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The global emergence of multidrug-resistant (MDR) bacteria is a growing threat to
public health worldwide. Natural bacteriophage lysins are promising alternatives in the
treatment of infections caused by Gram-positive pathogens, but not Gram-negative
ones, like Acinetobacter baumannii and Pseudomonas aeruginosa, due to the barriers
posed by their outer membranes. Recently, modifying a natural lysin with an antimicrobial
peptide was found able to break the barriers, and to kill Gram-negative pathogens.
Herein, a new peptide-modified lysin (PlyA) was constructed by fusing the cecropin A
peptide residues 1–8 (KWKLFKKI) with the OBPgp279 lysin and its antibacterial activity
was studied. PlyA showed good and broad antibacterial activities against logarithmic
phase A. baumannii and P. aeruginosa, but much reduced activities against the cells
in stationary phase. Addition of outer membrane permeabilizers (EDTA and citric acid)
could enhance the antibacterial activity of PlyA against stationary phase cells. Finally,
no antibacterial activity of PlyA could be observed in some bio-matrices, such as
culture media, milk, and sera. In conclusion, we reported here a novel peptide-modified
lysin with significant antibacterial activity against both logarithmic (without OMPs) and
stationary phase (with OMPs) A. baumannii and P. aeruginosa cells in buffer, but further
optimization is needed to achieve broad activity in diverse bio-matrices.

Keywords: bacteriophage lysin, engineered lysin, Acinetobacter baumannii, Pseudomonas aeruginosa, outer
membrane permeabilizers (OMPs)

INTRODUCTION

The global emergence of multidrug-resistant (MDR) Gram-negative bacteria is a growing threat
to public health worldwide (Li et al., 2015). Due to the diversity of resistance mechanisms that
may lead to MDR or even pandrug resistance (PDR; Livermore andWoodford, 2006; Potron et al.,
2015), Acinetobacter baumannii and Pseudomonas aeruginosa are among the increasingly reported
and commonly identified MDR or even PDR nosocomial pathogens. They are responsible for
many hospital-acquired infections, ranging from mild skin wounds and urinary tract infections
to severe life-threatening infections, including bloodstream, pneumonia, and meningitis (Garcia-
Quintanilla et al., 2013; Bassetti et al., 2014). At the same time, the progress in developing new
antibiotics against these pathogens is slow (Fischbach and Walsh, 2009). Therefore, new strategies
for controlling these MDR pathogens are urgently needed.
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Bacteriophage lysins, the weapon of phages to digest the host
bacterial cell wall for the release of progeny phages, have been
extensively demonstrated to be promising alternatives in the
treatment of Gram-positive pathogens, such as staphylococci
and streptococci (Nelson et al., 2012; Pastagia et al., 2013; Yang
et al., 2014). Due to their unique working mechanisms, lysins
possess a low possibility of developing resistance (Fischetti, 2008;
Knoll and Mylonakis, 2014). However, the outer membranes of
Gram-negative bacteria block the access of natural lysins to their
peptidoglycan substrates, thus making the exogenously added
lysins useless or very weak against the viability of the target cells
(Morita et al., 2001; Lai et al., 2011; Lim et al., 2014).

Currently, several strategies have been developed to break
the barriers posed by the outer membranes of Gram-negative
bacteria to natural lysins. Physical (i.e., high hydrostatic pressure;
Briers et al., 2008) and chemical permeabilizers (i.e., EDTA, and
weak organic acid, usually citric acid; Briers et al., 2007, 2011)
can permeabilize the outer membrane efficiently to enhance
the antibacterial activity of lysins, but are only applicable
in applications such as food conservation and the treatment
of topical infections. Structure-based engineering and phage
genome-based screening methods have also been used to find
novel lysins that act on Yersinia with the FyuA receptor (Lukacik
et al., 2012) and A. baumannii (Lood et al., 2015). In recent
years, a few engineered lysins have been reported with good
antibacterial activities against P. aeruginosa by fusing natural
lysins with optimized N- or C-terminal lipopolysaccharides-
destabilizing or antimicrobial peptides, respectively, which can
permeabilize the outer membranes (Briers et al., 2014a,b). In
principle, considering the easy availability of lipopolysaccharide-
destabilizing and antimicrobial peptides, fusing natural lysins
with such peptides looks quite attractive since it provides a good
way with plenty of chances to create novel engineered lysins
against Gram-negative bacteria. However, reports on peptide-
modified lysins are limited, and mainly focus on P. aeruginosa.

In the present study, a new peptide-modified lysin (PlyA)
against A. baumannii and P. aeruginosa was constructed by
fusing the cecropin A peptide residues 1–8 (KWKLFKKI) with
the OBPgp279 lysin (Walmagh et al., 2012), and its antibacterial
activity was evaluated.

MATERIALS AND METHODS

Bacterial Strains
All bacterial strains and clinical isolates (Table 1) used in
this work were grown in Luria Broth (LB) medium at 37◦C.
All clinical isolates of A. baumannii and P. aeruginosa were
identified by 16S rDNA sequencing analysis combined with the
biochemistry test using a MicroStation system (Biolog, GEN III
Omnilog Combo Plus System, USA).

Construction of Plasmids
Cecropin A is a 37-residue membrane-active antimicrobial
polypeptide that kills bacteria by dissipating transmembrane
electrochemical ion-gradients (Silvestro and Axelsen, 2000).
Because the N-terminal residues 1–8 of cecropin A (CA,

KWKLFKKI) are highly positively charged, this fragment was
used in this study. OBPgp279 coding sequence was initially
cloned into the modified pET28a(+) plasmid (KanR) containing
a (G4S)2 liner between BamHI and EcoRI sites (Yang et al., 2012),
using primers OBP-F (5-tatagaattcatgaaaaactcggaaaagaacg-3) and
OBP-R (5-atatctcgagcacgatacccagagcttttttg-3), to obtain
pET-OBPgp279 vector (KanR). The coding sequence for
cecropin A peptide residues 1–8 (CA, KWKLFKKI) was
cloned into the pET-OBPgp279 vector, using primers
CA-F (5-catgggcaaatggaaattatttaagaaaattg-3) and CA-R (5-
gatccaattttcttaaataatttccatttgcc-3), to obtain pET-CA-OBPgp279
(pET-PlyA, KanR) vector. After verification by sequencing, E. coli
BL21(DE3) cells were transformed with the correct plasmid for
protein expression.

Protein Purification
The recombinant enzymes were purified as described previously
in our laboratory (Huang et al., 2015). Briefly, the E. coli
BL21(DE3) cells were induced with 0.5 mM isopropyl β-D-
thiogalactoside (IPTG) overnight at 16◦C and collected for
protein purification after sonication on ice. Then the proteins
were collected by washing and eluting with 80 and 400 mM
imidazole through a nickel nitrilotriacetic acid column (GE
Healthcare, US), respectively. The collected active protein
fractions were pooled and dialyzed against 20 mM Tris-HCl (pH
7.4) and stored at –80◦C until use (less than 2 weeks).

Antibacterial Activity Assay
To determine the antibacterial activity of PlyA, logarithmic
(cultured for 3–4 h, OD600 = 0.6–0.8) or stationary phase
(cultured for 14–16 h, OD600 = 1.4–1.6) cultures ofA. baumannii
WHG3066 were centrifuged (10,000 g × 1 min) first. Then the
cells were washed once and resuspended in 20 mMTris-HCl (pH
7.4). Bacterial suspensions (100 μl) were mixed with the enzyme
in the presence or absence of the outer membrane permeabilizers
(OMPs, i.e., EDTA and citric acid) at 37◦C for 15–60min. Finally,
the remaining viable cells were calculated by plating onto LA
plates. For susceptibility test, clinical isolates of A. baumannii and
P. aeruginosawere cultured to logarithmic phase and treated with
50 (for A. baumannii isolates) or 100 μg/ml (for P. aeruginosa
isolates) PlyA at 37◦C for 1 h. All assays were performed for at
least three times in biological repeats.

To test the synergism between OMPs and PlyA, stationary
phase A. baumannii WHG3066 and P. aeruginosa WHG3012
cells were treated with 100 μg/ml PlyA in the presence of various
concentrations of EDTA or citric acid in 20 mM Tris-HCl (pH
7.4) or 5 mMHEPES-NaOH (pH 7.4) at 37◦C for 1 h. Afterward,
the viable cell numbers were counted by plating. To avoid the
acidification effect of citric acid, the synergism between citric acid
and PlyA was also performed by adjusting the pH values of the
reaction systems to 7.4. All assays were performed for at least
three times in biological repeats.

To test the effects of bio-matrix on the antibacterial activity
of PlyA, A. baumannii WHG3066 cells in logarithmic phase
were washed once with 20 mM Tris-HCl buffer (pH 7.4), and
resuspended in medium, including LB, Mueller–Hinton (MH,
Huankai Microbial, Guangdong, China), Brain Heart Infusion
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TABLE 1 | Bacterial strains and clinical isolates used in this work.

Strain Antibiogram Strain Antibiogram

Acinetobacter baumanniia Pseudomonas aeruginosaa

WHG3047 ND WHG3012 AkS, GeS, CfS, ImS

WHG3051 ND WHG3022 AkS, GeR, CfR, ImR

WHG3059 ND WHG3029 AkS, GeS, CfS, ImS

WHG3072 AkR, GeR, CfR, ImR WHG3014 AkS, GeS, CfS, ImS

WHG3074 AkR, GeR, CfR, ImR WHG3015 AkS, GeS, CfR, ImS

WHG3075 AkR, CfR, ImR WHG3028 AkS, GeS, CfR, ImR

WHG3032 AkS, GeS, CfS, ImS WHG3030 AkS, CfS, ImS

WHG3064 AkS, GeS, CfS, ImS WHG3013 AkR, GeR, CfR, ImR

WHG3078 AkR, GeR, CfR, ImR WHG3043 AkS, GeS, CfS, ImR

WHG3048 ND WHG3006 AkS, GeS, CfS, ImS

WHG3049 ND WHG3007 AkS, GeS, CfS, ImR

WHG3050 ND WHG3008 AkS, GeS, CfS, ImR

WHG3052 ND WHG3009 AkS, GeS, CfS, ImR

WHG3053 ND WHG3016 AkS, GeS, CfS, ImI

WHG3054 ND WHG3018 AkS, GeS, CfS, ImS

WHG3082 AkS, GeS, CfS, ImS WHG3021 AkS, GeS, CfS, ImR

WHG3073 AkR, GeR, CfR, ImR WHG3019 AkS, GeS, CfR, ImR

WHG3070 AkR, GeR, CfR, ImR WHG3024 AkR, GeR, CfR, ImR

WHG3071 AkR, GeR, CfR, ImR WHG3025 AkS, GeS, CfS, ImR

WHG3077 AkR, GeR, CfR, ImR WHG3026 AkS, GeS, CfS, ImS

WHG3083 AkR, GeR, CfR, ImR WHG3031 AkR, GeR, CfR, ImR

WHG3079 AkR, GeR, CfR, ImR WHG3033 AkS, GeS, CfS, ImR

WHG3080 AkR, GeR, CfR, ImR WHG3034 AkS, GeS, CfS, ImS

WHG3081 AkR, GeR, CfR, ImR WHG3036 AkS, GeS, CfS, ImS

WHG3056 AkS, GeS, CfS, ImS WHG3017 AkS, GeS, CfS, ImS

WHG3058 AkR, GeR, CfR, ImR WHG3037 AkS, GeS, CfS, ImS

WHG3061 AkR, GeR, CfR, ImR WHG3039 AkS, GeR, CfS, ImS

WHG3063 AkS, GeR, CfR, ImR WHG3038 AkR, GeR, CfR, ImR

WHG3062 AkR, GeR, CfR, ImS WHG3040 AkS, GeS, CfI, ImS

WHG3065 AkR, GeR, CfR, ImR WHG3041 AkS, GeS, CfS, ImS

WHG3068 AkS, GeR, CfR, ImR WHG3042 AkS, GeS, CfS, ImS

WHG3066 AkS, GeS, CfR, ImR WHG3023 AkS, GeS, CfS, ImS

Escherichia colib WHG3027 AkS, GeS, CfR, ImR

BL21(DE3) ND WHG3029 AkS, GeS, CfS, ImS

Bacillus cereusb WHG3014 AkS, GeS, CfS, ImS

IS195 ND WHG3015 AkR, GeR, CfS, ImR

Antibiogram: Ak, amikacin; Ge, gentamicin; Cf, cefepime; Im, imipenem; ND, not detected; R, resistant; S, susceptible; I, intermediate-resistant.
a Isolated from Zhongnan Hospital of Wuhan University; bLab collection.

(BHI, Huankai Microbial, Guangdong, China) and Tryptic Soy
Broth (TSB, Becton, Dickinson & Co., France) with 4% NaCl
(TSBN), or pasteurized milk (Mengniu Group, Wuhan, China),
or human serum (Sigma–Aldrich, Shanghai, China). Then, cells
were treated with 100 μg/ml PlyA at 37◦C for 1 h, respectively.
The viable cell numbers were evaluated by plating on LA plates.
All assays were performed for at least three times in biological
repeats.

Transmission Electron Microscope (TEM)
The action of PlyA on the cell wall of the bacteria was monitored
by a thin-section transmission electron microscope (Tecnai G2

20 TWIN, FEI, USA). Briefly, A. baumannii WHG3066 cell
suspensions in logarithmic phase were incubated with 100 μg/ml

PlyA at 37◦C for 10, 15, and 30 min, respectively. Then, the
reactions were terminated by addition of 2.5% glutaraldehyde
and the fixed samples were analyzed by transmission electron
microscope (TEM). Cells treated with 20 mM Tris-HCl (pH 7.4)
under the same conditions were used as controls.

RESULTS

Characteristics of PlyA in Tris-HCl Buffer
As shown in Figure 1A, CA-fused OBPgp279 (called PlyA for
short) and its parental lysin OBPgp279 were well expressed in
E. coli as soluble proteins with purity of >95% as observed
by 12% SDS-PAGE gel. Antibacterial activity tests showed that
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FIGURE 1 | Activity of peptide-modified lysin (PlyA) in Tris-HCl buffer. (A) Analysis of purified proteins on 12% SDS-PAGE gel. (B) Dose-dependent
antibacterial activity of PlyA against logarithmic Acinetobacter baumannii WHG3066 and Pseudomonas aeruginosa WHG3012 in 20 mM Tris-HCl (pH 7.4).
(C) Time-killing curve of 50 μg/ml PlyA against logarithmic A. baumannii WHG3066. (D–G) Transmission electron microscope (TEM) images of logarithmic
A. baumannii WHG3066 exposed to PlyA. TEM analysis revealed that A. baumannii cells exposed to 100 μg/ml PlyA suffered from extrusion (D) and rapid disruption
at single (E) or multiple sites (F), resulting in the loss of cytoplasmic contents and ultimately the formation of ghost cell (G). Bar sizes: 200 nm.

PlyA could kill logarithmic phase A. baumannii WHG3066
and P. aeruginosa WHG3012 cells rapidly in a dose-dependent
manner (Figure 1B). Specifically, a reduction of over 5 logs
(from 6.6 log to 1.2 log) was observed after treating the
A. baumannii cells with 50μg/ml PlyA for 1 h (Figure 1B), and a
reduction about 2.5 logs (from 6.7 log to 3.8 log at 100 μg/ml
PlyA) for P. aeruginosa cells (Figure 1B). Nearly no viable
A. baumannii cells were detected when the concentration of
PlyA increased to 100 μg/ml. While its parental lysin OBPgp279
(with equimolar) could only cause a reduction of about 1.38 logs
(data not shown). The time kill curve revealed that the viable
A. baumannii cell numbers were reduced about 1.8 logs (from
6.6 log to 4.8 log) within the first 15 min when treated with
50 μg/ml PlyA, and the killing continued for at least 60 min
(Figure 1C).

Transmission electron microscope Images revealed that the
A. baumannii WHG3066 cells exposed to PlyA suffered from
leakage (Figure 1D) and rapid disruption at single (Figure 1E)

or multiple sites (Figure 1F), resulting in the partial or total
loss of cytoplasmic contents and ultimately loss of cell integrity
(Figure 1G).

Antibacterial Spectrum of PlyA
Next, we tested the susceptibility of a collection of clinical
isolates of A. baumannii and P. aeruginosa to PlyA (in Tris-HCl),
including another 31 A. baumannii isolates and 35 P. aeruginosa
isolates with multiple antimicrobial resistances profiles (Table 1).
The plating assay revealed that PlyA was active against all
A. baumannii isolates tested, causing a reduction of 1.0–4.2 logs.
Except WHG3033, all P. aeruginosa isolates tested (35/36) were
susceptible to PlyA (with a reduction of 0.5–2.7 logs in viable cell
number; Figure 2). The variable susceptibility of these clinical
isolates to PlyA may be due to their different modifications
in their outer membrane structure. No antibacterial activity
of PlyA was observed against Escherichia coli BL21(DE3) and
Bacillus cereus IS195 tested (data not shown). These results
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FIGURE 2 | Antibacterial activity of PlyA against clinical isolates of A. baumannii and P. aeruginosa in 20 mM Tris-HCl (pH 7.4). (A) Antibacterial activity
of PlyA (50 μg/ml) against A. baumannii clinical isolates in logarithmic phase at 37◦C for 1 h. (B) Antibacterial activity of PlyA (100 μg/ml) against P. aeruginosa
clinical isolates in logarithmic phase at 37◦C for 1 h.

demonstrate that PlyA has broad antibacterial activity against
MDRA. baumannii and P. aeruginosa isolates in Tris-HCl buffer.

Bacterial Phase Affects the Antibacterial
Activity of PlyA
Although PlyA showed good antibacterial activity (from 6.8 log to
1.8 log) against logarithmic phaseA. baumannii (Figure 1C), only
a minor activity (from 6.8 log to 6.4 log) could be observed after
treatment of the stationary phase A. baumannii WHG3066 cells
with 50 μg/ml PlyA for 1 h (Figure 3A). Different susceptibilities
to PlyA were also observed for logarithmic and stationary phase

P. aeruginosa WHG3012 cells, but the stationary cells were
still killed with a reduction of approximately 2 logs in cell
number (Figure 3B). These results show that stationary phase
A. baumannii and P. aeruginosa cells are not or partially killed
in comparison to their logarithmic phase ones, respectively.

OMPs Enhance the Antibacterial Activity
of PlyA Against Stationary Phase Cells
Outer membrane permeabilizers (OMPs), such as EDTA and
citric acid have been used to enhance the bacteriolytic activity of
lysins (Oliveira et al., 2014). However, an unneglectable minor
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FIGURE 3 | Comparison between the activity of PlyA against A. baumannii WHG3066 (A) and P. aeruginosa WHG3012 (B) cells in logarithmic and
stationary phase at 37◦C for 1 h in 20 mM Tris-HCl (pH 7.4). Concentration of PlyA: 50 μg/ml.

FIGURE 4 | Effects of EDTA and citric acid on the antibacterial activity of PlyA. (A,B) Effects of 100 μg/ml PlyA combined with various concentrations of
EDTA against stationary phase A. baumannii WHG3066 in 20 mM Tris-HCl (pH 7.4) (A), and P. aeruginosa WHG3012 (B) cells in different buffers at 37◦C for 1 h.
(C) Effects of 100 μg/ml PlyA combined with various concentrations of citric acid against stationary phase A. baumannii WHG3066 in 20 mM Tris-HCl (pH 7.4) with
pH adjustment.

killing effect on logarithmic P. aeruginosa was noted in the
presence of EDTA (Walmagh et al., 2012) and citric acid alone
(Oliveira et al., 2014) previously by other researchers. Therefore,
we only tested the synergism of these OMPs with PlyA against
stationary phase cells. Figure 4A showed that EDTA alone has
a minor killing effect on stationary phase A. baumannii cells,

with a reduction of only 0.3 logs in 20 mM Tris-HCl (pH 7.4).
Whilst, an obvious enhanced antibacterial activity of PlyA was
observed in the presence of EDTA, with a reduction of 2.3–3.2
logs in the viable cell number. The synergism between EDTA
and PlyA was observed not only in 20 mM Tris-HCl (pH 7.4),
but also in 5 mM HEPES-NaOH (pH 7.4) against stationary
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phase P. aeruginosa (with a reduction of 4.4 logs; Figure 4B).
Because the acidification effect of citric acid was reported to
kill logarithmic cells (Oliveira et al., 2014; Briers and Lavigne,
2015), we tested the effect of citric acid (0.05–2 mM) on PlyA
antibacterial activity against the stationary phase cultures of
A. baumannii by adjusting the pH values of the mixtures to 7.4
after adding citric acid to the Tris-HCl buffer. Results showed
that a citric acid dose-dependent synergism between citric acid
and PlyA was observed (Figure 4C), indicating that mechanisms
other than the acidification effect exist underlying the synergism
between citric acid and PlyA against the stationary phase cells.

Antibacterial Activity of PlyA in
Bio-Matrix Conditions
Finally, we evaluated the performance of PlyA in some bio-
matrix conditions, including LB culture medium, pasteurized
milk, and human serum, which are more complicate than the
pure Tris-HCl or HEPES-NaOH buffer. Figure 5 showed that
no antibacterial activity was observed in the presence of PlyA in
these conditions against logarithmic phase A. baumannii cells.
The abolished activity was also observed in MH, BHI, and
TSBN culture media (data not shown). These results indicate
that PlyA alone is easily inactivated in complicate environments,
limiting its application only to relatively simple or special
conditions.

DISCUSSION

The global emergence of MDR bacteria is calling to find novel
molecules for treating the infections caused by them. Some

FIGURE 5 | Activity of PlyA in some matrices. Logarithmic phase
A. baumannii WHG3066 cells were suspended in Tris-HCl buffer (pH 7.4), LB
culture medium (pH 7.0), pasteurized milk (pH 6.8), and serum (pH 6.9),
respectively. After treatment with 100 μg/ml PlyA at 37◦C for 1 h, the viable
cell numbers were calculated by plating on LA plates. Buffer treated groups
were used as controls.

recent studies on peptide-modified lysins or prophage lysins
with similar structural compositions have shown that they could
kill Gram-negative pathogens, including P. aeruginosa (Briers
et al., 2014a) and A. baumannii (Lood et al., 2015). However,
less is known about the conditions that influence the activities
of peptide-modified lysins and their potential limitations in real
applications. In the present study, we found that the activity of
a new peptide-modified lysin could be affected by the bacterial
growth phase and the bio-matrix, which should be taken into
consideration for the development of new peptide-modified
lysins.

We observed that PlyA showed good antibacterial activity
in Tris-HCl buffer against logarithmic phase A. baumannii and
P. aeruginosa clinical isolates (Figure 2), including these with
various antibiotic resistance profiles (Table 1, some of them
are MDR isolates). These results demonstrate that the strategy
of modifying lysins with a selected peptide is powerful to
obtain novel engineered lysins against Gram-negative bacteria,
including MDR isolates. The action model of a well known
peptide-modified lysin, Artilysin

R© , is speculated to be: (1)
the peptide fused in the N- or C-terminal of a target lysin
interacts with the lipopolysaccharide of the Gram-negative
bacteria, resulting in the destabilization and deformation of
the outer membrane; (2) the lysin moiety transfers through
the outer membrane driven by the self-promoted uptake of
the peptide, and (3) thus gets access to and hydrolyze its
peptidoglycan substrates, ultimately gives rise to cell lysis.
This hypothesized mode of action was recently confirmed
by Briers and coworkers in the time-lapse microscopy of
P. aeruginosa cells exposed to Artilysin

R© LoGT-008 (Briers et al.,
2014b). The TEM analysis of A. baumannii cells in this study
also supports this hypothesis. As shown in Figure 1, PlyA
disintegrates the cell wall of A. baumannii, and causes the
loss of cytoplasmic contents in a single or multiple sites. This
observation is quite similar with the typical phenomenon of
osmotic-mediated cell lysis following the actions of phage lysins
against Gram-positive bacteria reported elsewhere (Daniel et al.,
2010).

Although PlyA showed good antibacterial activity against
cells in logarithmic phase, a nearly abolished antibacterial
activity was observed against stationary phase A. baumannii
cells (Figure 3A). In case of stationary phase P. aeruginosa
the antibacterial activity is not abolished but greatly reduced
(Figure 3B). This observation is quite consistent with a
recent report showing that a higher antibacterial activity
of PlyF307 lysin was noted against exponentially growing
A. baumannii (Lood et al., 2015). The different susceptibility
may be due to the different structure and composition of
the cell membranes between logarithmic and stationary phase
cells. The outer membrane of bacteria is mainly composed
of lipopolysaccharides, phospholipids and proteins, and their
contents and types are varied in different environmental
conditions and growth phases (Cronan, 1978). Additionally,
there may be also difference in peptidoglycan architecture
between logarithmic and stationary phase cells, such as
the thickness of peptidoglycan layer, which influences their
susceptibility to PlyA.
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The strong synergisms between PlyA and OMPs (EDTA
and citric acid in Tris-HCl and HEPES-NaOH buffer) against
stationary phase cultures of A. baumannii (Figures 4A,C) and
P. aeruginosa cells (Figure 4B) indicate that the outer membrane
of Gram-negative bacteria is indeed a physical barrier for the
bacteriolytic activity of natural lysins. By combining with OMPs,
PlyA may be helpful in ex vivo and topical applications, such
as environmental or surface disinfection, but not suitable for
systemic infections due to the potential risk of anti-coagulating
properties of the OMPs.

Other researchers have noted that protonated form of citric
acid has both chelating effect and acidification effect on bacterial
cells, and the acidification effect could damage the outer
membrane of Gram-negative bacteria (such as P. aeruginosa) and
cause a reduction in viable cell number (Oliveira et al., 2014;
Briers and Lavigne, 2015). However, in the present study, we
found that the acidification-killing effect of citric acid (2 mM)
was only observed in logarithmic cultures of A. baumannii, but
not stationary phase ones (data not shown). Moreover, an obvious
synergism between citric acid and PlyA was observed against the
stationary phase cultures of A. baumannii in a citric acid dose-
dependent manner when pH values were adjusted to neutral pH
(Figure 4C). These results indicate that it is the chelating effect,
but not acidification effect of citric acid, which enhanced the
antibacterial activity of PlyA against stationary phase cultures of
A. baumannii.

One serious shortcoming for PlyA may be its inactivation
in complicate bio-matrices, including media, milk and serum
(Figure 5), which means PlyA could only be used in relatively
simple or specified conditions, such as material and skin
surface disinfection. One possible reason for the inactivation
of PlyA may be the conjugation and passivation of negatively
charged molecules present in these matrices to the positively
charged peptides, which may render the peptide losing the outer
membrane penetrating activity.

However, in the previous reports, the efficacies of some
Artilysin

R© s have been demonstrated in P. aeruginosa infected
Caenorhabditis elegans model and human keratinocytes
monolayer model in the presence of EDTA (Briers et al.,
2014b), as well as in in vitro case studies of dog otitis
caused by P. aeruginosa (Briers and Lavigne, 2015). Therefore,

it seems that it is not easy and straight-forward to
design an engineered peptide-modified lysin which shows
robust activity under infection conditions as described for
Artilysin

R©
s. Some optimization like fusing different peptides

with different endolysins and combining with different
linkers is required to obtain an antibacterial lysin with
the desired properties and a robust activity (Briers et al.,
2014b).

CONCLUSION

We report here a newly engineered lysin, PlyA, with high
bacteriolytic activity against A. baumannii and P. aeruginosa
in vitro. This study also indicated that conditions such as bacterial
growth phase and the bio-matrix can influence the antibacterial
activity of PlyA, suggesting that there are still some limitations
that should be taken into consideration for the development
of new peptide-modified lysins, and optimization is needed to
obtain an antibacterial lysin with robust antibacterial activity.
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