,

TMP, CTZ, MTC

0.3 dfhrXII blaTEM,
,
mecA, femA

Corynebacterium sp.

DF26SB

JN642257 CXT, FEP, GEN, AMK, KAN, AMP,

CLD, TET, MEM

NA NA blaTEM, blaOXA

Paenibacillus sp. DF9SA JN642249 CXT, GEN, KAN, STR, SPX, PTZ,

AMP, CLD, TET

0.9 aadB blaTEM

Exiguobacterium

mexicanum DF43TB

JN642268 CEZ, FEP, GEN, AMK, KAN, STR,

SPX, AMP, TET, MEM, TMP, CTZ

2.5 dfhrXII, aadB, dhfrV blaTEM, blaOXA

E. coli DF30TA JN642269 CEZ, CXT, GEN, FEP, AMK, KAN,

STR, SPX, AMP, MEM, TMP, CTZ

1.6 dhfrAXVII, aadAV blaTEM,

blaSHV,

blaCTX−M−gp1

E. coli DF30TD JN642266 CEZ, CXT, CFP, FEP, GEN, AMK,

AMP, PTZ, CLD

NA NA blaTEM, blaSHV,

blaCTX−M−gp1

E. coli DF39TA HQ163793 CEZ, CXT, CFP, FEP, GEN, AMK,

KAN, STR, SPX, AMP, TET, MEM,

TMP, CTZ

2.4 aadB, dhfrV, aadA1 blaTEM, blaSHV, blaOXA,

blaCTX−Mgp1

Alcaligenes sp. DF3TA HQ163791 CXT, CFP, KAN, AMP, CLD, TET, PTZ,

MEM

NA NA blaTEM

Alcaligenes sp. DF18SC HQ163792 CFP, CEZ, CLD, GEN, KAN, STR,

SPX, MEM, TMP, CTZ

1.2 aadA1 NA

Alcaligenes sp. DF19TB JN642262 CEZ, CXT, FEP, GEN, KAN, STR,

SPX, AMP, TMP, CTZ

1.6 and 0.5 dhfrAXVII, aadAV, aadB blaTEM, blaOXA

Alcaligenes sp. DF29SB JN642259 CEZ, CXT, FEP, GEN, KAN, STR,

SPX, AMP, PTZ, CLD, MEM, TMP,

CTZ

1.7 and 0.7 aadB, dhfrV blaTEM, blaSHV, blaOXA

Alcaligenes sp. DF34SB JX869134 CEZ, CXT, GEN, AMK, KAN, AMP,

TET, MEM

NA NA blaTEM

Alcaligenes sp. DF36TC HQ163794 FEP, GEN, KAN, STR, SPX, MEM,

TMP, CTZ

0.85 aadB blaTEM, blaOXA

Alcaligenes sp. DF43SB JN642256 CEZ, CXT, GEN, KAN, STR, SPX,

AMP, CLD, TET, TMP, CTZ

1.6 dhfrAXVII, aadAV blaTEM, blaOXA,

blaCTX−M−gp1

Alcaligenes faecalis DF45TB JX869135 CEZ, CXT, FEP, GEN, AMK, KAN,

CLD, AMP, MEM

NA NA blaOXA, blaCTX−M−gp1

Stenotrophomonas sp.

DF3SA

JN642253 CEZ, CXT, FEP, GEN, AMK, KAN,

STR, SPX, AMP, PTZ, TET, TMP, CTZ

1.6 dhfrAXVII, aadAV blaTEM, blaOXA,

blaCTX−M−gp1

Stenotrophomonas sp.

DF9SD

JX869133 CEZ, CFP, FEP, GEN, KAN, AMP,

TET, MEM, TMP, CTZ

0.3 dhfrXII blaTEM, blaCTX−M−gp2

Stenotrophomonas sp.

DF17TA

JN642265 CEZ, CXT, FEP, GEN, AMP, CLD, TET,

MER

NA NA blaTEM,

blaCTX−M−gp2

(Continued)
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TABLE 4 | Continued

Bacteria Accession Resistance phenotype Class 1 integron Gene cassette (s) β- lactamase genes

No* size (kb)

Pseudomonas sp. DF5TC HQ163790 CEZ, CXT, FEP, GEN, KAN, STR,

SPX, CLD, MEM, TMP, CTZ

1.6 dhfrAXVII, aadAV blaTEM, blaOXA,

blaCTX−M−gp1,

blaCTX−M−gp9

Pseudomonas fluorescens

DF7SB

JN642246 CXT, FEP, GEN, AMK, KAN, STR,

SPX, AMP, TET, MEM, TMP, CTZ

2.4 aadB, dhfrV, aadA1 blaTEM, blaSHV, blaOXA

Pseudomonas fluorescens

DF41TB

JN642252 CFP, FEP, GEN, KAN, AMP, PTZ,

MER, TET, CTZ

NA NA blaTEM, blaOXA,

blaCTX−M−gp1

Pseudomonas stutzeri

DF1SA

JN642263 CEZ, CXT, GEN, AMK, KAN, STR,

SPX, AMP, MEM

1.2 aadA1 blaTEM

Klebsiella pneumoniae

DF12SA

HQ114261 CEZ, CXT, CFP, FEP, GEN, AMK,

KAN, STR, SPX, PTZ, AMP, TET,

MEM, TMP, CTZ

1.6 dhfrAXVII, aadAV blaTEM, blaCTX−M−gp9

Providencia sp. DF1SB HQ163789 CEZ, CXT, CFP, FEP, GEN, KAN,

STR, SPX, AMP, MEM, TMP, CTZ

1.6 dhfrAXVII, aadAV blaTEM, blaOXA,

blaCTX−M−gp1

Providencia sp. DF14SA JN642260 CEZ, CXT, FEP, GEN, KAN, STR,

SPX, AMP, CLD, TMP, CTZ

2 dfhrXII, aadB, dhfrV blaTEM, blaOXA

Shigella flexneri DF1TA JN642248 CEZ, CXT, FEP, GEN, KAN, STR,

SPX, AMP, TET, MEM, TMP, CTZ

1.6 dhfrAXVII, aadAV blaTEM blaOXA,

blaCTX−M−gp1

Serratia sp. DF15SB JN642247 CEZ, CXT, CFP, FEP, GEN, AMK,

KAN, STR, SPX, AMP, MEM,TMP,

CTZ

2.4 and 1.4 aadB, dhfrV, aadA1 blaTEM, blaCTX−M−gp1,

blaCTX−M−gp2

Psychrobacter faecalis

DF30TC

JN642258 CEZ, FEP, GEN, AMK, KAN, AMP,

TET, MER

NA NA blaTEM, blaOXA

Cronobacter sp. DF52TC JN642250 CXT, CFP, GEN, AMK, KAN, STR,

SPX, AMP, TET, MEM, TMP, CTZ

1.6 dhfrAXVII, aadAV blaTEM

Achromobacter

xylosoxidans DF33SA

JN642267 CXT, CFP, FEP, GEN, AMK, KAN,

PTZ, AMP, MEM

NA NA blaTEM, blaSHV, blaOXA

*Accession no. based on 16S r RNA sequence.

AMK, Amikacin; AMP, Ampicillin; CEZ, cefazolin; CFP, Cefoperazone; FEP, Cefepime; CLD, Clindamycin; CTZ, Co-trimoxazole; CXT, cefoxitin; GEN, Gentamycin; KAN, Kanamycin;

MEM, Meropenem; MTC, methicillin; PTZ, Piperacillin/tazobactam; SPX, Spectinomycin; STR, Streptomycin; TET, Tetracycline; TMP, Trimethoprim; VAN, Vancomycin; R, resistant; S,

susceptible; NA, no amplification of any gene.

aadAV were common in all the 12 isolates. In addition to
dhfrXVII and aadAV, other gene cassettes namely, aadA1,
aadB, dhfrV, and dhfrXII were detected in a number of
isolates (Table 4). Altogether six genes encoding resistance to
aminoclycoside (aadA1, aadB, and aadAV), and trimethoprim
(dhfrV, dhfrXII, and dhfrXVII) were detected in different isolates.
Interestingly, occurrence of class 1 integron in E. mexicanum
DF43TB was also noted which appears to be a rare finding.

Occurrence of blaTEM, blaSHV, blaOXA,
blaCTX-M (β-lactamase Genes), and mecA

(Oxacillin), femA (Methicillin) vanA, and
vanB (Vancomycin) Resistance Genes
All the 38 isolates showing MDR phenotype were also screened
for the presence of cefotaxime hydrolyzing β-lactamase (CTX-
M) by multiplex PCR. Fourteen isolates showed alleles encoding
CTX-M enzymes belonging to the phylogenetic groups 1,
2, and 9 (CTX-M-gp1, CTXM-gp2, and CTX-M-gp9 related
enzymes). Among these, nine isolates namely E. coli DF30TA,
E. coli DF30TD, E. coli DF39TA, Alcaligenes spp. DF43SB, A.
faecalis DF45TB, Stenotrophomonas spp. DF3SA, P. fluorescens
DF41TB, Providencia spp. DF1SB, and S. flexneriDF1TA showed
gene for CTX-M-gp1 enzyme only (Table 4). Two isolates

namely Stenotrophomonas spp. DF9SD and Stenotrophomonas
spp. DF17TA had the gene for CTX-M-gp2 type enzyme. Gene
encoding CTX-M-gp9 enzyme was found in K. pneumoniae
DF12SA. Both CTX-M-gp1 and CTX-M-gp2 were present in
Serratia spp. DF15SB. Likewise, CTX-M-gp1 and CTX-M-gp9
were noted in Pseudomonas spp. DF5TC.

All the 38MDR isolates were further screened for the presence
of certain other β-lactamase genes viz. blaTEM, blaSHV, and
blaOXA by multiplex PCR. Among all the isolates amplification
of blaTEM-like gene was attained in 34 isolates, blaOXA in
18, and blaSHV in 6 isolates (Table 4). Seventeen isolates were
found positive for both blaTEM and blaOXA type β-lactamases
(Table 4). blaTEM, vanA, and vanB were present in Enterococcus
sp. DF5SB, Enterococcus spp. DF19SA, and Enterococcus sp.
DF16SA whereas blaTEM,

mecA, and femA were present in
S. aureus DF8TA and S. haemolyticus DF5TA. Distribution of
various β-lactamases and methicillin, and vancomycin resistance
genes in different isolates is presented in Table 4.

DISCUSSION

DFIs seem to be polymicrobial in nature as aerobic bacteria
(Enterococcus spp., E. coli, Staphylococcus spp., Alcaligenes
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FIGURE 2 | Phylogenetic analysis based on the sequences of 16S rRNA gene sequence of 37 DFUs isolates and 110 sequences retrieved from NCBI.

The evolutionary history was inferred using the Neighbor-joining method. The bootstrap consensus tree inferred from 1000 replicates is taken to represent the

evolutionary history of the taxa analyzed. Branches corresponding to partitions reproduced in less than 50% bootstrap replicates are collapsed. The tree is drawn to

scale, with branch lengths in the same units as those of the evolutionary distances used to infer the phylogenetic tree. The evolutionary distances were computed

using the Kimura 2-parameter method and are in the units of the number of base substitutions per site. The accession number of each strain is mentioned in tree.

Thirty eight isolates identified by 16S rDNA sequencing are highlighted in red.

FIGURE 3 | Representation of class 1 integron (1.6 kb) organization in K. pneumoniae DF12SA. Blue color indicates the gene, green color shows the base

elements, and the red color represents 5’conserved segment (5′-CS) and 3′-CS of class 1 integron.

spp., Pseudomonas spp., and Stenotrophomonas spp.), and
anaerobic bacteria (Bacteroides spp., Clostridium spp., and
Peptostreptococcus spp.) were isolated from the severe DFUs
(Wagner’s grade, III-V) patients in this study. Our findings
are similar to the study conducted by other groups wherein
aerobic bacteria (Staphylococcus spp., Streptococcus spp., and

Enterobacteriaceae), anaerobic bacteria (Bacteroides spp.,
Clostridium spp., and Peptostreptococcus spp.) and fungi
(Candida albicans, and Candida tropicalis) were isolated from
DFUs (Candel et al., 2003; Turhan et al., 2015). Enterococci are
the most common cause of DFIs. Higher incidence of MDR
enterococci in DFIs is expected in view of their well-documented

Frontiers in Microbiology | www.frontiersin.org 9 January 2016 | Volume 6 | Article 1464

http://www.frontiersin.org/Microbiology
http://www.frontiersin.org
http://www.frontiersin.org/Microbiology/archive


Shahi and Kumar Multidrug Resistant Bacteria from DFUs

role in several other infections. This is a tentative explanation,
exact cause is not known to us. Though earlier studies showed
Gram-positive aerobes as predominant in DFIs (Dang et al.,
2003; Spichler et al., 2015), our findings revealed dominance
of Gram-negative aerobic bacteria. The ratio of Gram-positive
aerobes to Gram-negative aerobes was 1:1.67, which is contrary
to earlier report (Tentolouris et al., 1999). The differences in
the age, gender, ulcer grades, study setting, etc. in our study
population as compared to other studies might be responsible
for differences. However, our results are similar to the study
conducted in other parts of India (Gadepalli et al., 2006) where
Gram-negative bacteria were more common than Gram-positive
bacteria in DFIs.

Conventional culturemethods for anaerobes have beenmostly
used to identify bacteria in DFUs. Culture methods usually
revealed a single organism (Shankar et al., 2005) and sometimes
even failed to demonstrate organisms despite other clinical
evidences of infection. However, in recent years PCR methods
have made it possible to detect most species of pathogens in
the wound in a matter of hours rather than days. We employed
culture-independent method mainly based on PCR amplification
of genus-specific amplicon (16S rRNA) and the results obtained
were encouraging. Desired amplicons from a few anaerobic
bacteria were successfully amplified using genus-specific primers.
Herein, application of PCR assay using template DNA extracted
from the tissue of DFUs allowed to gain a better insight of
anaerobic bacteria as compared to culture-dependent method.
This was evident from the fact that Clostridium was frequently
identified in DFUs followed by P. productus and Bacteroides
whereas certain other studies showed higher prevalence of
Peptostreptococcus spp. (Colayco et al., 2002). It is concluded
that PCR assay may be useful to unravel the complexity
of bacterial occurrence especially anaerobes in DFUs of
diabetic patients.

It was evident from the results that majority of the isolates
were resistant to a number of antibiotics but certain isolates
were sensitive to cefoperazone, piperacillin/tazobactam, and
clindamycin. Altogether, our findings clearly suggest that the
prevalence of MDR bacteria is fairly common in severe
DFUs and support the findings of earlier studies (Hartemann-
Heurtier et al., 2004; Gadepalli et al., 2006; Djahmi et al.,
2013). It has been reported that about one-third of patients
with a history of previous hospitalization for the same
wound, and 25% of patients with osteomyelitis, had MDR
bacteria in the specimens (Hartemann-Heurtier et al., 2004).
Gadepalli et al. (2006) reported 44.7 and 56.0% β-lactamase-
producing and methicillin resistant bacteria, respectively in
DFUs from North India (New Delhi). Incidence of relatively
higher frequency of antibiotic resistance in this study could
be due to the fact that Sir Sunderlal Hospital of Banaras
Hindu University, Varanasi, is a tertiary care hospital with
widespread usage of broad spectrum antibiotics leading to
selective survival advantage of bacteria. Additionally, increase
in antibiotic resistance might be the result of irrational use
of antibiotics, and horizontal transfer of antibiotic resistant
genes among bacteria by mobile genetic elements including
plasmids, transposons, and integrons (Domingues et al., 2012).

Since a plasmid or transposon can carry several resistance
determinants, simultaneous resistance to multiple antibiotics
may be attained. It would have been worthwhile to isolate
plasmid from different isolates as their presence cannot be
ruled out.

Resistance to β-lactam antibiotics in Gram-negative bacteria
is primarily mediated by β-lactamases, which hydrolyze the β-
lactam ring and thus inactivate the antibiotic (Livermore and
Woodford, 2006). Different β-lactamases have been described,
but blaTEM, blaSHV, blaOXA, and blaCTX−M like genes are the
most predominant in Gram-negative bacteria (Livermore and
Woodford, 2006; Ahmed et al., 2007; Shahi et al., 2013). Our
findings are in agreement with above reports as β-lactamase genes
conferring resistance to β-lactam antibiotics were noted in 35 out
of 38 MDR isolates. Among the identified genes blaTEM, blaSHV,
blaOXA, and blaCTX−M−gp1, blaCTX−M−gp2, and blaCTX−M−gp9,
blaTEM were the most common being present in majority of the
MDR isolates and blaOXA, blaCTX−M−gp1, blaSHV, blaCTX−M−gp9,
and blaCTX−M−gp2 in certain isolates. Additionally, prevalence of
methicillin resistant S. aureus (MRSA), and vancomycin resistant
Enterococcus species was also noted which is at par with the
reports of other researchers (Mehrotra et al., 2000; Hartemann-
Heurtier et al., 2004; Gadepalli et al., 2006; Janifer et al., 2013; Jia
et al., 2014). TEM type β-lactamase has been reported in earlier
studies which also support our findings (Jia et al., 2014; Farid
et al., 2015).

Of 38 isolates showing resistance to more than eight
antibiotics, 26 (68.42%) isolates were positive for class 1 integron.
This suggests that integrons are widely distributed in bacteria
infecting DFUs. This is supported from the results of PCR
amplification of 11 variable regions of class 1 integron in
different isolates. Two types of class 1 integrons of varying sizes
(0.5–4.0 kb) were detected in 4 MDR bacteria and 22 isolates
possessed one integron of varying sizes (0.3–2.5 kb). It was also
noted that variable region of class 1 integron carried one to
three resistance genes. Altogether, 12 different gene cassettes
encoding resistance to aminoglycosides and trimethoprim
were detected. Presence of these two gene cassettes in MDR
bacteria isolated from different sources has been reported
(Antunes et al., 2006). Interestingly, our results showed that
aminoglycoside adenyltransferase gene (aadA), which confers
resistance to streptomycin and/or spectinomycin, was the most
common among all the gene cassettes. Widespread resistance
to aminoglycoside viz. streptomycin and/or spectinomycin may
be due to the fact that they are extensively used for treating
various infectious diseases including urinary tract infection
and DFUs. Lately the therapeutic uses of streptomycin and
spectinomycin are avoided but they are widely used in agriculture
and livestock. The dhfr gene cassettes that confer resistance
to trimethoprim were also detected frequently. Similar to our
findings high prevalence of the aminoglycoside resistance (aadA)
and trimethoprim resistance determinants (dhfrA) have been
reported in E. coli, K. pneumoniae and S. aureus from Asia
and Europe (Sáenz et al., 2004; Gadepalli et al., 2006; Chang
et al., 2009; El-Najjar et al., 2010). Additionally, clinical isolates
namely E. coli, S. haemolyticus, Enterococcus spp., Pseudomonas
spp., and Alcaligenes spp. have also been reported to carry
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resistance to trimethoprim, streptomycin and spectinomycin
(White et al., 2001; Lindstedt et al., 2003; Nógrády et al.,
2005). The dhfrAXVII- aadAV gene cassette was present in
the variable region of 12 integron-positive isolates, where the
location of aadAV was close to the 3′CS and dhfrAXVII to
the 5′CS region. Strong association between the presence of
gene cassettes and resistance to specific antibiotics have been
demonstrated in several studies (Chang et al., 2000; Roe and
Pillai, 2003; Rao et al., 2008). On the contrary, in our study
certain isolates were found to carry integron gene cassettes
but the corresponding antibiotic resistance phenotype was
absent. This might be due to the inefficient expression of
the inserted gene cassettes by the integron promoter. Result
showing the occurrence of integrons with identical cassettes
(dhfrAXVII, aadAV) in a number of isolates is an interesting
finding of this study. It seems that certain species may have
identical mechanism (s) for the acquisition of multi-resistance
to antibiotics. To our knowledge, occurrence of class 1 and
2 integrons in clinical isolates of Enterococcus spp has been
reported only recently (Xu et al., 2010; Yan et al., 2010) and
therefore occurrence of integron in Eneterococcus spp. in this
study is new addition and supports the findings of earlier
researchers.

CONCLUSION

In conclusion, the occurrence of multiple-antibiotic resistant
bacteria seems widespread in DFUs. Findings of this study clearly
indicate that resistance to antibiotics is mediated mainly due
to the presence of class 1 integrons. Furthermore, certain β-
lactamases are specifically induced upon growth of MDR strains
with antibiotics and may be important in conferring resistance
to antibiotics. As the worldwide prevalence of antibiotic-resistant
bacteria is on increase and may cause serious threat to human
health, further study of integrons and their associated gene
cassettes is needed to understand the mechanisms of acquisition
of MDR genes in clinical isolates. Findings of the present
study may provide useful insights for the selection of potential
antibiotics and management of DFUs in diabetic patients.
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